¹⁴¹Gd ε decay (24.5 s) 1989Gi06

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 187,1 (2023)	12-Oct-2022

Parent: ¹⁴¹Gd: E=377.76 9; $J^{\pi}=11/2^{-}$; $T_{1/2}=24.5$ s 5; $Q(\varepsilon)=6701$ 23; $\%\varepsilon+\%\beta^{+}$ decay=89 2

¹⁴¹Gd-Q(ε): From 2021Wa16.

¹⁴¹Gd- $\%\varepsilon$ + $\%\beta^+$ decay: From 1989Gi06.

See comment in 14-s 141 Gd ε decay.

Measured: γ , $\gamma\gamma$, $X\gamma$, ce (1989Gi06,1988TuZY,1988HaZL), γ (1986Re11,1988HaZL,1987Pl05). All data are from 1989Gi06.

Additional information 1.

¹⁴¹Eu Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	E(level) [†]	J <i>π</i> ‡
0.0	5/2+	40.7 s 7	837.05 11	9/2,11/2,13/2
96.46 7	$11/2^{-}$	2.7 s 3	869.88 10	9/2,11/2,13/2 ⁽⁺⁾
320.36 13	9/2,11/2,13/2		923.15 10	$11/2^{(-)}, 13/2$
447.75 9	9/2,11/2,13/2		967.66 16	9/2,11/2,13/2
457.60 8	$(9/2^+)$		1047.44 10	9/2,11/2,13/2(+)
622.45 13	$15/2^{-}$		1072.65 11	$(9/2^+)$
656.73 10	$(9/2^+)$		1795.68 16	9/2,11/2,13/2 ⁽⁺⁾
671.65 11	$13/2^{-}$		1820.45 12	$9/2^{-},11/2,13/2^{(+)}$
749.36 13	9/2,11/2,13/2		2019.57 13	9/2 ⁽⁺⁾ ,11/2,13/2

[†] From least-squares fit to E γ data (χ^2 norm=3.89 greater than χ^2 critical=2.18).

[‡] From Adopted Levels.

$\mathrm{I}\beta^+ ~^\dagger$ Ιε† $I(\varepsilon + \beta^+)^{\dagger}$ E(decay) E(level) Log ft Comments 1.8 5 0.52 14 av E_β=1841 11; εK=0.1907 25; εL=0.0275 4; εM+=0.00795 $(5059\ 23)$ 2019.57 5.99 12 2.3 6 11 (5258 23) 1820.45 1.1 4 0.28 10 6.29 16 1.4 5 av E_β=1934 11; εK=0.1708 22; εL=0.0246 4; εM+=0.00711 10 (5283 23) 1795.68 1.4 5 0.34 12 6.21 16 1.7 6 av E_β=1946 11; εK=0.1685 22; εL=0.0243 3; εM+=0.00702 9 (6006 23) 1072.65 1.4 3 0.22 5 6.52 11 1.6 4 av E\beta=2287 11; EK=0.1152 14; EL=0.01658 20; EM+=0.00479 6 av E β =2299 11; ε K=0.1138 14; ε L=0.01637 19; ε M+=0.00473 (6031 23) 1047.44 1.8 5 0.28 8 6.41 13 2.1 6 6 (6111 23) 967.66 2.9 5 0.43 8 6.24 8 3.3 6 av Eβ=2337 11; εK=0.1094 13; εL=0.01573 19; εM+=0.00454 6 (6156 23) 923.15 3.98 0.57 11 6.12 9 4.5 9 av E_β=2358 11; εK=0.1070 13; εL=0.01539 18; εM+=0.00444 5 (6209 23) 869.88 3.5 7 0.49 10 6.19 9 4.0 8 av Eβ=2383 11; εK=0.1042 12; εL=0.01499 17; εM+=0.00433 5 (6242 23) 837.05 4.0 7 0.55 10 6.15 8 4.5 8 av Eβ=2399 11; εK=0.1026 12; εL=0.01475 17; εM+=0.00426 .5 av E_β=2440 11; εK=0.0983 11; εL=0.01414 16; εM+=0.00408 749.36 2.7 5 0.35 7 6.36 9 3.0 6 (6329 23) 5 (6407 23) 671.65 6.7 13 0.84 17 5.99 9 7.5 15 av E β =2477 11; ε K=0.0947 11; ε L=0.01362 15; ε M+=0.00393 5 0.41 9 av Eβ=2484 11; εK=0.0941 11; εL=0.01352 15; εM+=0.00390 (6422 23) 656.73 3.37 6.30 10 3.7 8 5 av Eβ=2579 11; εK=0.0857 10; εL=0.01231 14; εM+=0.00355 (6621 23) 457.60 2.5 9 0.28 10 6.49 16 2.8 10

