		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 187,1 (2023)	12-Oct-2022

 $Q(\beta^{-}) = -3669 \ 14$; $S(n) = 8006 \ 5$; $S(p) = 6794 \ 7$; $Q(\alpha) = -698 \ 3 \ 2021Wa16$ $S(2n) = 18317 \ 28, \ S(2p) = 11812 \ 4 \ (2021Wa16).$

The reaction ¹⁴²Nd(γ ,n) was used to study the ratio of isomer to g.s. yields: 2009PaZZ (E=27, 28, 29, 30 MeV), 2008XxZZ (E=11-16 MeV), 2007AnZX (E=7.4-13.3 MeV), 2007Pa45 (E<35 MeV), 2006AnZZ, 2005AnZX (E=15 MeV). <r^{2}>^{1/2}=4.9057 fm 26 (2013An22).

Data of $({}^{48}Ca,3n\gamma)$ which show extended level scheme with different placements supersede those of $({}^{24}Mg,\alpha 3n\gamma)$ unless mentioned otherwise.

¹⁴¹Nd Levels

Cross Reference (XREF) Flags

		$ \begin{array}{c} A & {}^{141}Nc \\ B & {}^{141}Pn \\ C & {}^{96}Zr(\\ D & {}^{124}Sn \end{array} $	d IT decay (62.0 s) $n \varepsilon$ decay ${}^{48}Ca, 3n\gamma)$ $n({}^{24}Mg, \alpha 3n\gamma)$	S) E ${}^{140}Ce(\alpha,3n\gamma)$ I ${}^{142}Nd({}^{3}He,\alpha)$ F ${}^{141}Pr(p,n\gamma)$ J ${}^{142}Nd({}^{13}C,{}^{14}C)$ G ${}^{142}Ce(\alpha,5n\gamma)$ K ${}^{143}Nd(p,t)$ H ${}^{142}Nd(p,d), (d,t)$				
E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments				
0.0	3/2+	2.49 h <i>3</i>	ABCDEFGHIJK					
193.72 <i>3</i>	1/2+	1.17 ns 15	BC EF HIJK	$T_{1/2}$: from ¹⁴¹ Pm ε decay (1970Ch29). J ^{π} : L=0 in (p,d), (d,t).				
756.51 [@] 5	11/2-	62.0 s 8	ABCDEFGHIJK	Configuration $(-53)_2$ in $(-Ca,517)$. %IT>99.95; $\% \epsilon + \% \beta^+ < 0.05$ $\% \epsilon + \beta^+ < 0.05$ (1988Ch39); other: 0.032% 8 (1970Ab05). T _{1/2} : weighted average: 63.9 s 11 (1960Ja06), 61 s 2 (1960Ko02), 64.7 s 13 (1966Gr05), 60.3 s 10 (1967Ge09), 61.5 s 20 (1969Ja02), 60.9 s 10 (1988Ch39). J ^{π} : γ to 3/2 ⁺ is M4, L=5 in (p,d), (d,t). Measured isomeric Ratio, Relative population with respect to g.s., in				
1223.30 <i>3</i> 1345.48 <i>4</i> 1403.41 <i>11</i> 1416.1 <i>10</i> 1564.64 <i>5</i>	5/2 ⁺ 7/2 ⁺ (7/2 ⁻) 7/2 ⁻ (3/2) ⁺		B EFGHIJ B EFGHI B F H F K B F HIJ	J^{π} : L=2 in (p,d), (d,t), 1223 γ to 3/2 ⁺ is Δ J=1 (α ,5n γ). J^{π} : L=4 in (p,d), (d,t) and (³ He, α), log <i>ft</i> =7.3 via 5/2 ⁺ parent. J^{π} : L=3 in (p,d), (d,t); γ to 11/2 ⁻ . J^{π} : L=0 in (p,t). J^{π} : L=2 in (p,d), (d,t); possible E0 component in transition to 3/2 ⁺ , g.s. (5/2) ⁺ in 1984Va33.				
1597.01 5 1625.5 10 1670.6 10 1715.2 10	5/2 ⁺ ,3/2 ⁺ (9/2)		B F HI E G F F	J^{π} : L=2 in (p,d), (d,t). J^{π} : γ to 7/2 ⁺ is ΔJ =(1) (α ,5n γ), no γ to 1/2 ⁺ , 3/2 ⁺ or 5/2 ⁺ .				

Continued on next page (footnotes at end of table)

¹⁴¹Nd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
1804.8 7			F	
1808.31? 8			В	
1820.49 5	5/2+,3/2+		B F HIJ	J^{π} : L=2 in (p,d), (d,t).
1870.9 <i>10</i>			E	
1876.0 5	4 /0 ±		F	
1890.3 7	1/2+		F HI	J^{n} : L=0 in (p,d), (d,t).
1897.4 5	7/0+		BF	$T_{T} = A^{+} (1) + C (A^{+} = 5/0 + 1)$
1967.56.5	1/21		B FL HI	J^{A} : L=4 in (d,t), log ft=6.4 via $5/2^{+}$ parent.
2011 3			г	
2018.8 9	13/2(-)	<1 ns	CD I	Level resulting from relocating the 1204 α from 4246 in (α 3nd) and
2049.37 17	15/2	<1 118	CD	Level resulting from relocating the 1294 y from 4240 in $(\alpha, 5\pi\gamma)$ and $(\alpha, 5\pi\gamma)$ (10771 y 04) in $(^{24}M_{\odot} \alpha^{2}\pi\gamma)$ and $(^{48}C_{\odot} 2\pi\gamma)$
				$(\alpha, 5n\gamma)$ (1977 Lu04) in (* Mg, $\alpha 5n\gamma$) and (* Ca, 5n γ).
				J. γ to $11/2$ is $\Delta J = 1$, (MITE2). The from (α 5m) from 1203 by (previously for the 4246 level)
2066 41 7	3/2+ 5/2+		RF	$I_{1/2}$. How (a, sny) from $I_{2,2}(s, ry)$ (previously for the 4240 level). $I^{\pi} \cdot I = 2$ in (n d) (d t)
2000.41 7	$3/2^+$ $5/2^+$		B F HT	I^{π} : L=2 in (p,d), (d,t).
2109.54 5	$3/2^+, 5/2^+$		B F HI	J^{π} : L=2 in (p,d), (d,t).
2145.38 20	-/- ,-/-		BF	· · · · (F)-), (-,-),
2156.3 12			С	No γ observed in (⁴⁸ Ca.3n γ) de-exciting this level; possible isomer.
2180 5	$1/2^{+}$		HI	J^{π} : L=0 in (p,d), (d,t).
2202.9 9	,		F	
2211.2 5	$15/2^{-}$		CDE GHI	J^{π} : γ to $11/2^{-}$ is E2. Contradicts L=5 in (d,t), (³ He, α).
2221.0 7			F K	
2246.57 5	(7/2 ⁻ ,5/2 ⁻)		BFH	J ^{π} : L=(3) in (p,d), (d,t); strong γ to 1/2 ⁺ indicates the possibility of two distinctive levels
2265.22 20			В	
2303.63 5	7/2+		BF	J^{π} : γ' s to $3/2^+$, L=4 in (p,d), (d,t).
2311.69 11	7/2+		BFH	J^{π} : L=4 in (p,d), (d,t) and (³ He, α); γ to 3/2 ⁺ g.s.
2313 10	11/2-,9/2-		I	J^{π} : L=5 in (³ He, α).
2336.02 20	7/2+		B I	XREF: I(2343).
				J^{π} : L=4 in (³ He, α); log ft=8.3 via 5/2 ⁺ parent; γ to 3/2 ⁺ .
2348.5 8	13/2		EG	J^{π} : γ to $11/2^{-}$ is $\Delta J=1$, D+Q, excitation function.
2349 5	(11/2 ⁻ ,9/2 ⁻)		Н	J^{π} : L=(5) in (p,d), (d,t).
2354.38 15	$(3/2, 5/2^+)$		B F	J^{π} : γ 's to $3/2^+$ and $1/2^+$, log <i>ft</i> =7.5 via $5/2^+$ parent.
2365.6 10	$(3/2, 5/2^+)$		F	J^{π} : γ to $1/2^+$.
2366.0 4	$13/2^{-}$		C	J^{π} : γ from 17/2 ⁻ is $\Delta J=2$, E2.
2250 0 5			_	No γ observed in (⁴⁸ Ca,3n γ) de-exciting this level; possible isomer.
23/0.8 7	7/2+		F D D UT	$\pi_{-1} = 4 + (4+) + (-4) + (-2)^{+}$
2388.53 10	1/2		B F HI	$J^{*}: L=4 \text{ in } (d,t), (p,d); \gamma \text{ to } 3/2^{*}.$
2429.02.20			БГ	
2459.5 10			F	
2463 45 10			BF	
2505.43.8	$3/2^{+}.5/2^{+}$		BF	J^{π} : γ' s to $1/2^+$ and $7/2^+$, log ft=6.9 via $5/2^+$ parent.
2514.82 20	$(7/2)^+$		BFHI	J^{π} : L=(4) in (p,d), (d,p); γ to $3/2^+$.
$253744^{@}22$	15/2-		CDE G	I^{π} : γ to $11/2^{-1}$ is AI=2. E2
2581.5	(5/2)		HT	I^{π} : L=(3) in (p,d). (d,t): L=(2) in (³ He α)
2616.5	(-)-)		нт	I^{π} : L=(5) in (p,d), (d,t) in contradiction with L=(2) in (³ He α)
2619.03 20			В	$\mathbf{L} = \{\mathbf{c}\}$ in (p,q), (q,t) in contraction with $\mathbf{L} = \{\mathbf{L}\}$ in (110,q).
2643 5			Н	
2705 5	$(3/2^+, 5/2^+)$		HI	J^{π} : L=(2) in (³ He, α).
2732.53 20			В	
2764 5			Н	
2803.9 4	3/2+,5/2+		B HI	J^{π} : L=2 in (d,t), (p,d).

Continued on next page (footnotes at end of table)

