Adopted Levels, Gammas

History								
Туре	Author Citation		Literature Cutoff Date					
Full Evaluation	N. Nica	NDS 187,1 (2023)	12-Oct-2022					

 $S(n)=13120 \text{ syst}; S(p)=-1177 7; Q(\alpha)=4180 \text{ syst}$ 2021Wa16

 $\Delta S(n)=640, \Delta Q(\alpha)=570 \text{ (syst,}2021\text{Wa16)}.$

S(2p)=810 500, Q(\varepsilon p)=8830 900 (syst, 2021Wa16).

Additional information 1.

1998Da03, 1999Ry04, 2001Se03, 2002Cu01, 2002Kr04, 2003BaZZ, 2005Bi24, 2007KaZO, 2008Ka16, all of them using the ⁹²Mo(⁵⁴Fe,p4n) reaction.

Ground-state deformation: from the analysis of the proton radioactivity data, $\beta \approx 0.3$ was deduced (1998Da03, 1999Ry04,

1999Ma05, 2000Bb02, 2000Kr07, 2001Es01). A similar value was deduced following the study of the high-spin data (2001Se03). More recent calculations deduced generally larger values of deformation, β =0.3-0.4 (2005Fe06, 2007Ka60, 2008Ka16).

¹⁴¹Ho Levels

Cross Reference (XREF) Flags

A 92 Mo(⁵⁴Fe,p4n):P data

B 92 Mo(54 Fe,p4n γ): γ data

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
0.0#	(7/2-)	4.1 ms <i>I</i>	AB	 %p=100 %p: decay modes other than p were not observed and their calculated T_{1/2} are far larger than the experimental T_{1/2}; as a consequence we adopt %p=100. Configuration=π([523]7/2⁻) (1998Da03). J^π: from Nilsson model analysis of lifetime. T_{1/2}(calc) for [523] state=19.1 ms (2000Bb02). T_{1/2}: weighted average of 4.2 ms 4 (1998Da03), 3.9 ms 5 (1999Ry04), and 4.1 ms 1 (2008Ka16). Proton decay of J^π(p)=7/2⁻, T_{1/2}(p)=4.1 ms 1 g.s.: 1) to 0⁺ g.s. in ¹⁴⁰Dy: E(p)(0⁺ g.s.)=1169 keV 8, Q(p)=1190 keV 8 (1998Da03), B(p)=0.991 2. 2) fine structure – proton decay to first 2⁺ state in ¹⁴⁰Dy: E(p)(2⁺)=968 keV 10 (2008Ka16, 201 keV 6 smaller than E(p)(0⁺ g.s.)), B(p)=0.009 2 (2008Ka16). σ≈250 nb at 76 MeV at and 88 MeV of excitation energy (1998Da03); σ≈130 nb at 95 MeV of excitation energy (1999Ry04); 1.4 μb at 300 MeV of excitation energy (2008Ka16).
66 ^{&} 12	(1/2 ⁺)	7.3 μs 3	AB	 %p=100 %p: decay modes other than p were not observed and their calculated T_{1/2} are far larger than the experimental T_{1/2}; as a consequence we adopt %p=100. Configuration=π([411]1/2⁺) (1999Ry04). E(level): from energy difference in Q(p)'s to g.s. J^π: from Nilsson model analysis of lifetime. T_{1/2}(calc) for [411] state=14.6 μs (2000Bb02). T_{1/2}: weighted average of 8 μs 3 (1999Ry04), 6.5 μs +9-7 (2001Se03), and 7.4 μs 3 (2008Ka16). Proton decay of J^π(p)=1/2⁺, T_{1/2}(p)=7.3 μs 3 isomer: 1) to 0⁺ g.s. in ¹⁴⁰Dy: E(p)(0⁺ g.s.)=1234 keV 8 (weighted average of 1230 keV 20 (1999Ry04) and 1235 keV 9 (2001Se03)), Q(p)=1256 keV 8, B(p)=0.983 5. 2) fine structure – proton decay to first 2⁺ state in ¹⁴⁰Dy: E(p)(2⁺)=1030 keV 14 (2008Ka16, 204 keV 11 smaller than E(p)(0⁺ g.s.)), B(p)=0.017 5 (2008Ka16). <i>σ</i>≈30 nb at 95 MeV of excitation energy (1999Ry04); 240 nb at 290 MeV of excitation energy (2008Ka16).
66+x ^{&}	$(3/2^+)$		В	Additional information 2.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁴¹Ho Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
			E(level): $x \approx 20$ keV from particle-rotor calculations (2001Se03).
77.8 [@] 4	(9/2 ⁻)	В	
169.1 [#] 4	$(11/2^{-})$	В	
277.7+x? ^{&} 4	$(7/2^+)$	В	
386.7 [@] 5	$(13/2^{-})$	В	
499.6 [#] 5	$(15/2^{-})$	В	
623.2+x? ^{&} 6	$(11/2^+)$	В	
978.1 [#] 7	(19/2 ⁻)	В	
1062.5+x? ^{&} 7	$(15/2^+)$	В	
1565.4+x? ^{&} 8	$(19/2^+)$	В	
1595.5 [#] 10	$(23/2^{-})$	В	
2333.1 [#] <i>13</i>	$(27/2^{-})$	В	
3165.7 [#] 17	$(31/2^{-})$	В	
4084.6 [#] 21	$(35/2^{-})$	В	

