138 Ba(7 Li,4n γ) 2015Li21

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 187,1 (2023)	12-Oct-2022

2015Li21 compiled for XUNDL by J. Chen (NSCL, MSU) and edited by B. Singh (McMaster).

2015Li21: E=38 MeV ⁷Li beam produced at HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE) in Beijing. Used 3.1 mg/cm², 99.8%-enriched BaCO₃ target on 1.2 mg/cm² carbon backing. γ rays detected with 11 Compton-suppressed HPGe detector array with x rays and low-energy γ rays detected with two planar HPGe detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma$ (ADO). Deduced levels, J, π , band structures. Comparisons with systematics, shell-model calculations (code OXBASH).

¹⁴¹Pr Levels

 141 Pt has 59 protons and 82 neutrons which gives 9 valence protons above Z=50 closed shell and no valence neutrons above N=82 closed shell.

Possible configurations (2015Li21): $\pi(g_{7/2}d_{5/2})^9$ up to $23/2^+$ and $\pi(g_{7/2}d_{5/2})^7h_{11/2}^2$ up to $45/2^+$ for positive-parity states;

 $\pi(g_{7/2}d_{5/2})^8h_{11/2}^1$ for negative-parity states.

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	Comments
0.0	$5/2^{+}$		
145.41 25	$7/2^+$	1.85 ns <i>3</i>	
1117.4 <i>3</i>	$11/2^{-}$	4.8 ns 1	
1457.5 4	$(9/2^+)$		
1494.2 4	$11/2^{+}$		
1520.5 6	9/2+		
1767.6 4	$13/2^{+}$		
1796.7 4	$15/2^{+}$	1.0 ns 1	
1986.1 5	$(13/2^+)$	>0.42 ps	
2069.0 5	$17/2^{+}$		
2108.3 5	$(15/2^+)$		
2626.5 8	$(15/2^{-})$		
2927.3 5	$(19/2^{-})$		
2962.8 5	19/2+		
3017.0 5	$(21/2^+)$		
3018.9 6	$(21/2^{-})$	0.2 ns 1	J^{π} : (17/2) ⁻ in (α ,2n γ).
3396.8 7	$21/2^{-}$		
3471.0 6	$23/2^{-}$		
3526.5 6	$(23/2^{-})$		$J^{\pi}: (21/2^{-}) \text{ in } (\alpha, 2n\gamma).$
3585.5 6	$23/2^{+}$	0.2 ns 1	J^{π} : maximum alignment of $\pi(g_{7/2}d_{5/2})^9$ configuration.
4187.9 7	$(23/2^+)$		Possible configuration= $\pi (g_{7/2}d_{5/2})^9 \otimes \nu (f_{7/2}h_{11/2}^{-1}).$
4296.7 7	$(25/2^{-})$		···/-
4370.5 6	$27/2^{-}$		
4381.7 7	$(25/2^{-})$		
4430.3 7	$(25/2^{-})$		
4546.9 9	$(27/2^{-})$		
4592.0 8	$(25/2^{-})$		$25/2^{-}$ in Table II of 2015Li21 is tentative in the level-scheme in Fig. 1.
4740.8 7	$(27/2^{-})$		
4826.8 7	$(25/2^+)$		
4906.9 9	$(25/2^{-})$		
4988.6 7	$(29/2^{-})$		
5102.7	(29/2)		
5103.7 8	(31/2)		
5142.5 /	$(21/2^{+})$		
5/4/.4 10	$(29/2^{+})$		
6239.7 11	(35/2 ⁻)		Possible configuration= $\pi(g_{7/2}d_{5/2})^{\circ}h_{11/2}^{\circ}$ which gives maximum angular momentum of 35/2.

Continued on next page (footnotes at end of table)

¹³⁸Ba(⁷Li,4nγ) 2015Li21 (continued)

¹⁴¹Pr Levels (continued)

 † From a least-squares fit to $\gamma\text{-ray energies.}$

[‡] Adopted values.

[#] As given in 2015Li21 based on measured $\gamma\gamma$ (ADO) combined with theoretical calculations and systematics with tentative configurations sustaining parity assignments.