¹⁴¹Nd Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
2805.7.3	$13/2^{(-)}$		CD	J^{π} : γ to $11/2^{-}$ is AI=1. (M1+E2).
2829.56 17	$15/2^{(-)}$		CDE G	J^{π} : γ to $11/2^{-1}$ is $\Delta J=2$. O and γ to $13/2^{-1}$ is $\Delta J=1$. (M1+E2).
2838 5	,		Н	
2865.3 4			В	
2886.77 [@] 21	$17/2^{(-)}$		CDE GH	J^{π} : γ to $13/2^{(-)}$ is $\Delta J=2$, E2.
				T _{1/2} : 28 ns 5 was measured from 348.2γ that in (²⁴ Mg, α 3n γ) was shown to be a multiplet (344.9 γ , 347.2 γ , 348.9 γ , and 349.2 γ), reason for which it was not assigned to this level or other levels.
2886+x?		26 ns 5	G	Additional information 1. $T_{1/2}$: 1782.2 γ and 348.2 γ in (α ,5n γ) (1976Lu07) have prompt and delayed ($T_{1/2}$ =26 ns 5) components, suggesting that 2886 level is populated by delayed γ from an isomeric state 2886+x.
2915 10	11/2-,9/2-		HI	J^{π} : L=5 in (d,t); (p,d) (1984Va33) (1978VaZS).
2944.70 11	$3/2^+, 5/2^+$		B HI	J^{π} : L=2 in (p,d), (d,t).
2951.7 8	(19/2)		EG	J^{π} : γ to $1/2^{-1}$ is $\Delta J=1$ D, no γ to $J<1/2$.
2900.0 4	(1/2) $(5/2^+ 3/2^+)$		U U	$J^{\pi}: \gamma = 15/2$ is E2. $I^{\pi}: I = (2)$ in (n d) (d t)
3018 / 3	(3/2, 3/2) $10/2^{(-)}$		C II	J : $L = (2)$ in (p,u), (u,t). I^{π} : χ to $17/2^{(-)}$ is AI=1 (M1+E2)
3042.5	$9/2^+ 7/2^+$		нт	I^{π} : L=4 in (n d) (d t)
3056.08 7	$7/2^+$		В	J^{π} : L=4 in (d,t), (³ He, α): log ft=7.2 via 5/2 ⁺ parent.
3093 10	$(1/2^+)$		Н	J^{π} : L=(0) in (d,t), (p,d).
3104.9 9	(21/2)		EG	J^{π} : γ to (19/2) is $\Delta J=1$ D and is stronger than 218 γ to 17/2, no γ to J<17/2.
3112 5	7/2+,9/2+		HI	J^{π} : L=4 in (³ He, α), (p,d).
3163 10			Н	
3208 10			Н	
3262 10			H	
3315 5	$(3/2^+, 5/2^+)$		HI	J^{*} : L=(2) in (³ He, α).
3356.2 4	$21/2^{(-)}$		C	J^{Λ} : γ to $19/2^{\gamma}$ is $\Delta J = 1$, (M1+E2).
3309 5	3/2, $3/23/2^+ 5/2^+$			J . $L=2$ in (0,1), (p,0). I^{π} : $I=2$ in (³ He α)
3498 10	3/2, $3/23/2$ + $5/2$ +		н	$J^{\pi}: L=2 \text{ in } (\Pi c, a).$
3509 7 4	$23/2^{(-)}$		CD	I^{π} : γ to $21/2^{(-)}$ is AI=1 (M1+F2)
3578 10	23/2		Н	$\mathbf{J} = \mathbf{J} = $
3618 10			Н	
3657 10			Н	
3845.0 [@] 3	$21/2^{(-)}$		С	J^{π} : γ to $17/2^{(-)}$ is $\Delta J=2$, E2.
3890? 10			Н	
4068.9 4	$21/2^{(-)}$		С	J^{π} : γ to $17/2^{(-)}$ is $\Delta J=2$, E2.
4243.5 6	$21/2^{(-)}$		С	J^{π} : γ to $17/2^{(-)}$ is $\Delta J=2$, E2.
4246.0 13	(23/2)		EG	$T_{1/2}$: <1 ns was previously assigned to this level in (α ,5n γ) from 1293 γ .
				$J'': \gamma$ from $23/2$, $43/7$ is $\Delta J=1$, D (nowever the pracement at $43/7$ is tentative)
1216 0 8	(21/2)		F C	I^{π} : Ω at to $17/2^{(-)}$ and Ω at to $(10/2)$
4297 3 4	(21/2) 25/2(-)		C	I^{π} : χ to $21/2^{(-)}$ is $\Lambda I=2$ F2
1227.5 7 1336.09 [#] @ 1	$23/2^{(-)}$		C C	I^{π} : γ to $21/2^{(-)}$ is AI-1 (M1+F2)
4376.7.8	(23/2)		EG	J^{π} : γ to (21/2) is AJ=1, (M17E2).
4377.5 4	$25/2^{(-)}$		CD	J^{π} : γ to $21/2^{(-)}$ is AJ=2. E2.
4493.6.6	$23/2^{(-)}$		CDE G	J^{π} : γ to $21/2^{(-)}$ is $\Delta J = 1$, (M1+E2).
4582.7 17	(23/2)		EG	J^{π} : γ to 21/2 is $\Delta J=1$ D, no γ to $J<21/2$.
4819.9 7	/		C	, , , , , , , , , , , , , , , , , , , ,
5077.8 [@] 4	$27/2^{(-)}$		С	$J^{π}$: γ to 23/2 ⁽⁻⁾ is ΔJ=2, E2.

Continued on next page (footnotes at end of table)

¹⁴¹Nd Levels (continued)

E(level) [†]	J#‡	XREF	Comments
5270.7 17	(25/2)	EG	J^{π} : γ to 21/2 is $\Delta J=2$ Q, no γ to J<21/2.
5327.9 9	$29/2^{(-)}$	С	J^{π} : γ from 33/2 ⁽⁻⁾ is ΔJ =2, E2.
			No γ observed in (⁴⁸ Ca,3n γ) de-exciting this level; possible isomer or a fragmented
5587.1 5	$29/2^{(-)}$	CD	decay over several pathways which are too weak to be observed. J^{π} : γ to $25/2^{(-)}$ is $\Delta J=2$, E2.
5648.3 ^{&} 6	$27/2^{(-)}$	CD	J^{π} : γ to 23/2 ⁽⁻⁾ is $\Delta J=2$. E2.
5762.1? ^{#@} 5	$31/2^{(-)}$	С	J ^π : γ to $27/2^{(-)}$ is ΔJ=2, E2.
5791.5 <mark>&</mark> 6	$29/2^{(-)}$	С	J^{π} : γ to $27/2^{(-)}$ is $\Delta J=1$, (M1+E2).
5831.8 7	$29/2^{(-)}$	С	J^{π} : γ to $25/2^{(-)}$ is $\Delta J=2$, E2.
5962.4 <mark>&</mark> 6	$31/2^{(-)}$	С	J^{π} : γ to 29/2 ⁽⁻⁾ is $\Delta J=1$, (M1+E2).
5995.2 6	$31/2^{(-)}$	CD	J ^π : γ to $29/2^{(-)}$ is ΔJ=1, (M1+E2).
6212.3 ^{&} 7	$33/2^{(-)}$	С	J ^π : γ to $31/2^{(-)}$ is ΔJ=1, (M1+E2).
6272.7 8	$33/2^{(-)}$	С	J ^π : γ to $31/2^{(-)}$ is ΔJ=1, (M1+E2).
6364.9 12		С	
6483.6 7	33/2-	С	J^{π} : γ to 29/2 ⁽⁻⁾ is $\Delta J=2$, E2.
6560.2 ^{&} 7	$35/2^{(-)}$	С	J^{π} : γ to 33/2 ⁽⁻⁾ is $\Delta J=1$, (M1+E2).
6890.3 [@] 7	$35/2^{(-)}$	С	J^{π} : γ to 31/2 ⁽⁻⁾ is ΔJ=2, E2.
			Configuration= $\pi[(d_{5/2}/g_{7/2})^2_{2+}h^2_{11/2}] \otimes \nu h^{-1}_{11/2}$ in (⁴⁸ Ca,3n γ).
7018.5 ^{&} 8	$37/2^{(-)}$	С	J ^π : γ to $33/2^{(-)}$ is ΔJ=2, E2.
7317.2 ^{<i>a</i>} 8	$37/2^{(-)}$	С	J ^π : γ to $35/2^{(-)}$ is ΔJ=1, (M1+E2).
7499.1 & 8	$39/2^{(-)}$	CD	J^{π} : γ to 35/2 ⁽⁻⁾ is $\Delta J=2$, E2.
7544.4? ^{#@} 7	$39/2^{(-)}$	С	J ^π : γ to $35/2^{(-)}$ is ΔJ=2, E2.
			Configuration= $\pi[(d_{5/2}/g_{7/2})_{2+}^4h_{11/2}^2] \otimes \nu h_{11/2}^{-1}$ in (⁴⁸ Ca,3n γ).
7548.1 ^{<i>a</i>} 9	$39/2^{(-)}$	С	J^{π} : γ to $37/2^{(-)}$ is $\Delta J=1$, (M1+E2).
7851.8 ^{&} 9	$41/2^{(-)}$	С	J ^π : γ to $37/2^{(-)}$ is ΔJ=2, E2.
7904.9 ^a 9	$41/2^{(-)}$	С	J^{π} : γ to 39/2 ⁽⁻⁾ is $\Delta J=1$, (M1+E2).
8263.8 ^{&} 10	$43/2^{(-)}$	С	J^{π} : γ to $41/2^{(-)}$ is $\Delta J=1$, (M1+E2).
8332.2 [@] 7	$43/2^{(-)}$	С	J^{π} : γ to 39/2 ⁽⁻⁾ is $\Delta J=2$, E2.
			Configuration= $\pi[(d_{5/2}/g_{7/2})^2_{6+}h^2_{11/2} \ _{10+}] \otimes \nu h^{-1}_{11/2}$; maximum aligned state in $({}^{48}Ca, 3n\gamma)$.
8373.1 ^{<i>a</i>} 10	$43/2^{(-)}$	С	J ^π : γ to $41/2^{(-)}$ is ΔJ=1, (M1+E2).
8707.6 ^{&} 12	$45/2^{(-)}$	С	J ^π : γ to $43/2^{(-)}$ is ΔJ=1, (M1+E2).
8769.0 ^a 10	$45/2^{(-)}$	С	J ^π : γ to $43/2^{(-)}$ is ΔJ=1, (M1+E2).
9060.7 ^{&} 12	$47/2^{(-)}$	С	J ^π : γ to 43/2 ⁽⁻⁾ is ΔJ=2, E2.
9063.8 19	$(45/2^+)$	С	J^{π} : γ from (47/2 ⁺) is $\Delta J=1$, (M1+E2).
9086.2 ^{<i>a</i>} 11	$47/2^{(-)}$	С	J^{π} : γ to $45/2^{(-)}$ is $\Delta J=1$, (M1+E2).
9170.7 [@] 8	$47/2^{(-)}$	С	J^{π} : γ to $43/2^{(-)}$ is $\Delta J=2$, E2.
0000 (0	47/0(-)	<u> </u>	Configuration= $\pi[(d_{5/2}/g_{7/2})_{7+1}^{*}h_{11/2}^{*}]_{10+} \otimes \nu h_{11/2}^{-1}$ in (*°Ca,3n γ).
9208.6 9	4//2	C	J [*] : γ to 43/2 [°] is $\Delta J=1$, (M1+E2) and γ from 51/2 [°] is $\Delta J=2$, E2 in (¹⁰ Ca,3n γ)
			scheme sequence.
9362.1 ^b 13	$47/2^{(+)}$	С	J ^{π} : γ to 45/2 ⁽⁻⁾ is Δ J=1, assumed (E1) in (⁴⁸ Ca,3n γ).
9497.9 ^a 12	$49/2^{(-)}$	С	J ^π : γ to $47/2^{(-)}$ is ΔJ=1, (M1+E2).
9550.6 ^{&} 14	$49/2^{(-)}$	С	J^{π} : γ to $47/2^{(-)}$ is $\Delta J=1$, (M1+E2).
9596.4 16	$(47/2^+)$	С	J ^π : γ from (49/2 ⁺) is ΔJ=1, (M1+E2).
9654.1 ^b 15	49/2(+)	С	J ^π : γ to $47/2^{(+)}$ is ΔJ=1, (M1+E2).
9892.3 ^c 13	$(49/2^+)$	С	J^{π} : γ to $47/2^{(+)}$ and γ to $(47/2^+)$ are assumed $\Delta J=1$ and $\pi=(+)$ based on theoretical
9961.4 <i>14</i>		С	

¹⁴¹Nd Levels (continued)