[†] From least-square fit to $E\gamma$ for γ decaying states.

^{\ddagger} For γ decaying states, the assignments are based on the γ energy and intensity pattern expected for band members, supported by cranked-shell model calculations and comparisons with neighboring nuclei.

[#] Band(A): $\pi 7/2[523]$, $\alpha = -1/2$. Possible hexadecapole deformation and triaxial shape in the g.s.

[@] Band(a): $\pi 7/2[523]$, $\alpha = +1/2$.

[&] Band(B): $\pi 1/2[411]$.

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}
77.8	$(9/2^{-})$	78.4 5	100	0.0	$(7/2^{-})$
169.1	$(11/2^{-})$	91.1 6	100 23	77.8	$(9/2^{-})$
		168.5 5	54 18	0.0	$(7/2^{-})$
277.7+x?	$(7/2^+)$	211.7 4	100	66+x	$(3/2^+)$
386.7	$(13/2^{-})$	217.2 4	100 22	169.1	$(11/2^{-})$
		309.5 4	95 22	77.8	$(9/2^{-})$
499.6	$(15/2^{-})$	113.1 6	23 7	386.7	$(13/2^{-})$
		330.4 <i>3</i>	100 13	169.1	$(11/2^{-})$
623.2+x?	$(11/2^+)$	345.5 <i>4</i>	100	277.7+x?	$(7/2^+)$
978.1	$(19/2^{-})$	478.5 <i>4</i>	100	499.6	$(15/2^{-})$
1062.5+x?	$(15/2^+)$	439.3 4	100	623.2+x?	$(11/2^+)$
1565.4+x?	$(19/2^+)$	502.9 4	100	1062.5 + x?	$(15/2^+)$
1595.5	$(23/2^{-})$	617.4 7	100	978.1	$(19/2^{-})$
2333.1	$(27/2^{-})$	737.6 9	100	1595.5	$(23/2^{-})$
3165.7	$(31/2^{-})$	832.6 11	100	2333.1	$(27/2^{-})$
4084.6	$(35/2^{-})$	918.9 <i>12</i>	100	3165.7	$(31/2^{-})$

 $\gamma(^{141}\text{Ho})$

Adopted Levels, Gammas

Legend Level Scheme $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ ٠ Intensities: Type not specified • 4 9/8.9 100 (35/2-) 4084.6 1 832.6 100 (31/2-) 3165.7 + 237.6 100 $(27/2^{-})$ 2333.1 + 61_{2,4} 100 - ³03 00 $(23/2^{-})$ 1595.5 $(19/2^+)$ - <u>1565.4+x</u> - 439.3 1 * 12 100 $\frac{(15/2^+)}{(19/2^-)}$ 1<u>062.5+x</u> 978.1 1 330 4 113,13 $\frac{(11/2^+)}{(15/2^-)}$ $\frac{(13/2^-)}{(13/2^-)}$ <u>623.2+x</u> 6 -67 499.6 2/2 -</2 386.7 $\frac{(10/2^{+})}{(11/2^{-})}$ ^ 277.7+x 169.1 5 8 5 e S -0;-E $\frac{\frac{(11/2^{-})}{(9/2^{-})}}{\frac{(3/2^{+})}{(7/2^{-})}}$ 77.8 <u>66+x</u> 0.0 4.1 ms 1

¹⁴¹₆₇Ho₇₄

Adopted Levels, Gammas

¹⁴¹₆₇Ho₇₄

Adopted Levels, Gammas (continued)

¹⁴¹₆₇Ho₇₄