						$\gamma(^{141}\text{Pr})$		
E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [@]	δ	Comments
(29.1 [#]) 74.2 7	<3	1796.7 3471.0	15/2 ⁺ 23/2 ⁻	1767.6 3396.8	13/2 ⁺ 21/2 ⁻			$J^{\pi} = 23/2^+$ for the initial level in Table II of
89.7 7	<3	3017.0	(21/2 ⁺)	2927.3	(19/2 ⁻)	E1		$\alpha(\exp)=0.35 \ 8$ Mult.: from $\alpha(\exp)$ (deduced from intensity
91.6 5	18.4 24	3018.9	(21/2 ⁻)	2927.3	(19/2 ⁻)	M1+E2	1.7 6	balance). $\alpha(\exp)=2.60 \ 32$ Mult.: from $\alpha(\exp)$ (deduced from intensity balance). ADO=0.38 13.
116.6 [‡] 5	7.9 14	4546.9	(27/2-)	4430.3	(25/2 ⁻)			ADO=0.95 38. Mult.: D or Q transition based on ADO adopted as M1+E2 by 2015Li21 as based on level scheme placement.
122.2 7 145.4 <i>3</i>	4.4 9 100.0 94	2108.3 145.41	(15/2 ⁺) 7/2 ⁺	1986.1 0.0	(13/2 ⁺) 5/2 ⁺	D(+Q)		ADO=0.66 19. ADO=1.02 11. Mult.: Q transition based on ADO contradicts ΔJ =1 based on level scheme placement.
218.5 7 247 8 7	2.3 5 3 8 7	1986.1 4988 6	$(13/2^+)$ $(29/2^-)$	1767.6 4740.8	$13/2^+$ (27/2 ⁻)			
272.3 3	99 17	2069.0	$\frac{(2)}{2}^{+}$	1796.7	$15/2^+$	D+O		ADO=0.85 3.
273.4 <i>3</i>	25 17	1767.6	$13/2^{+}$	1494.2	$11/2^{+}$	D+Q		ADO=0.64 3.
299.2 5	8.6 14	5040.0	$(29/2^{-})$	4740.8	$(27/2^{-})$	D+Q		ADO=0.74 18.
301.4 7	4.4 57	2069.0	$17/2^{+}$	1767.6	$13/2^{+}$			
302.5 3	27.6 57	1796.7	$15/2^{+}$	1494.2	$11/2^{+}$	Q		ADO=1.30 10.
310.1 5	7.2 11	1767.6	13/2+	1457.5	(9/2+)	Q		J^{π} =13/2 ⁻ for the initial level in Table II of 2015Li21 seems a misprint; 13/2 ⁺ in the level scheme (Fig. 1) is in agreement with adopted value (based on different measurements). ADO=1.03 11.
311.6 5	8.6 <i>13</i>	2108.3	(15/2+)	1796.7	15/2+	Q		ADO=1.09 15. Mult.: Q transition compatible with $\Delta J=0$ based on level scheme placement.
315.7 5	5.7 9	5142.5	(27/2 ⁺)	4826.8	(25/2 ⁺)	D+Q		ADO=0.64 <i>12</i> . Mult.: D+Q transition based on ADO adopted as M1+E2 by 2015Li21 as based on level scheme placement.
340.7 7 362.9 7 370.3 7	3.5 6 4.3 6 <2	2108.3 5103.7 4740.8	$(15/2^+)$ $(31/2^-)$ $(27/2^-)$	1767.6 4740.8 4370.5	13/2 ⁺ (27/2 ⁻) 27/2 ⁻	Q		ADO=1.19 <i>18</i> .
377.9 <mark>&</mark> 7	<2	3396.8	$21/2^{-}$	3018.9	$(21/2^{-})$			
434.0 5	8.7 11	3396.8	21/2-	2962.8	19/2+	D(+Q)		ADO=0.76 12.
454.0 3	46.5 52	3471.0	$23/2^{-}$	3017.0	$(21/2^+)$	D		ADO=0.70 3.
465.7 7	<2	1986.1	$(13/2^+)$	1520.5	9/2+			
507.6 5	10.9 27	3526.5	$(23/2^{-})$	3018.9	$(21/2^{-})$	D(+Q)		ADO=0.76 8.
509.5 5	16.1 27	3526.5	$(23/2^{-})$	3017.0	$(21/2^{+})$	D+Q		ADU=0.60 5.