E(level) [†]	J ^π ‡	XREF	Comments
10007.1 ^{<i>a</i>} 13	$51/2^{(-)}$	С	J^{π} : γ to $49/2^{(-)}$ is $\Lambda J=1$. (M1+E2).
10009.2 ^e 17	$(51/2^+)$	c	J^{π} : γ to $49/2^{(-)}$ is assumed $\Delta J=1$ and $\pi=(+)$ based on theoretical arguments in
			$(^{48}\mathrm{Ca},3\mathrm{n}\gamma).$
10067.0 ^b 15	$(51/2^+)$	С	J^{π} : γ to $49/2^{(+)}$ is assumed $\Delta J=1$ and $\pi=(+)$ based on theoretical arguments in
10209.8 9	$51/2^{(-)}$	С	J^{π} : γ to $47/2^{(-)}$ is $\Delta J=2$. E2.
$10271.0^{@}9$	$51/2^{(-)}$	C	I^{π} . γ to $47/2^{(-)}$ is $\Lambda I=2$ E2
102/110	51/2	C	Configuration = $\pi[(d_{5/2}/g_{7/2})]^4_{4.6}$ h ² _{1/2} 10+ $ \otimes vh^{-1}_{1/2}$; maximum aligned state.
10330.0 17		С	
10403.1 ^c 14	$(53/2^+)$	С	J^{π} : γ to (49/2 ⁺) is $\Delta J=(2)$, (E2).
10591.9 ^b 16	$(53/2^+)$	С	J^{π} : γ 's to $49/2^{(+)}$ and $(51/2^+)$ and band assignment.
10611.8 ^a 14	$(53/2^{-})$	С	J^{π} : γ 's to $49/2^{(-)}$ and $(51/2^{-})$ and band assignment.
10774.1 17		C	
11134.9 ^e 20	$(55/2^+)$	C	J^{π} : γ 's to (51/2 ⁺) is (E2) and band assignment.
11154.0 18	$(57/2^{+})$	C	J^{n} : γ to (53/2 ⁺) is $\Delta J=2$, E2.
11209.9 ⁰ 17	$(55/2^+)$	C	J^{π} : γ 's to $(51/2^+)$ and $(53/2^+)$ and band assignment.
11293.2 9	$55/2^{(-)}$	C	J^{π} : γ to 51/2 ⁽⁻⁾ is $\Delta J=2$, E2.
11303.5 [@] 10	$55/2^{(-)}$	С	J^{π} : γ to 51/2 ⁽⁻⁾ is $\Delta J=2$, E2.
11545.2 14	$55/2^{(-)}$	C	J^{π} : γ to 51/2 ⁽⁻⁾ is $\Delta J=2$, E2.
			Configuration= $\pi[(d_{5/2}/g_{7/2})_{12+}^{6}h_{11/2}^{2} \ _{10+}] \otimes \nu h_{11/2}^{-1};$ maximun aligned state.
11912.0 ^b 18	$(57/2^+)$	С	J^{π} : γ 's to (53/2 ⁺) and (55/2 ⁺) and band assignment.
12124.7 11	$57/2^{(-)}$	С	J^{π} : γ to 55/2 ⁽⁻⁾ is $\Delta J=1$, (M1+E2).
12172.0 12	$57/2^{(-)}$	С	J^{π} : γ to 55/2 ⁽⁻⁾ is $\Delta J=1$, (M1+E2).
12217.8 ^d 20	$(61/2^+)$	С	J^{π} : γ to (57/2 ⁺) is $\Delta J=(2)$, (E2).
12254.1 ^c 20	$(61/2^+)$	С	J^{π} : γ to (57/2 ⁺) is $\Delta J=2$, E2.
12367.6 ^e 22	$(59/2^+)$	C	J^{π} : γ to (55/2 ⁺) is $\Delta J=(2)$, (E2).
12386.9 11	59/2(-)	C	J^{π} : γ to 55/2 ⁽⁻⁾ is $\Delta J=2$, E2.
12564.1 13	59/2(-)	C	J^{π} : γ to 55/2 ⁽⁻⁾ is $\Delta J=2$, E2.
12634.9 ^{@} 15	59/2(-)	C	J^{π} : γ to 55/2 ⁽⁻⁾ is $\Delta J=2$, E2.
12660.7 13	59/2(-)	C	J^{π} : γ to 55/2 ⁽⁻⁾ is $\Delta J=2$, E2.
12788.4 13	$59/2^{(-)}$	C	J^{π} : γ to 55/2 ⁽⁻⁾ is $\Delta J=2$, E2.
13201.3 ^d 20	$(65/2^+)$	C	J^{π} : γ to (61/2 ⁺) is $\Delta J=2$, E2.
13211.6 15	$61/2^{(-)}$	C	J^{π} : γ to 57/2 ⁽⁻⁾ is $\Delta J=2$, E2.
13267.6 13	$61/2^{(-)}$	C	J^{π} : γ to 57/2 ⁽⁻⁾ is $\Delta J=2$, E2.
13280.5 14	$61/2^{(-)}$	C	J^{π} : γ to 59/2 ⁽⁻⁾ is $\Delta J=1$, (M1+E2).
13621.3° 22	$(65/2^+)$	C	J^{π} : γ to $(61/2^+)$ and band assignment.
13695.5° 25	$(63/2^+)$	C	$J'': \gamma$ to $(59/2^+)$ and band assignment.
13800.3 I3	$63/2^{(-)}$	C	J ^{**} : γ to $61/2^{-\gamma}$ is $\Delta J=1$, (M1+E2).
14130.4 = 10	$\frac{05}{2}$	C	J^{*} : γ to S^{g}/Z^{*} is $\Delta J=Z$, EZ.
14433.0° 23	$(69/2^+)$	C	J^{Λ} : γ to (65/2 ⁺) and band assignment.
150987 - 5 15154 6 ^C 24	$(69/2^+)$	C	J : γ to (05/2 ⁺) and band assignment
$15761 5 \frac{d}{25}$	$(73/2^+)$	C	I^{π} , γ to $(60/2^+)$ and band assignment
163489 ^e 3	(73/2) $(71/2^+)$	C	J. γ to $(0.7/2^+)$ and band assignment
16846 ^C 3	$(73/2^+)$	c	J^{π} : γ to (69/2 ⁺) and band assignment.
17234^{d} 3	$(77/2^+)$	C	I^{π} : γ to $(73/2^+)$ and hand assignment
18694? ^C 3	$(77/2^+)$	c	J^{π} : γ to $(73/2^+)$ and band assignment.
188582 ^d 3	$(81/2^+)$	C	I^{π} : γ to $(77/2^+)$ and band assignment
10000. 0	(01/2)	~	$v \cdot j \mapsto (ij2)$ and band assignment.

¹⁴¹Nd Levels (continued)

- [†] From least-squares fit to $\Xi\gamma$ data (γ 's with no listed uncertainties were assigned $\Delta\Xi\gamma=1$ keV for the fit). χ^2 norm=1.6 greater than χ^2 critical=1.4. Three gamma-ray energies differ from the fitted values by more than 3σ .
- [‡] All the levels from $({}^{24}Mg, \alpha 3n\gamma)$ above g.s. have negative parity tentatively assigned based on calculations and systematics (2011Bh01). Also based on the type of the reaction the J values generally increase with increasing energy.
- [#] Level energy is ambiguous due to uncertain ordering of the following γ cascades: 741 γ -492 γ , 1128 γ -684 γ , and 788 γ -654 γ in (⁴⁸Ca,3n γ).
- [@] Band(A): Sequence based on $11/2^{-}$ isomer.
- & Band(B): Dipole band based on $27/2^-$. Possible magnetic-dipole rotational (shears) band. Configuration= $\pi [h_{11/2}^2 (d_{5/2}g_{7/2})^2] \otimes \nu h_{11/2}^{-1}$, (dg) has $\pi 5/2[413]$ Nilsson orbital before the first crossing and after crossing $\pi 3/2[411]$ Nilsson orbitals. The second crossing is due to shape change which results from the rearrangement of the (dg) orbital from $\pi 3/2[411]$ to $\pi 5/2[413]$.
- ^{*a*} Band(C): Dipole band based on $37/2^{(-)}$. Possible magnetic-dipole rotational (shears) band. Configuration= $\pi [h_{11/2}^2 (d_{5/2}g_{7/2})^2] \otimes \nu h_{11/2}^{-1}$, the (dg) has $\pi 7/2[404]$ Nilsson orbitals, high spin is due to shape change in the same configuration. $\pi = (-)$ based on assigned configuration.
- ^{*b*} Band(D): Dipole band based on $(47/2^+)$. Possible magnetic-dipole rotational (shears) band. Configuration= $\pi [h_{11/2}^3 (d_{5/2}g_{7/2})^1] \otimes \nu h_{11/2}^{-1} \pi = (+)$ based on assigned configuration.
- ^c Band(E): Triaxial band based on (49/2⁺). π =(+) based on theoretical interpretation.
- ^d Band(F): Triaxial band based on $(61/2^+) \pi = (+)$ based on E2 γ to first triaxial band.
- e Band(G): Triaxial band based on (51/2⁺) $\pi=(+)$ based on theoretical interpretation.

$\gamma(^{141}\text{Nd})$

Unless otherwise mentioned all data for the transitions for which energy uncertainties are given are from decay data sets or from ($^{48}Ca,3n\gamma$). Data for other transitions are from (p,n γ), (α ,3n γ), or (α ,5n γ).

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	$\delta^{\&}$	α [@]	Comments
193.72	1/2+	193.67 5	100	0.0	3/2+	M1+E2	0.39 2	0.221 4	B(M1)(W.u.)=0.00184 +28-21; B(E2)(W.u.)=4.4 +8-6 α (K)=0.185 3; α (L)=0.0285 5; α (M)=0.00611 11 α (N)=0.001362 23; α (O)=0.000202 4; α (P)=1.165×10 ⁻⁵ 17
756.51	11/2-	756.51 5	100	0.0	3/2+	M4		0.0916	B(M4)(W.u.)=1.939 25 α (K)=0.0741 11; α (L)=0.01373 20; α (M)=0.00302 5 α (N)=0.000676 10; α (O)=0.0001004 14; α (P)=5.76×10 ⁻⁶ 8
1223.30	5/2+	1029.60 5	7.0 7	193.72	$1/2^{+}$				
		1223.26 5	100 5	0.0	3/2+	E2,M1		0.0018 4	$\alpha(K)=0.0015 \ 3; \ \alpha(L)=0.00020 \ 4; \ \alpha(M)=4.3\times10^{-5} \ 7$ $\alpha(N)=9.6\times10^{-6} \ 16; \ \alpha(O)=1.45\times10^{-6} \ 25; $ $\alpha(P)=9.5\times10^{-8} \ 19; \ \alpha(PF)=8.87\times10^{-6} \ 18$
1345.48	$7/2^{+}$	1345.52 5	100	0.0	$3/2^{+}$				
1403.41	$(7/2^{-})$	646.9 <i>1</i>	100	756.51	$11/2^{-}$				
1416.1	7/2-	659.6	100	756.51	$11/2^{-}$				
1564.64	$(3/2)^+$	1371.0 <i>1</i>	13 <i>I</i>	193.72	$1/2^{+}$				
		1564.68 7	100 5	0.0	3/2+	M1+(E0)		1.32×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001041 \ 15; \ \alpha(\mathbf{L}) = 0.0001340 \ 19; \\ &\alpha(\mathbf{M}) = 2.82 \times 10^{-5} \ 4 \\ &\alpha(\mathbf{N}) = 6.32 \times 10^{-6} \ 9; \ \alpha(\mathbf{O}) = 9.67 \times 10^{-7} \ 14; \\ &\alpha(\mathbf{P}) = 6.50 \times 10^{-8} \ 9; \ \alpha(\mathbf{IPF}) = 0.0001053 \ 15 \end{aligned}$
1581.66		1582.0 [#] 1	100	0.0	$3/2^{+}$				
1597.01	5/2+,3/2+	1403.14 6	95 <i>5</i>	193.72	1/2+	E2,M1		0.00138 22	α (K)=0.00115 <i>19</i> ; α (L)=0.000149 <i>23</i> ; α (M)=3.1×10 ⁻⁵ <i>5</i> α (N)=7.0×10 ⁻⁶ <i>11</i> ; α (O)=1.07×10 ⁻⁶ <i>17</i> ; α (P)=7.1×10 ⁻⁸ <i>13</i> ; α (IPF)=4.68×10 ⁻⁵ <i>13</i>
		1596.87 7	100 5	0.0	3/2+	(E2)		9.89×10 ⁻⁴	$\alpha(K)=0.000753 \ 11; \ \alpha(L)=9.79\times10^{-5} \ 14; \\ \alpha(M)=2.06\times10^{-5} \ 3 \\ \alpha(N)=4.61\times10^{-6} \ 7; \ \alpha(O)=7.01\times10^{-7} \ 10;$
1705.5	(0/2)	200.0	100	1045 40	7/0+				$\alpha(P)=4.57\times10^{-6}$ 7; $\alpha(IPF)=0.0001118$ 16
1625.5	(9/2)	280.0	100	1345.48	1/2 ' 5/2+	(D)			
10/0.0		447.5	100	1225.50	$\frac{5}{2}$				
1/13.2		311.0 1611 3	100	1403.41	(1/2)				
1004.0		1804.6	80	195.72	$\frac{1/2}{3/2^+}$				
1808 312		1051.8 1	100 10	756 51	$\frac{3/2}{11/2^{-1}}$				
1000.511		1808.3 1	1.4 5	0.0	$3/2^+$				

 $^{141}_{60}\mathrm{Nd}_{81}\text{--}7$

		continued)					
					$\gamma(^{141}N)$	Jd) (continue	<u>d)</u>
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α [@]	Comments
1820.49	5/2+,3/2+	597.1 <i>1</i> 1626.70 <i>7</i> 1820.5 <i>1</i>	20 2 100 <i>10</i> 27 <i>3</i>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
1870.9 1876.0		647.6 278.6 530.7 652.8 1876.2	100 5.3 37.4 100 9.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+		
1890.3	1/2+	1696.7 1890.2	100 89	$\begin{array}{ccc} 193.72 & 1/2^+ \\ 0.0 & 3/2^+ \end{array}$			
1897.4		299.8 674.1 1703.9 1897.6	13.6 4.0 37.6 100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+		
1967.56	7/2+	403.2 2 564.4 622.01 5 744.3 1 1967.6 1	2.5 3 1.9 100 5 5.0 6 20 2	$\begin{array}{c} 1564.64 & (3/2)^+ \\ 1403.41 & (7/2^-) \\ 1345.48 & 7/2^+ \\ 1223.30 & 5/2^+ \\ 0.0 & 3/2^+ \end{array}$			
2018.8 2049.57	13/2 ⁽⁻⁾	1262.3 1293.1 2	100	756.51 11/2 756.51 11/2 ⁻	(M1+E2) [†]	0.0016 3	$\alpha(K)=0.00137\ 24;\ \alpha(L)=0.00018\ 3;\ \alpha(M)=3.8\times10^{-5}\ 6$ $\alpha(N)=8.4\times10^{-6}\ 14;\ \alpha(O)=1.28\times10^{-6}\ 22;\ \alpha(P)=8.4\times10^{-8}\ 16;$ $\alpha(IPF)=2.00\times10^{-5}\ 5$ E ₂ : from (²⁴ Mg, α 3ny).
2066.41	3/2+,5/2+	1872.7 <i>1</i> 2066.4 <i>1</i>	37 <i>4</i> 100 <i>13</i>	$\begin{array}{ccc} 193.72 & 1/2^+ \\ 0.0 & 3/2^+ \end{array}$			
2073.72	3/2+,5/2+	1880.0 <i>I</i> 2073 79 9	52 5 100 10	$\begin{array}{cccc} 193.72 & 1/2^+ \\ 0.0 & 3/2^+ \end{array}$	D,E2 D E2		
2109.54	3/2+,5/2+	289.0 2 544 9 [#] 1	6.2 <i>6</i>	$1820.49 5/2^+, 3/2$ $1564 64 (3/2)^+$	+		
		886.22 5	100 5	1223.30 $5/2^+$	E2	0.00291	$\alpha(K)=0.00247 4; \alpha(L)=0.000347 5; \alpha(M)=7.37\times10^{-5} 11$ $\alpha(N)=1.644\times10^{-5} 23; \alpha(O)=2.46\times10^{-6} 4; \alpha(P)=1.493\times10^{-7} 21$
2145.38		2109.6 <i>1</i> 922.8 1952.4 2145 3 2	3.1 <i>4</i> 42.9 10.2	$\begin{array}{ccc} 0.0 & 3/2^+ \\ 1223.30 & 5/2^+ \\ 193.72 & 1/2^+ \\ 0.0 & 3/2^+ \end{array}$			<i>a</i> (1)=1.011X10 25, <i>a</i> (0)=2.10X10 7, <i>a</i> (1)=1.195X10 21
2202.9		2145.5 2 184.1 1446 3	76 100	2018.8 756.51 11/2 ⁻			
2211.2	15/2-	587.2 ^b	33 3	1625.5 (9/2)			E_{γ} , I_{γ} : from (α ,3n γ); not observered in (⁴⁸ Ca,3n γ) and (²⁴ Mg, α 3n γ).

 ∞

γ ⁽¹⁴¹ Nd) (continued)											
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	${ m J}_f^\pi$	Mult.	α [@]	Comments			
2211.2	15/2-	1453.6 10	100 6	756.51	11/2-	E2 [†]	1.11×10 ⁻³	$\alpha(K)=0.000901 \ 13; \ \alpha(L)=0.0001181 \ 17; \ \alpha(M)=2.49\times10^{-5} \ 4 \\ \alpha(N)=5.57\times10^{-6} \ 8; \ \alpha(O)=8.45\times10^{-7} \ 12; \ \alpha(P)=5.47\times10^{-8} \ 8; \\ \alpha(IPF)=6.10\times10^{-5} \ 10 \\ E_{\gamma}: \ 1452.9 \ 2 \ in \ (^{24}Mg,\alpha^{3n}\gamma); \ 1454.5 \ in \ (\alpha,3n\gamma) \ and \ (\alpha,5n\gamma). \\ I_{\gamma}: \ from \ (\alpha,3n\gamma). \\ Mult.: \ D+O \ in \ (\alpha,3n\gamma). \ (\alpha,5n\gamma). \end{cases}$			
2221.0		400.5	23	1820.49	$5/2^+, 3/2^+$						
2246.57	(7/2 ⁻ ,5/2 ⁻)	997.8 180.2 <i>I</i> 901.1 <i>I</i> 1023.2 <i>I</i> 2052.9 <i>I</i> 2246.5 <i>I</i>	100 22 2 39 3 100 10 84 10	1223.30 2066.41 1345.48 1223.30 193.72	$3/2^+$ $3/2^+$, $5/2^+$ $7/2^+$ $5/2^+$ $1/2^+$ $2/2^+$						
2265.22		2240.3 1 2265.2 2	100	0.0	3/2 $3/2^+$						
2303.63	7/2+	706.0 [#] 1 739.1 1 958.5 [#] 1 1080.6 1	21 <i>4</i> 25 <i>3</i> 58 <i>4</i> 46 <i>4</i>	1597.01 1564.64 1345.48 1223.30	$5/2^+, 3/2^+$ $(3/2)^+$ $7/2^+$ $5/2^+$						
2311.69	7/2+	2303.5 <i>I</i> 966.2 <i>I</i> 2312.0	100 <i>13</i> 100 29.6	0.0 1345.48 0.0	$3/2^+$ $7/2^+$ $3/2^+$						
2336.02	7/2+	2336.0 2	100	0.0	$3/2^+$						
2348.5 2354.38	13/2 (3/2,5/2 ⁺)	1593.1 2160.6 2 2354 4 2	100 20 4 100 10	756.51 193.72 0.0	$\frac{11/2^{-}}{1/2^{+}}$ $\frac{3}{2^{+}}$	D+Q					
2365.6 2370.8	(3/2,5/2 ⁺)	2171.9 2177.2 2270.7	100 10 100 100	193.72 193.72	$1/2^+$ $1/2^+$ $1/2^+$						
2388.53	7/2+	2370.7 1043.1 <i>1</i> 2388.3 2	7 67 8 100 8	0.0 1345.48 0.0	3/2+ 7/2+ 3/2+						
2429.62 2439.5 2460.2		2429.6 2 2439.5 2266.5	100 100 100	0.0 0.0 193.72	$3/2^+$ $3/2^+$ $1/2^+$						
2463.45		2460.1 1118.0 <i>1</i>	4.6 100 22	0.0 1345.48	$3/2^+$ $7/2^+$ $2/2^+$						
2505.43	3/2+,5/2+	432.2 2 538.0 2 1282.0 <i>I</i> 2311.7 2 2505.3 2	100 22 22 4 100 14 31 6 35 7 42 4	2073.72 1967.56 1223.30 193.72 0.0	$3/2^+, 5/2^+$ $7/2^+, 5/2^+$ $5/2^+, 1/2^+, 3/2^+$						

From ENSDF

L

						Adopted Leve	ls, Gammas (continued)
						$\gamma(^{141}$	Nd) (continued	<u>d)</u>
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	E_f	J_f^π	Mult.	α [@]	Comments
2514.82	$(7/2)^+$	2514.8 2	100	0.0	$3/2^{+}$			
2537.44	$15/2^{-}$	190.0	4.2 6	2348.5	13/2			E_{γ} , I_{γ} : from (α , $3n\gamma$).
		487.6 2	19.4 <i>12</i>	2049.57	13/2 ⁽⁻⁾	(M1+E2) [†]	0.016 4	$\alpha(K)=0.014 4; \alpha(L)=0.0020 3; \alpha(M)=0.00042 5$ $\alpha(N)=9.4\times10^{-5} 12; \alpha(O)=1.40\times10^{-5} 21; \alpha(P)=8.4\times10^{-7} 23$ L: from (²⁴ Mg α 3ny)
		1780.6 <i>10</i>	100 5	756.51	11/2-	E2	9.03×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000614 \ 9; \ \alpha(\mathbf{L}) = 7.92 \times 10^{-5} \ 12; \ \alpha(\mathbf{M}) = 1.665 \times 10^{-5} \ 24 \\ &\alpha(\mathbf{N}) = 3.73 \times 10^{-6} \ 6; \ \alpha(\mathbf{O}) = 5.67 \times 10^{-7} \ 8; \ \alpha(\mathbf{P}) = 3.73 \times 10^{-8} \ 6; \\ &\alpha(\mathbf{IPF}) = 0.000189 \ 3 \\ &\mathbf{I}_{\gamma}: \ \text{from} \ (^{24}\text{Mg}, \alpha 3n\gamma). \end{aligned}$
2619.03		2619.0 2	100	0.0	$3/2^{+}$			
2732.53		2732.5 2	100	0.0	3/2+			
2803.9	3/2+,5/2+	2803.9 4	100	0.0	3/2+			
2805.7	13/2 ⁽⁻⁾	594.3 <i>5</i>	100	2211.2	15/2-	(M1+E2)	0.0097 22	α (K)=0.0082 20; α (L)=0.00116 20; α (M)=0.00025 4 α (N)=5.5×10 ⁻⁵ 9; α (O)=8.3×10 ⁻⁶ 15; α (P)=5.1×10 ⁻⁷ 14
2829.56	15/2 ⁽⁻⁾	779.8 2	75 5	2049.57	13/2 ⁽⁻⁾	(M1+E2) [†]	0.0050 12	α (K)=0.0043 10; α (L)=0.00058 11; α (M)=0.000124 23 α (N)=2.8×10 ⁻⁵ 6; α (O)=4.2×10 ⁻⁶ 9; α (P)=2.65×10 ⁻⁷ 67 I _{γ} : from (²⁴ Mg, α 3n γ).
		2073.0 2	100 6	756.51	$11/2^{-}$	Q		I_{γ} ,Mult.: from (²⁴ Mg, α 3n γ).
2865.3		2865.3 4	100	0.0	3/2+			
2886.77	17/2 ⁽⁻⁾	56.7 3	4.8 8	2829.56	15/2 ⁽⁻⁾			E_{γ},I_{γ} : from (α ,3n γ) with uncertainty on $E\gamma$ added by evaluator.
		81.0 2	8.4 9	2805.7	$13/2^{(-)}$			E_{γ} , I_{γ} : from (²⁴ Mg, α 3n γ).
		349.1 2	100 6	2537.44	15/2-	(M1+E2) [†]	0.039 7	α (K)=0.033 7; α (L)=0.00517 15; α (M)=0.001110 20 α (N)=0.000247 6; α (O)=3.64×10 ⁻⁵ 20; α (P)=2.00×10 ⁻⁶ 52
		837.7 2	33.1 <i>19</i>	2049.57	13/2 ⁽⁻⁾	E2 [†]	0.00330	$\alpha(K)=0.00280 \ 4; \ \alpha(L)=0.000397 \ 6; \ \alpha(M)=8.44\times10^{-5} \ 12$ $\alpha(N)=1.88\times10^{-5} \ 3; \ \alpha(O)=2.82\times10^{-6} \ 4; \ \alpha(P)=1.688\times10^{-7} \ 24$ $I_{\gamma}: \text{ from } (^{24}Mg,\alpha 3n\gamma).$
2886+x?		x ^b		2886.77	$17/2^{(-)}$,
2944.70	$3/2^+, 5/2^+$	1363.1 <i>1</i>	67 16	1581.66				
		2750.8 2	50 8	193.72	$1/2^{+}$			
		2943.9 <i>5</i>	100 25	0.0	3/2+			
2951.7	(19/2)	64.5	100	2886.77	$17/2^{(-)}$	D		
2960.6	$(17/2^{-})$	74 1		2886.77	$17/2^{(-)}$			
		594.6 2	100	2366.0	13/2-	(E2)	0.00748	$\alpha(K)=0.00626 \ 9; \ \alpha(L)=0.000967 \ 14; \ \alpha(M)=0.000207 \ 3$ $\alpha(N)=4.60\times10^{-5} \ 7; \ \alpha(O)=6.78\times10^{-6} \ 10; \ \alpha(P)=3.72\times10^{-7} \ 6$
3018.4	19/2 ⁽⁻⁾	131.6 2	100	2886.77	17/2 ⁽⁻⁾	(M1+E2)	0.74 9	α (K)=0.543 <i>12</i> ; α (L)=0.152 <i>76</i> ; α (M)=0.034 <i>18</i> α (N)=0.0074 <i>38</i> ; α (O)=1.01×10 ⁻³ <i>46</i> ; α (P)=3.0×10 ⁻⁵ <i>6</i>
3056.08	7/2+	1088.4 <i>1</i>	100 19	1967.56	7/2+			