Continued on next page (footnotes at end of table)

¹³⁸Ba(⁷Li,4n γ) 2015Li21 (continued)

$\gamma(^{141}\text{Pr})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	Comments
568.5 5 604.9 7	16.6 <i>18</i> 3.8 5	3585.5 5747.4	23/2 ⁺ (29/2 ⁺)	3017.0 5142.5	$ \begin{array}{r} \hline (21/2^+) \\ (27/2^+) \end{array} $	D(+Q) D+Q	ADO=0.65 7. ADO=0.30 7. Mult.: D+Q transition based on ADO adopted as M1+E2 by 2015Li21 as based on level scheme
606.9 7 618.1 7 622.7 7	3.6 5 4.3 6 4.9 6	4988.6 4988.6 3585.5	(29/2 ⁻) (29/2 ⁻) 23/2 ⁺	4381.7 4370.5 2962.8	(25/2 ⁻) 27/2 ⁻ 19/2 ⁺	D+Q Q	placement. ADO=0.54 13. ADO=1.10 25. Mult.: O transition based on ADO adopted as E2 by
650.2 <i>3</i> 669.5 <i>5</i> 691.9 <i>7</i>	95.7 98 8.6 10 2.6 4	1767.6 5040.0 4988.6	$13/2^+$ (29/2 ⁻) (29/2 ⁻)	1117.4 4370.5 4296.7	$11/2^{-}$ $27/2^{-}$ $(25/2^{-})$	D(+Q) D+Q	2015Li21 as based on level scheme placement. ADO=0.69 4. ADO=0.77 10.
711.2 7 733.2 7 772.0 7 796.2 7	4.2 5 4.8 6 2.9 5 2.5 5	4296.7 5103.7 5142.5 4381.7	$\begin{array}{c} (25/2^{-}) \\ (25/2^{-}) \\ (31/2^{-}) \\ (27/2^{+}) \\ (25/2^{-}) \end{array}$	3585.5 4370.5 4370.5 3585.5	$(26)^{2}$ + $23/2^{+}$ $27/2^{-}$ $27/2^{-}$ $23/2^{+}$	D(+Q) Q	ADO=0.69 <i>10.</i> ADO=1.22 <i>25.</i>
825.7 7 844.0 5 854.5 5 858.3 3 868.7 5	2.1 4 5.8 7 10.2 12 55.4 61 5.2 9	4296.7 4370.5 2962.8 2927.3 1986.1	$(25/2^{-})$ $27/2^{-}$ $19/2^{+}$ $(19/2^{-})$ $(13/2^{+})$	3471.0 3526.5 2108.3 2069.0 1117.4	$23/2^{-}$ ($23/2^{-}$) ($15/2^{+}$) $17/2^{+}$ $11/2^{-}$	Q Q D D(+O)	ADO=1.07 18. ADO=1.06 17. ADO=0.74 4. ADO=0.71 10
893.8 5 899.5 3 903.8 5 910.7 7	11.1 <i>13</i> 23.9 28 6.2 8 2.1 4	2962.8 4370.5 4430.3 4381.7	$\begin{array}{c} (10/2^{+}) \\ 19/2^{+} \\ 27/2^{-} \\ (25/2^{-}) \\ (25/2^{-}) \end{array}$	2069.0 3471.0 3526.5 3471.0	$\frac{17/2^{+}}{23/2^{-}}$ $\frac{(23/2^{-})}{23/2^{-}}$	(D+Q) $(D+Q)$ $(D+Q)$	ADO=0.40 5. ADO=1.15 9. ADO=0.84 17.
948.0 <i>3</i> 959.3 <i>7</i> 972.0 <i>3</i>	75.5 86 3.6 5 92 11	3017.0 4430.3 1117.4	$(21/2^+)$ $(25/2^-)$ $11/2^-$ $11/2^-$	2069.0 3471.0 145.41	17/2 ⁺ 23/2 ⁻ 7/2 ⁺	Q D+Q (Q)	ADO=1.15 6. ADO=0.65 12. ADO=1.00 36. Mult.: tentative Q transition; D not excluded.
1121.0 7	4.2 6	4592.0	(25/2 ⁻)	3471.0	23/2-		Mult.: Q transition based on ADO contradicts $\Delta J=3$ based on level scheme placement.
1136.0 7 1166.1 7	2.5 <i>4</i> 4.8 7	6239.7 2962.8	(35/2 ⁻) 19/2 ⁺	5103.7 1796.7	$(31/2^{-})$ $15/2^{+}$	Q	ADO=1.31 26. Mult.: Q transition based on ADO adopted as E2 by 2015Li21 as based on level scheme placement
1170.9 5	5.2 9	4187.9	(23/2+)	3017.0	(21/2+)	D+Q	ADO=0.66 12. Mult.: D+Q transition based on ADO adopted as M1+E2 by 2015Li21 as based on level scheme placement
1241.3 5	5.3 8	4826.8	(25/2+)	3585.5	23/2+	D+Q	ADO=0.68 10. Mult.: D+Q transition based on ADO adopted as M1+E2 by 2015Li21 as based on level scheme placement.
1269.8 5 1277.8 7 1312.1 5 1348.8 3 1355.8 7	12.0 <i>17</i> 3.7 6 5.9 9 55.3 78 2.7 5	4740.8 4296.7 1457.5 1494.2 4826.8	$\begin{array}{c} (27/2^{-}) \\ (25/2^{-}) \\ (9/2^{+}) \\ 11/2^{+} \\ (25/2^{+}) \end{array}$	3471.0 3018.9 145.41 145.41 3471.0	23/2 ⁻ (21/2 ⁻) 7/2 ⁺ 7/2 ⁺ 23/2 ⁻	Q Q D(+Q) Q	ADO=1.13 <i>14</i> . ADO=1.13 <i>24</i> . ADO=0.69 <i>12</i> . ADO=0.89 <i>7</i> .
1362.8 7 1380.4 7	3.9 7 3.8 6	4381.7 4906.9	(25/2 ⁻) (25/2 ⁻)	3018.9 3526.5	$(21/2^{-})$ $(23/2^{-})$	Q	ADO=1.17 21. ADO=0.99 19. Mult.: Q transition based on ADO adopted as M1+E2 by 20151 21 as based on level asheres placement.
1457.5 7	<2	1457.5	(9/2+)	0.0	5/2+		by 2013L121 as based on level scheme placement.