From ENSDF

 $^{141}_{60}\mathrm{Nd}_{81}\text{--}10$

 $^{141}_{60}\mathrm{Nd}_{81}$ -10

L

Adopted Lev	els, Gammas	(continued)
-------------	-------------	-------------

 γ (¹⁴¹Nd) (continued)

E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult.	α [@]	Comments
3056.08	7/2+	1235.4 <i>1</i> 1474.7 <i>1</i>	47 <i>10</i> 41 <i>10</i>	1820.49 1581.66	5/2+,3/2+			
3104.9	(21/2)	3056.5 5 152.9 218 5	16 3 100 8 38 4	0.0 2951.7 2886 77	$3/2^{+}$ (19/2) $17/2^{(-)}$	D		
3356.2	21/2 ⁽⁻⁾	337.8 2	100	3018.4	$19/2^{(-)}$	(M1+E2)	0.043 7	α (K)=0.036 7; α (L)=0.00571 11; α (M)=0.001227 18 α (N)=0.000273 5; α (O)=4.01×10 ⁻⁵ 18; α (P)=2.18×10 ⁻⁶ 56
3509.7	23/2(-)	153.3 2	100	3356.2	21/2 ⁽⁻⁾	(M1+E2) [†]	0.45 4	α (K)=0.347 <i>15</i> ; α (L)=0.084 <i>35</i> ; α (M)=0.0186 <i>81</i> α (N)=0.0041 <i>18</i> ; α (O)=5.6×10 ⁻⁴ <i>21</i> ; α (P)=2.0×10 ⁻⁵ <i>4</i>
3845.0	21/2 ⁽⁻⁾	884.4 2	14.3 22	2960.6	(17/2 ⁻)	(E2) [†]	0.00293	α (K)=0.00248 4; α (L)=0.000349 5; α (M)=7.41×10 ⁻⁵ 11 α (N)=1.652×10 ⁻⁵ 24; α (O)=2.48×10 ⁻⁶ 4; α (P)=1.500×10 ⁻⁷ 21
		958.2 2	100 17	2886.77	17/2 ⁽⁻⁾	E2 [†]	0.00246	α (K)=0.00209 3; α (L)=0.000289 4; α (M)=6.13×10 ⁻⁵ 9 α (N)=1.369×10 ⁻⁵ 20; α (O)=2.06×10 ⁻⁶ 3; α (P)=1.264×10 ⁻⁷ 18
4068.9	21/2 ⁽⁻⁾	1182.3 5	100	2886.77	17/2 ⁽⁻⁾	E2 [†]	1.59×10 ⁻³	$\alpha(K)=0.001352 \ 19; \ \alpha(L)=0.000182 \ 3; \ \alpha(M)=3.84\times10^{-5} \ 6 \ \alpha(N)=8.57\times10^{-6} \ 12; \ \alpha(O)=1.295\times10^{-6} \ 19; \ \alpha(P)=8.20\times10^{-8} \ 12; \ \alpha(IPF)=4.12\times10^{-6} \ 8$
4243.5	21/2 ⁽⁻⁾	1357.3 10	76 5	2886.77	17/2 ⁽⁻⁾	E2 [†]	1.23×10 ⁻³	$\alpha(K)=0.001028 \ 15; \ \alpha(L)=0.0001358 \ 20; \ \alpha(M)=2.87\times10^{-5} \ 4$ $\alpha(N)=6.40\times10^{-6} \ 9; \ \alpha(O)=9.71\times10^{-7} \ 14; \ \alpha(P)=6.24\times10^{-8} \ 9;$ $\alpha(IPF)=3.35\times10^{-5} \ 6$
		2087.1 10	100 16	2156.3				
4246.0 4246.0	(23/2) (21/2)	1141.1 1294 3	100 100 6	3104.9 2951.7	(21/2) (19/2)	D		
4240.0	(21/2)	1359.1	29.4 19	2886.77	(1)/2) $17/2^{(-)}$	0		
4297.3	25/2 ⁽⁻⁾	228.4 2	100	4068.9	21/2 ⁽⁻⁾	E2 [†]	0.1259	α (K)=0.0957 <i>14</i> ; α (L)=0.0237 <i>4</i> ; α (M)=0.00524 <i>8</i> α (N)=0.001147 <i>17</i> ; α (O)=0.0001576 <i>23</i> ; α (P)=5.00×10 ⁻⁶ <i>8</i>
4336.9?	23/2 ⁽⁻⁾	491.9 [‡] 2	100	3845.0	21/2 ⁽⁻⁾	(M1+E2) [†]	0.016 4	α (K)=0.013 3; α (L)=0.0019 3; α (M)=0.00041 5 α (N)=9.2×10 ⁻⁵ 12; α (O)=1.37×10 ⁻⁵ 21; α (P)=8.2×10 ⁻⁷ 23
4376.7	(23/2)	130.5 7	100	4246.0	(23/2)	D		
4377.5	25/2(-)	867.6 2	100 4	3509.7	23/2(-)	(M1+E2)	0.0039 9	α (K)=0.0033 8; α (L)=0.00045 9; α (M)=9.5×10 ⁻⁵ 18 α (N)=2.1×10 ⁻⁵ 4; α (O)=3.2×10 ⁻⁶ 7; α (P)=2.1×10 ⁻⁷ 5
		1021.4 2	70 4	3356.2	21/2 ⁽⁻⁾	E2 [†]	0.00214	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00183 \ 3; \ \alpha(\mathrm{L}) = 0.000250 \ 4; \ \alpha(\mathrm{M}) = 5.30 \times 10^{-5} \ 8 \\ \alpha(\mathrm{N}) = 1.183 \times 10^{-5} \ 17; \ \alpha(\mathrm{O}) = 1.781 \times 10^{-6} \ 25; \ \alpha(\mathrm{P}) = 1.106 \times 10^{-7} \\ 16 \end{array} $
4493.6	23/2(-)	116.1 10	6.7 7	4377.5	25/2 ⁽⁻⁾	(M1+E2) [†]	1.10 19	α (K)=0.784 23; α (L)=0.25 15; α (M)=0.056 33 α (N)=0.0123 71; α (O)=0.00165 87; α (P)=4.3×10 ⁻⁵ 8
		250.2 2	100 13	4243.5	21/2 ⁽⁻⁾	(M1+E2) [†]	0.102 9	α (K)=0.083 <i>12</i> ; α (L)=0.0148 <i>20</i> ; α (M)=0.0032 <i>5</i> α (N)=0.00071 <i>10</i> ; α (O)=0.000103 <i>10</i> ; α (P)=5.0×10 ⁻⁶ <i>12</i>
4582.7	(23/2)	336.7	100	4246.0	(23/2)	D		

$\gamma(^{141}\text{Nd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f	J_f^π	Mult.	α [@]	Comments
4819.9		522.6 5	100	4297.3	$25/2^{(-)}$			
5077.8	27/2 ⁽⁻⁾	740.8 [‡] 2	100 17	4336.9?	23/2 ⁽⁻⁾	E2 [†]	0.00438	α (K)=0.00370 6; α (L)=0.000539 8; α (M)=0.0001148 16 α (N)=2.56×10 ⁻⁵ 4; α (O)=3.81×10 ⁻⁶ 6; α (P)=2.22×10 ⁻⁷ 4
		780.5 2	14 <i>3</i>	4297.3	25/2 ⁽⁻⁾	(M1+E2) [†]	0.0050 12	α (K)=0.0043 <i>10</i> ; α (L)=0.00058 <i>11</i> ; α (M)=0.000123 <i>23</i> α (N)=2.7×10 ⁻⁵ <i>6</i> ; α (O)=4.2×10 ⁻⁶ <i>9</i> ; α (P)=2.64×10 ⁻⁷ <i>67</i>
5270.7	(25/2)	1024.7	100	4246.0	(23/2)	Q		
5587.1	29/2 ⁽⁻⁾	1209.6 2	100	4377.5	25/2 ⁽⁻⁾	E2 [†]	1.52×10 ⁻³	$\alpha(K)=0.001292 \ 18; \ \alpha(L)=0.0001729 \ 25; \ \alpha(M)=3.65\times10^{-5} \ 6 \\ \alpha(N)=8.16\times10^{-6} \ 12; \ \alpha(O)=1.234\times10^{-6} \ 18; \ \alpha(P)=7.84\times10^{-8} \ 11; \\ \alpha(IPF)=7.02\times10^{-6} \ 11 \\ F \ (from \ \ell^{24}Ma \ \alpha^{3}ma)$
5648.3	27/2 ⁽⁻⁾	1154.8 5	100 5	4493.6	23/2 ⁽⁻⁾	E2 [†]	1.66×10 ⁻³	$\alpha(K)=0.001418\ 20;\ \alpha(L)=0.000191\ 3;\ \alpha(M)=4.04\times10^{-5}\ 6$ $\alpha(N)=9.02\times10^{-6}\ 13;\ \alpha(O)=1.362\times10^{-6}\ 20;\ \alpha(P)=8.60\times10^{-8}\ 12;$ $\alpha(IPF)=2.09\times10^{-6}\ 5$
		1271.4 10	179	4377.5	$25/2^{(-)}$			
5762.1?	31/2 ⁽⁻⁾	684.3 [‡] 2	100	5077.8	27/2 ⁽⁻⁾	E2 [†]	0.00529	α (K)=0.00445 7; α (L)=0.000661 10; α (M)=0.0001412 20 α (N)=3.14×10 ⁻⁵ 5; α (O)=4.66×10 ⁻⁶ 7; α (P)=2.66×10 ⁻⁷ 4
5791.5	29/2 ⁽⁻⁾	143.2 2	100 30	5648.3	27/2 ⁽⁻⁾	(M1+E2) [†]	0.56 6	α (K)=0.424 <i>14</i> ; α (L)=0.109 <i>49</i> ; α (M)=0.024 <i>12</i> α (N)=0.0053 <i>25</i> ; α (O)=7.3×10 ⁻⁴ <i>30</i> ; α (P)=2.4×10 ⁻⁵ <i>5</i>
		204.3 5	28 3	5587.1	29/2 ⁽⁻⁾	(M1+E2) [†]	0.187 6	α (K)=0.149 <i>14</i> ; α (L)=0.030 <i>8</i> ; α (M)=0.0064 <i>17</i> α (N)=0.00142 <i>36</i> ; α (O)=0.00020 <i>4</i> ; α (P)=8.7×10 ⁻⁶ <i>18</i>
5831.8	29/2 ⁽⁻⁾	1455.1 <i>10</i>	100	4377.5	25/2 ⁽⁻⁾	E2 [†]	1.11×10 ⁻³	$\begin{aligned} &\alpha(\text{K}) = 0.000899 \ 13; \ \alpha(\text{L}) = 0.0001179 \ 17; \ \alpha(\text{M}) = 2.48 \times 10^{-5} \ 4 \\ &\alpha(\text{N}) = 5.55 \times 10^{-6} \ 8; \ \alpha(\text{O}) = 8.43 \times 10^{-7} \ 12; \ \alpha(\text{P}) = 5.46 \times 10^{-8} \ 8; \\ &\alpha(\text{IPF}) = 6.15 \times 10^{-5} \ 10 \end{aligned}$
5962.4	31/2 ⁽⁻⁾	170.9 2	100	5791.5	29/2(-)	(M1+E2) [†]	0.323 12	α (K)=0.252 <i>15</i> ; α (L)=0.056 <i>20</i> ; α (M)=0.0123 <i>46</i> α (N)=0.00271 <i>97</i> ; α (O)=3.8×10 ⁻⁴ <i>12</i> ; α (P)=1.4×10 ⁻⁵ <i>3</i>
5995.2	31/2 ⁽⁻⁾	163.6 5	33 13	5831.8	29/2 ⁽⁻⁾	(M1+E2) [†]	0.371 19	α (K)=0.286 <i>15</i> ; α (L)=0.066 <i>25</i> ; α (M)=0.0145 <i>58</i> α (N)=0.0032 <i>13</i> : α (O)=4.4×10 ⁻⁴ <i>15</i> : α (P)=1.6×10 ⁻⁵ <i>4</i>
		407.9 5	100 25	5587.1	29/2(-)	(M1+E2) [†]	0.026 5	$\alpha(K)=0.022 5; \alpha(L)=0.0033 3; \alpha(M)=0.00070 5$ $\alpha(N)=0.000155 12; \alpha(Q)=2.31\times10^{-5} 24; \alpha(P)=1.32\times10^{-6} 36$
6212.3	33/2 ⁽⁻⁾	249.9 2	100	5962.4	31/2 ⁽⁻⁾	(M1+E2) [†]	0.102 9	$\alpha(K) = 0.084 \ 12; \ \alpha(L) = 0.0149 \ 20; \ \alpha(M) = 0.0032 \ 5 \ \alpha(N) = 0.0071 \ 10; \ \alpha(O) = 0.000103 \ 10; \ \alpha(P) = 5.0 \times 10^{-6} \ 12$
6272.7	33/2 ⁽⁻⁾	277.5 5	100	5995.2	31/2 ⁽⁻⁾	(M1+E2) [†]	0.075 9	$\alpha(K) = 0.062 \ 10; \ \alpha(L) = 0.0106 \ 9; \ \alpha(M) = 0.00228 \ 22 \ \alpha(N) = 0.00051 \ 5; \ \alpha(O) = 7.4 \times 10^{-5} \ 4; \ \alpha(P) = 3.7 \times 10^{-6} \ 9$
6364.9		1545 <i>1</i>	100	4819.9				
6483.6	33/2-	1155.7 5	100	5327.9	29/2 ⁽⁻⁾	E2 [†]	1.66×10 ⁻³	α (K)=0.001416 20; α (L)=0.000191 3; α (M)=4.03×10 ⁻⁵ 6 α (N)=9.00×10 ⁻⁶ 13; α (O)=1.359×10 ⁻⁶ 19; α (P)=8.59×10 ⁻⁸ 12; α (IPF)=2.14×10 ⁻⁶ 5

From ENSDF

 $\gamma(^{141}\text{Nd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	J_f^π	Mult.	$\alpha^{@}$	Comments
6560.2	35/2 ⁽⁻⁾	347.9 2	100 30	6212.3	33/2 ⁽⁻⁾	(M1+E2) [†]	0.040 7	α (K)=0.033 7; α (L)=0.00522 15; α (M)=0.001122 19 α (N)=0.000249 6; α (O)=3.67×10 ⁻⁵ 20; α (P)=2.02×10 ⁻⁶ 52
6890.3	35/2 ⁽⁻⁾	598.1 <i>10</i> 406.7 <i>2</i>	10 6 10 3	5962.4 6483.6	31/2 ⁽⁻⁾ 33/2 ⁻	(M1+E2) [†]	0.026 5	α (K)=0.022 5; α (L)=0.0033 3; α (M)=0.00070 5 α (N)=0.000157 12; α (Q)=2.33×10 ⁻⁵ 24; α (P)=1.33×10 ⁻⁶ 36
		1128.2 [‡] 5	100 8	5762.1?	31/2 ⁽⁻⁾	E2 [†]	1.74×10 ⁻³	$\alpha(K) = 0.001487 \ 21; \ \alpha(L) = 0.000201 \ 3; \ \alpha(M) = 4.25 \times 10^{-5} \ 6$ $\alpha(N) = 9.48 \times 10^{-6} \ 14; \ \alpha(O) = 1.432 \times 10^{-6} \ 20; \ \alpha(P) = 9.02 \times 10^{-8} \ 13;$ $\alpha(IPF) = 9.38 \times 10^{-7} \ 21$
7018.5	37/2 ⁽⁻⁾	458.4 5	100 25	6560.2	35/2 ⁽⁻⁾	(M1+E2) [†]	0.019 4	α (K)=0.016 4; α (L)=0.0023 3; α (M)=0.00050 6 α (N)=0.000111 13; α (O)=1.66×10 ⁻⁵ 23; α (P)=9.8×10 ⁻⁷ 27
		806.4 10	25 6	6212.3	33/2 ⁽⁻⁾	E2 [†]	0.00360	α (K)=0.00305 5; α (L)=0.000436 7; α (M)=9.27×10 ⁻⁵ 14 α (N)=2.07×10 ⁻⁵ 3; α (O)=3.09×10 ⁻⁶ 5; α (P)=1.84×10 ⁻⁷ 3
7317.2	37/2 ⁽⁻⁾	756.8 5	100	6560.2	35/2 ⁽⁻⁾	(M1+E2) [†]	0.0054 13	α (K)=0.0046 <i>11</i> ; α (L)=0.00063 <i>12</i> ; α (M)=0.000133 <i>25</i> α (N)=3.0×10 ⁻⁵ <i>6</i> ; α (O)=4.5×10 ⁻⁶ <i>9</i> ; α (P)=2.84×10 ⁻⁷ <i>73</i>
7499.1	39/2 ⁽⁻⁾	480.6 5	100 25	7018.5	37/2 ⁽⁻⁾	(M1+E2) [†]	0.017 4	α (K)=0.014 4; α (L)=0.0021 3; α (M)=0.00044 6 α (N)=9.8×10 ⁻⁵ 12; α (O)=1.46×10 ⁻⁵ 22; α (P)=8.7×10 ⁻⁷ 24
		938.8 10	35 15	6560.2	35/2 ⁽⁻⁾	E2 [†]	0.00257	α (K)=0.00218 3; α (L)=0.000303 5; α (M)=6.43×10 ⁻⁵ 10 α (N)=1.435×10 ⁻⁵ 21; α (O)=2.16×10 ⁻⁶ 3; α (P)=1.320×10 ⁻⁷ 19
7544.4?	39/2 ⁽⁻⁾	654.1 [‡] 2	100	6890.3	35/2 ⁽⁻⁾	E2 [†]	0.00590	α (K)=0.00495 7; α (L)=0.000745 11; α (M)=0.0001593 23 α (N)=3.54×10 ⁻⁵ 5; α (O)=5.24×10 ⁻⁶ 8; α (P)=2.96×10 ⁻⁷ 5
7548.1	39/2 ⁽⁻⁾	230.7 5	100 20	7317.2	37/2 ⁽⁻⁾	(M1+E2) [†]	0.130 9	α (K)=0.105 <i>13</i> ; α (L)=0.019 <i>4</i> ; α (M)=0.0042 <i>9</i> α (N)=0.00093 <i>17</i> ; α (O)=0.000134 <i>18</i> ; α (P)=6.2×10 ⁻⁶ <i>14</i>
		529.8 10	60 40	7018.5	37/2 ⁽⁻⁾	(M1+E2) [†]	0.013 3	α (K)=0.011 3; α (L)=0.00157 24; α (M)=0.00034 5 α (N)=7.5×10 ⁻⁵ 11; α (O)=1.12×10 ⁻⁵ 19; α (P)=6.8×10 ⁻⁷ 19
7851.8	41/2 ⁽⁻⁾	352.6 5	100 28	7499.1	39/2 ⁽⁻⁾	(M1+E2) [†]	0.038 7	α (K)=0.032 7; α (L)=0.00502 17; α (M)=0.001077 23 α (N)=0.000239 7; α (O)=3.53×10 ⁻⁵ 21; α (P)=1.95×10 ⁻⁶ 50
		833.8 10	28 6	7018.5	37/2 ⁽⁻⁾	E2 [†]	0.00334	α (K)=0.00283 4; α (L)=0.000402 6; α (M)=8.54×10 ⁻⁵ 13 α (N)=1.90×10 ⁻⁵ 3; α (O)=2.85×10 ⁻⁶ 4; α (P)=1.705×10 ⁻⁷ 25
7904.9	41/2 ⁽⁻⁾	356.8 5	100 46	7548.1	39/2 ⁽⁻⁾	(M1+E2) [†]	0.037 7	α (K)=0.031 7; α (L)=0.00484 18; α (M)=0.00104 3 α (N)=0.000231 8; α (O)=3.41×10 ⁻⁵ 22; α (P)=1.88×10 ⁻⁶ 49
		405.9 10	45 27	7499.1	39/2 ⁽⁻⁾	(M1+E2) [†]	0.026 5	α (K)=0.022 5; α (L)=0.0033 3; α (M)=0.00071 5 α (N)=0.000158 <i>1</i> 2; α (O)=2.34×10 ⁻⁵ 25; α (P)=1.34×10 ⁻⁶ 36
8263.8	43/2 ⁽⁻⁾	411.8 5	100 60	7851.8	41/2 ⁽⁻⁾	(M1+E2) [†]	0.025 5	α (K)=0.021 5; α (L)=0.0032 3; α (M)=0.00068 5 α (N)=0.000151 12; α (O)=2.25×10 ⁻⁵ 24; α (P)=1.29×10 ⁻⁶ 35
		765.3 10	20 20	7499.1	$39/2^{(-)}$			

γ (¹⁴¹Nd) (continued)