Continued on next page (footnotes at end of table)

¹³⁸Ba(⁷Li,4nγ) 2015Li21 (continued)

$\gamma(^{141}\text{Pr})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	Comments
1509.1 7 1520.6 7 1573.1 7	2.4 6 2.2 4 3.6 7	2626.5 1520.5 4592.0	(15/2 ⁻) 9/2 ⁺ (25/2 ⁻)	1117.4 0.0 3018.9	11/2 ⁻ 5/2 ⁺ (21/2 ⁻)	(Q)	ADO=1.12 <i>32</i> .

[†] Uncertainties of γ -ray energies are $\Delta E \gamma = 0.3$ keV for $I \gamma \ge 20$, 0.5 keV for $5 < I \gamma \le 20$, and 0.7 keV for $I \gamma < 5$ (figures established by priv. comm. of xundl compilers with first author of 2015Li21).

[‡] Transition replaced from 3643.5 in $^{139}La(\alpha, 2n\gamma)$ dataset.

[#] From Fig. 1 but not listed in Table II of 2015Li21. This transition may not have been observed by 2015Li21 but included in the level scheme from literature, with energy deduced from level-energy difference.

^(a) Adopted by evaluator based on 2015Li21 measured ADO ratios. ADO ratio is defined as $I\gamma(\approx 40^{\circ})/I\gamma(\approx 90^{\circ})$ with typical values ≈ 1 for stretched quadrupole (or $\Delta J=0$ dipole) and ≈ 0.7 for stretched pure dipole. The quadrupole transitions are likely E2 while it is more difficult to assign the electric or magnetic character for dipole transitions without extra parity-sensitive measurements.

& Placement of transition in the level scheme is uncertain.

 $^{141}_{59} \rm{Pr}_{82}$