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^π	Mult.	α [@]	Comments
8332.2	43/2 ⁽⁻⁾	787.8 [‡] 2	100	7544.4?	39/2 ⁽⁻⁾	E2 [†]	0.00380	α (K)=0.00321 5; α (L)=0.000462 7; α (M)=9.83×10 ⁻⁵ 14 α (N)=2.19×10 ⁻⁵ 3; α (O)=3.27×10 ⁻⁶ 5; α (P)=1.93×10 ⁻⁷ 3
8373.1	43/2 ⁽⁻⁾	467.9 10	100 22	7904.9	41/2 ⁽⁻⁾	(M1+E2) [†]	0.018 4	α (K)=0.015 4; α (L)=0.0022 3; α (M)=0.00047 6 α (N)=0.000105 13; α (O)=1.57×10 ⁻⁵ 22; α (P)=9.3×10 ⁻⁷ 25
		521.7 10	33 <i>33</i>	7851.8	41/2 ⁽⁻⁾	(M1+E2) [†]	0.013 <i>3</i>	α (K)=0.011 3; α (L)=0.00164 24; α (M)=0.00035 5 α (N)=7.8×10 ⁻⁵ 11; α (O)=1.17×10 ⁻⁵ 19; α (P)=7.0×10 ⁻⁷ 19
		824.8 10	33 22	7548.1	$39/2^{(-)}$			
8707.6	45/2 ⁽⁻⁾	443.6 10	100 60	8263.8	43/2 ⁽⁻⁾	(M1+E2) [†]	0.021 5	α (K)=0.017 4; α (L)=0.0026 3; α (M)=0.00055 6 α (N)=0.000122 13; α (O)=1.82×10 ⁻⁵ 23; α (P)=1.06×10 ⁻⁶ 29
		856 <mark>b</mark> 1	<20	7851.8	$41/2^{(-)}$			
8769.0	45/2 ⁽⁻⁾	395.5 10	100 63	8373.1	43/2 ⁽⁻⁾	(M1+E2) [†]	0.028 6	α (K)=0.023 5; α (L)=0.0036 3; α (M)=0.00076 5 α (N)=0.000170 12; α (O)=2.52×10 ⁻⁵ 24; α (P)=1.44×10 ⁻⁶ 38
		505.2 10	63 <i>13</i>	8263.8	43/2 ⁽⁻⁾	(M1+E2) [†]	0.015 4	α (K)=0.012 3; α (L)=0.00179 25; α (M)=0.00038 5 α (N)=8.5×10 ⁻⁵ 12; α (O)=1.27×10 ⁻⁵ 20; α (P)=7.6×10 ⁻⁷ 21
		864.3 10	38 25	7904.9	41/2 ⁽⁻⁾	(E2) [†]	0.00308	α (K)=0.00261 4; α (L)=0.000369 6; α (M)=7.83×10 ⁻⁵ 12 α (N)=1.745×10 ⁻⁵ 25; α (O)=2.61×10 ⁻⁶ 4; α (P)=1.577×10 ⁻⁷ 23
9060.7	47/2 ⁽⁻⁾	353.2 10	100 50	8707.6	45/2 ⁽⁻⁾	(M1+E2) [†]	0.038 7	α (K)=0.032 7; α (L)=0.00499 17; α (M)=0.001071 24 α (N)=0.000238 7; α (O)=3.51×10 ⁻⁵ 21; α (P)=1.94×10 ⁻⁶ 50
		797.1 10	50 <i>50</i>	8263.8	43/2 ⁽⁻⁾	E2 [†]	0.00370	α (K)=0.00313 5; α (L)=0.000449 7; α (M)=9.54×10 ⁻⁵ 14 α (N)=2.13×10 ⁻⁵ 3; α (O)=3.18×10 ⁻⁶ 5; α (P)=1.88×10 ⁻⁷ 3
9086.2	47/2 ⁽⁻⁾	317.3 5	100 40	8769.0	45/2 ⁽⁻⁾	(M1+E2) [†]	0.051 8	α (K)=0.043 8; α (L)=0.00692 15; α (M)=0.00149 5 α (N)=0.000331 9; α (O)=4.85×10 ⁻⁵ 11; α (P)=2.6×10 ⁻⁶ 7
		713.4 10	20 10	8373.1	$43/2^{(-)}$			
9170.7	47/2 ⁽⁻⁾	838.4 <i>3</i>	100	8332.2	43/2 ⁽⁻⁾	E2 [†]	0.00330	α (K)=0.00279 4; α (L)=0.000396 6; α (M)=8.43×10 ⁻⁵ 12 α (N)=1.88×10 ⁻⁵ 3; α (O)=2.81×10 ⁻⁶ 4; α (P)=1.685×10 ⁻⁷ 24
9208.6	$47/2^{(-)}$	876.7 5	100	8332.2	$43/2^{(-)}$	t		Mult.: (M1+E2) in (⁴⁸ Ca,3n γ) contradicts E2 deduced from ΔJ^{π} (levels).
9362.1	$47/2^{(+)}$	592.8 10	100	8769.0	$45/2^{(-)}$	D^{\dagger}		Mult.: $\Delta J=1 \gamma$ assumed (E1) based on theoretical arguments in (⁴⁸ Ca,3n γ).
9497.9	49/2 ⁽⁻⁾	412.2 10	<100	9086.2	47/2 ⁽⁻⁾	(M1+E2) [†]	0.025 5	α (K)=0.021 5; α (L)=0.0032 3; α (M)=0.00068 5 α (N)=0.000151 12; α (O)=2.24×10 ⁻⁵ 24; α (P)=1.29×10 ⁻⁶ 35
		728.6 10	<9	8769.0	$45/2^{(-)}$			
9550.6	49/2 ⁽⁻⁾	490.3 10	100 50	9060.7	47/2 ⁽⁻⁾	(M1+E2)	0.016 4	α (K)=0.013 3; α (L)=0.0019 3; α (M)=0.00041 5 α (N)=9.2×10 ⁻⁵ 12; α (O)=1.38×10 ⁻⁵ 21; α (P)=8.2×10 ⁻⁷ 23
		842.7 10	<33	8707.6	$45/2^{(-)}$			
9596.4	(47/2 ⁺)	532.6 10	100	9063.8	(45/2 ⁺)	(M1+E2) [†]	0.013 3	α (K)=0.011 3; α (L)=0.00155 23; α (M)=0.00033 5 α (N)=7.4×10 ⁻⁵ 11; α (O)=1.10×10 ⁻⁵ 19; α (P)=6.7×10 ⁻⁷ 19

14

 $^{141}_{60}\mathrm{Nd}_{81}\text{--}14$

$\gamma(^{141}\text{Nd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E _f J	J_f^{π}	Mult.	α@	Comments
9654.1	49/2(+)	291.8 10	100	9362.1 47/	$/2^{(+)}$ (N	/11+E2) [†]	0.065 9	α (K)=0.054 9; α (L)=0.0090 5; α (M)=0.00194 14 α (N)=0.00043 3; α (O)=6.28×10 ⁻⁵ 17; α (P)=3.2×10 ⁻⁶ 8
9892.3	(49/2 ⁺)	295.9 10	100 20	9596.4 (47)	$7/2^+)$ (N	M1+E2) [†]	0.063 9	α (K)=0.052 9; α (L)=0.0086 5; α (M)=0.00186 13 α (N)=0.000412 24; α (O)=6.01×10 ⁻⁵ 14; α (P)=3.1×10 ⁻⁶ 8
		529.9 10	20 10	9362.1 47/2	$2^{(+)}$			
		806.4 10	20 4	9086.2 47/2	(2(-)			
9961.4		875.2 10	100	9086.2 47/	$2^{(-)}$			
10007.1	51/2 ⁽⁻⁾	509.2 10	100 50	9497.9 49/	$(2^{(-)})$ (N	/11+E2) [†]	0.014 4	α (K)=0.012 3; α (L)=0.00175 25; α (M)=0.00037 5 α (N)=8.3×10 ⁻⁵ 12; α (O)=1.25×10 ⁻⁵ 20; α (P)=7.5×10 ⁻⁷ 21
		920.6 10	<50	9086.2 47/2	$2^{(-)}$			
10009.2	$(51/2^+)$	458.6 10	100	9550.6 49/2	$2^{(-)}$			
10067.0	$(51/2^+)$	412.6 10	100 50	9654.1 49/2	(2(+)			
		705 1	<25	9362.1 47/	$2^{(+)}$			
10209.8	51/2 ⁽⁻⁾	1001.4 5	100 46	9208.6 47/2	/2 ⁽⁻⁾ E2	2†	0.00223	α (K)=0.00190 3; α (L)=0.000262 4; α (M)=5.54×10 ⁻⁵ 8 α (N)=1.237×10 ⁻⁵ 18; α (O)=1.86×10 ⁻⁶ 3; α (P)=1.152×10 ⁻⁷ 17
		1038.8 5	42 4	9170.7 47/	$2^{(-)}$ E2	2 [†]	0.00207	α (K)=0.001763 25; α (L)=0.000241 4; α (M)=5.10×10 ⁻⁵ 8 α (N)=1.139×10 ⁻⁵ 16; α (O)=1.715×10 ⁻⁶ 24; α (P)=1.068×10 ⁻⁷ 15
10271.0	51/2 ⁽⁻⁾	1100.3 5	100	9170.7 47/	$2^{(-)}$ E2	2†	0.00183	$\alpha(K)=0.001565\ 22;\ \alpha(L)=0.000212\ 3;\ \alpha(M)=4.49\times10^{-5}\ 7$ $\alpha(N)=1.002\times10^{-5}\ 14;\ \alpha(O)=1.512\times10^{-6}\ 22;\ \alpha(P)=9.49\times10^{-8}\ 14$
10330.0		368.6 10	100	9961.4				
10403.1	$(53/2^+)$	441.7 <i>10</i>	189	9961.4				
		510.8 10	100 9	9892.3 (49)	9/2 ⁺) (E	E2) [†]	0.01112	α (K)=0.00922 <i>14</i> ; α (L)=0.001496 <i>23</i> ; α (M)=0.000322 <i>5</i> α (N)=7.14×10 ⁻⁵ <i>11</i> ; α (O)=1.042×10 ⁻⁵ <i>16</i> ; α (P)=5.41×10 ⁻⁷ <i>8</i>
10591.9	$(53/2^+)$	524.7 10	100 33	10067.0 (51	(2^+)			
10611.8	$(53/2^{-})$	938 I 604 A 10	100 67	9034.1 49/. 10007 1 51/	$(2^{(-)})$			
10011.8	(33/2)	1114 2 10	<33	9497 9 49/	(-)			
10774.1		812.6 10	100	9961.4	2			
11134.9	(55/2+)	1125.7 10	100	10009.2 (51)	(2 ⁺) (E	E2) [†]	1.75×10^{-3}	α (K)=0.001494 21; α (L)=0.000202 3; α (M)=4.27×10 ⁻⁵ 6 α (N)=9.53×10 ⁻⁶ 14; α (O)=1.439×10 ⁻⁶ 21; α (P)=9.06×10 ⁻⁸ 13; α (IPF)=8.6×10 ⁻⁷ 4
11154.0	$(57/2^+)$	750.9 10	100	10403.1 (53	8/2 ⁺) E2	2 [†]	0.00424	$\alpha(K)=0.00358\ 6;\ \alpha(L)=0.000521\ 8;\ \alpha(M)=0.0001109\ 16$ $\alpha(N)=2\ 47\times10^{-5}\ 4;\ \alpha(Q)=3\ 68\times10^{-6}\ 6;\ \alpha(P)=2\ 15\times10^{-7}\ 3$
11209.9	(55/2+)	618.1 <i>10</i> 1143 <i>1</i>	100 25 <50	10591.9 (53) 10067.0 (51)	$\frac{3}{2^+}$			a(1) 2.17/10 7, a(0)=3.00/10 0, a(1)=2.13/10 3
11293.2	55/2 ⁽⁻⁾	1022.2 5	55 10	10271.0 51/	/2 ⁽⁻⁾ E2	2†	0.00214	α (K)=0.00182 3; α (L)=0.000250 4; α (M)=5.29×10 ⁻⁵ 8 α (N)=1.181×10 ⁻⁵ 17; α (O)=1.778×10 ⁻⁶ 25; α (P)=1.104×10 ⁻⁷ 16

15

 $^{141}_{60}\mathrm{Nd}_{81}$ -15

From ENSDF

 $^{141}_{60}\mathrm{Nd}_{81}$ -15

γ (¹⁴¹Nd) (continued)

E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α [@]	Comments
11293.2	55/2 ⁽⁻⁾	1083.4 5	100 50	10209.8	51/2 ⁽⁻⁾	E2 [†]	0.00189	α (K)=0.001616 23; α (L)=0.000219 3; α (M)=4.64×10 ⁻⁵ 7 α (N)=1.037×10 ⁻⁵ 15; α (O)=1.564×10 ⁻⁶ 22; α (P)=9.79×10 ⁻⁸ 14
11303.5	55/2 ⁽⁻⁾	1032.5 5	100	10271.0	51/2 ⁽⁻⁾	E2 [†]	0.00209	α (K)=0.00179 3; α (L)=0.000244 4; α (M)=5.17×10 ⁻⁵ 8 α (N)=1.154×10 ⁻⁵ 17; α (O)=1.739×10 ⁻⁶ 25; α (P)=1.081×10 ⁻⁷ 16
11545.2	55/2 ⁽⁻⁾	1274.2 10	100	10271.0	51/2 ⁽⁻⁾	E2 [†]	1.38×10 ⁻³	α (K)=0.001165 <i>17</i> ; α (L)=0.0001549 <i>22</i> ; α (M)=3.27×10 ⁻⁵ <i>5</i> α (N)=7.31×10 ⁻⁶ <i>11</i> ; α (O)=1.106×10 ⁻⁶ <i>16</i> ; α (P)=7.07×10 ⁻⁸ <i>10</i> ; α (IPF)=1.64×10 ⁻⁵ <i>3</i>
11912.0	(57/2+)	702.2 <i>10</i> 1320 <i>1</i>	100 <i>50</i> <100	11209.9 10591.9	(55/2 ⁺) (53/2 ⁺)			
12124.7	57/2 ⁽⁻⁾	821.4 5	100	11303.5	55/2 ⁽⁻⁾	(M1+E2) [†]	0.0044 10	α (K)=0.0038 9; α (L)=0.00051 10; α (M)=0.000108 20 α (N)=2.4×10 ⁻⁵ 5; α (O)=3.7×10 ⁻⁶ 8; α (P)=2.3×10 ⁻⁷ 6
12172.0	57/2 ⁽⁻⁾	868.5 5	100	11303.5	55/2 ⁽⁻⁾	(M1+E2) [†]	0.0039 9	α (K)=0.0033 8; α (L)=0.00045 9; α (M)=9.5×10 ⁻⁵ 18 α (N)=2.1×10 ⁻⁵ 4; α (O)=3.2×10 ⁻⁶ 7; α (P)=2.1×10 ⁻⁷ 5
12217.8	(61/2+)	1063.6 10	100	11154.0	(57/2 ⁺)	(E2) [†]	0.00197	α (K)=0.001679 24; α (L)=0.000229 4; α (M)=4.84×10 ⁻⁵ 7 α (N)=1.080×10 ⁻⁵ 16; α (O)=1.628×10 ⁻⁶ 23; α (P)=1.017×10 ⁻⁷ 15
12254.1	$(61/2^+)$	1100.1 10	100	11154.0	(57/2+)	E2 [†]	0.00183	α (K)=0.001566 23; α (L)=0.000212 3; α (M)=4.49×10 ⁻⁵ 7 α (N)=1.002×10 ⁻⁵ 15; α (O)=1.512×10 ⁻⁶ 22; α (P)=9.49×10 ⁻⁸ 14
12367.6	(59/2+)	1232.6 10	100	11134.9	(55/2+)	(E2) [†]	1.46×10 ⁻³	$\begin{aligned} &\alpha(\mathrm{K}) = 0.001244 \ 18; \ \alpha(\mathrm{L}) = 0.0001661 \ 24; \ \alpha(\mathrm{M}) = 3.51 \times 10^{-5} \ 5 \\ &\alpha(\mathrm{N}) = 7.84 \times 10^{-6} \ 11; \ \alpha(\mathrm{O}) = 1.186 \times 10^{-6} \ 17; \ \alpha(\mathrm{P}) = 7.55 \times 10^{-8} \ 11; \\ &\alpha(\mathrm{IPF}) = 1.002 \times 10^{-5} \ 20 \end{aligned}$
12386.9	59/2 ⁽⁻⁾	1083.5 5	100	11303.5	55/2 ⁽⁻⁾	E2 [†]	0.00189	α (K)=0.001616 23; α (L)=0.000219 3; α (M)=4.64×10 ⁻⁵ 7 α (N)=1.037×10 ⁻⁵ 15; α (O)=1.563×10 ⁻⁶ 22; α (P)=9.79×10 ⁻⁸ 14
12564.1	59/2 ⁽⁻⁾	1260.6 10	100	11303.5	55/2 ⁽⁻⁾	E2 [†]	1.40×10^{-3}	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.001190 \ 17; \ \alpha(\mathrm{L}) = 0.0001584 \ 23; \ \alpha(\mathrm{M}) = 3.34 \times 10^{-5} \ 5 \\ &\alpha(\mathrm{N}) = 7.47 \times 10^{-6} \ 11; \ \alpha(\mathrm{O}) = 1.131 \times 10^{-6} \ 16; \ \alpha(\mathrm{P}) = 7.22 \times 10^{-8} \ 11; \\ &\alpha(\mathrm{IPF}) = 1.42 \times 10^{-5} \ 3 \end{aligned} $
12634.9	59/2 ⁽⁻⁾	1331.4 <i>10</i>	100	11303.5	55/2 ⁽⁻⁾	E2 [†]	1.27×10^{-3}	$\begin{aligned} &\alpha(\mathrm{K}) = 0.001068 \ 15; \ \alpha(\mathrm{L}) = 0.0001413 \ 20; \ \alpha(\mathrm{M}) = 2.98 \times 10^{-5} \ 5 \\ &\alpha(\mathrm{N}) = 6.67 \times 10^{-6} \ 10; \ \alpha(\mathrm{O}) = 1.010 \times 10^{-6} \ 15; \ \alpha(\mathrm{P}) = 6.48 \times 10^{-8} \ 10; \\ &\alpha(\mathrm{IPF}) = 2.73 \times 10^{-5} \ 5 \end{aligned}$
12660.7	59/2 ⁽⁻⁾	1356.7 <i>10</i>	100	11303.5	55/2 ⁽⁻⁾	E2 [†]	1.23×10 ⁻³	α (K)=0.001029 <i>15</i> ; α (L)=0.0001359 <i>20</i> ; α (M)=2.87×10 ⁻⁵ <i>4</i> α (N)=6.41×10 ⁻⁶ <i>9</i> ; α (O)=9.71×10 ⁻⁷ <i>14</i> ; α (P)=6.25×10 ⁻⁸ <i>9</i> ; α (IPF)=3.33×10 ⁻⁵ <i>6</i>
12788.4	59/2 ⁽⁻⁾	401.8 10	93	12386.9	59/2 ⁽⁻⁾	(M1+E2) [†]	0.027 6	α (K)=0.022 5; α (L)=0.0034 3; α (M)=0.00073 5 α (N)=0.000162 12; α (O)=2.41×10 ⁻⁵ 25; α (P)=1.38×10 ⁻⁶ 37
		1484.6 10	100 29	11303.5	55/2 ⁽⁻⁾	E2 [†]	1.08×10 ⁻³	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000865 \ 13; \ \alpha(\mathrm{L}) = 0.0001132 \ 16; \ \alpha(\mathrm{M}) = 2.39 \times 10^{-5} \ 4 \\ &\alpha(\mathrm{N}) = 5.33 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 8.10 \times 10^{-7} \ 12; \ \alpha(\mathrm{P}) = 5.25 \times 10^{-8} \ 8; \\ &\alpha(\mathrm{IPF}) = 7.11 \times 10^{-5} \ 11 \end{aligned}$

From ENSDF

$\gamma(^{141}\text{Nd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f	J_f^π	Mult.	α [@]	Comments
13201.3	(65/2+)	947.3 10	83 <i>83</i>	12254.1	(61/2+)	E2 [†]	0.00252	$\alpha(K)=0.00214 \ 3; \ \alpha(L)=0.000297 \ 5; \ \alpha(M)=6.30\times10^{-5} \ 9 \ \alpha(N)=1.405\times10^{-5} \ 20; \ \alpha(O)=2.11\times10^{-6} \ 3; \ \alpha(P)=1.295\times10^{-7} \ 19$
		983.4 10	100 67	12217.8	$(61/2^+)$			
13211.6	61/2 ⁽⁻⁾	1039.6 <i>10</i>	100	12172.0	57/2 ⁽⁻⁾	E2 [†]	0.00206	α (K)=0.001760 25; α (L)=0.000241 4; α (M)=5.09×10 ⁻⁵ 8 α (N)=1.137×10 ⁻⁵ 17; α (O)=1.712×10 ⁻⁶ 25; α (P)=1.066×10 ⁻⁷ 15
13267.6	61/2 ⁽⁻⁾	606.4 10	100 20	12660.7	59/2 ⁽⁻⁾	(M1+E2) [†]	0.0092 21	α (K)=0.0078 <i>19</i> ; α (L)=0.00110 <i>19</i> ; α (M)=0.00023 <i>4</i> α (N)=5.2×10 ⁻⁵ <i>9</i> ; α (O)=7.9×10 ⁻⁶ <i>15</i> ; α (P)=4.8×10 ⁻⁷ <i>13</i>
		703.4 10	100 30	12564.1	59/2 ⁽⁻⁾	(M1+E2) [†]	0.0064 15	α (K)=0.0055 <i>13</i> ; α (L)=0.00075 <i>14</i> ; α (M)=0.00016 <i>3</i> α (N)=3.6×10 ⁻⁵ <i>7</i> ; α (O)=5.4×10 ⁻⁶ <i>11</i> ; α (P)=3.38×10 ⁻⁷ <i>89</i>
		1143.4 10	100 10	12124.7	57/2 ⁽⁻⁾	E2 [†]	1.70×10^{-3}	α (K)=0.001447 21; α (L)=0.000195 3; α (M)=4.12×10 ⁻⁵ 6 α (N)=9.21×10 ⁻⁶ 13; α (O)=1.391×10 ⁻⁶ 20; α (P)=8.78×10 ⁻⁸ 13; α (IPF)=1.51×10 ⁻⁶ 5
13280.5	61/2 ⁽⁻⁾	492.1 5	100	12788.4	59/2 ⁽⁻⁾	(M1+E2) [†]	0.016 4	α (K)=0.013 3; α (L)=0.0019 3; α (M)=0.00041 5 α (N)=9.1×10 ⁻⁵ 12; α (O)=1.37×10 ⁻⁵ 21; α (P)=8.2×10 ⁻⁷ 23
13621.3	$(65/2^+)$	1367.2 10	100	12254.1	$(61/2^+)$			
13695.5	$(63/2^+)$	1327.9 ^a 10	100 ^a	12367.6	$(59/2^+)$			
13866.3	63/2 ⁽⁻⁾	585.8 <i>5</i>	100	13280.5	61/2 ⁽⁻⁾	(M1+E2) [†]	0.0100 23	α (K)=0.0085 21; α (L)=0.00120 20; α (M)=0.00026 4 α (N)=5.7×10 ⁻⁵ 10; α (O)=8.6×10 ⁻⁶ 16; α (P)=5.3×10 ⁻⁷ 15
14156.4	63/2 ⁽⁻⁾	1521.5 10	100	12634.9	59/2 ⁽⁻⁾	E2 [†]	1.05×10^{-3}	α (K)=0.000825 <i>12</i> ; α (L)=0.0001078 <i>16</i> ; α (M)=2.27×10 ⁻⁵ <i>4</i> α (N)=5.08×10 ⁻⁶ <i>8</i> ; α (O)=7.71×10 ⁻⁷ <i>11</i> ; α (P)=5.01×10 ⁻⁸ <i>7</i> ; α (IPF)=8.38×10 ⁻⁵ <i>13</i>
14433.6	$(69/2^+)$	1232.3 10	100	13201.3	$(65/2^+)$			
15098?	$(67/2^+)$	1402.3 10	100	13695.5	$(63/2^+)$			
15154.6	$(69/2^+)$	1533.3 10	100	13621.3	$(65/2^+)$			
15761.5	$(73/2^+)$	1327.9 ^{<i>a</i>} 10	1004	14433.6	$(69/2^+)$			
16348?	$(71/2^+)$	1250.3 10	100	15098?	$(67/2^+)$			
16846	$(73/2^+)$	1691.1 10	100	15154.6	$(69/2^+)$			
17234	$(77/2^{+})$	1472.4 10	100	15761.5	$(73/2^{+})$			
18694?	$(77/2^{+})$	1848 1	100	16846	$(13/2^{+})$			
188283	$(81/2^{+})$	1624.1 10	100	17234	$(11/2^{+})$			

[†] From $\gamma\gamma(\theta)$ (anisotropy ratio) measurements and theoretical calculations in (⁴⁸Ca,3n γ). All transitions are stretched except for 401.8 and 204.3 that are $\Delta J=0$ transitions.

[±] Ordering of γ cascades is uncertain: 741 γ -492 γ , 1128 γ -684 Γ and 788 γ -654 γ in (⁴⁸Ca,3n γ).

[#] Gamma-ray energy differ from the fitted values by more than 3σ .

[@] Additional information 2.

$\gamma(^{141}\text{Nd})$ (continued)

- & If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.
- ^a Multiply placed with intensity suitably divided.
 ^b Placement of transition in the level scheme is uncertain.

 $^{141}_{60}\rm{Nd}_{81}$

 $^{141}_{60}\mathrm{Nd}_{81}$

 $^{141}_{60}\text{Nd}_{81}$

Intensities: Type not specified @ Multiply placed: intensity suitably divided

$\begin{array}{c|c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ & \gamma \operatorname{Decay} (\operatorname{Uncertain}) \end{array}$

Legend

 $^{141}_{60}\mathrm{Nd}_{81}$

 $^{141}_{60}\text{Nd}_{81}$

 $^{141}_{60}\text{Nd}_{81}$