Continued on next page (footnotes at end of table)

 ε, β^+ radiations

⁴¹ Gd ε decay (24.5 s)	1989Gi06 (continued)
---	----------------------

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
						4
(6631 23)	447.75	7.0 18	0.79 20	6.05 12	7.8 20	av Eβ=2584 11; εK=0.0853 10; εL=0.01225 14;
						εM+=0.00354 4
(6758 23)	320.36	6.2 14	0.66 14	6.14 10	6.9 15	av E β =2644 11; ε K=0.0804 9; ε L=0.01155 13; ε M+=0.00334
						4
(6982 23)	96.46	28 14	2.7 13	5.56 21	31 15	av Eβ=2751 11; εK=0.0727 8; εL=0.01045 11; εM+=0.00302
						4

[†] Absolute intensity per 100 decays.

$\gamma(^{141}\text{Eu})$

I γ normalization: From $\Sigma I(\gamma+ce)$ to g.s.=100 with $I(\gamma+ce)(96\gamma)$ corrected for isomeric state branching.

E_{γ}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
96.4 1	13 2	96.46	11/2-	0.0	5/2+	E3	46.3 7	% $I\gamma$ =1.84 5 α (K)=5.03 7; α (L)=31.6 5; α (M)=7.79 12 α (N)=1.734 26; α (O)=0.2298 35; α (P)=0.000472 7
223.9 1	72 7	320.36	9/2,11/2,13/2	96.46	11/2-			$\%$ I γ =10.2 18
300.7 1	10 2	923.15	$11/2^{(-)}, 13/2$	622.45	15/2-			$\% I \gamma = 1.4.4$
351.1 <i>I</i> 361 2 <i>I</i>	100 10	447.75	9/2,11/2,13/2	96.46	$\frac{11/2}{11/2^{-1}}$	[[]1]	0.00067.14	$\%1\gamma = 14.2 \ 20$
501.2 1	42 4	437.00	(9/2)	90.40	11/2	[[]	0.00907 14	$\alpha(K) = 0.00825 \ 12;$ $\alpha(L) = 0.001120 \ 16;$ $\alpha(M) = 0.0002403 \ 34$ $\alpha(N) = 5.47 \times 10^{-5} \ 8;$ $\alpha(O) = 8.54 \times 10^{-6} \ 12;$ $\alpha(P) = 7.93 \times 10^{-7} \ 11$
389.2 1	14 2	837.05	9/2,11/2,13/2	447.75	9/2,11/2,13/2			$\%$ I γ =2.0 4
412.2 <i>1</i>	13 2	869.88	9/2,11/2,13/2(+)	457.60	$(9/2^+)$			$\%$ I γ =1.8 4
457.6 1	92	457.60	(9/2+)	0.0	5/2+	[E2]	0.01698 24	% 1γ =1.27 34 α (K)=0.01378 19; α (L)=0.002507 35; α (M)=0.000554 8 α (N)=0.0001254 18; α (O)=1.897×10 ⁻⁵ 27; α (P)=1.360×10 ⁻⁶ 19
475.4 <i>1</i>	13 2	923.15	$11/2^{(-)}, 13/2$	447.75	9/2,11/2,13/2			$\%$ I γ =1.8 4
*487.5 <i>1</i> 526.0 2	12 2 19 5	622.45	15/2-	96.46	11/2-	E2	0.01171 <i>16</i>	% $l\gamma=1.7.4$ % $l\gamma=2.7.8$ $\alpha(K)=0.00961~13;$ $\alpha(L)=0.001648~23;$ $\alpha(M)=0.000362~5$ $\alpha(N)=8.22\times10^{-5}~12;$ $\alpha(O)=1.253\times10^{-5}~18;$ $\alpha(P)=9.61\times10^{-7}~13$
^x 544.3 1 ^x 557.5 1	52 252							%Iγ=0.71 <i>30</i> %Iγ=3.5 <i>6</i>

$^{141}\text{Gd}\,\varepsilon$ decay (24.5 s) 1989Gi06 (continued)

$\gamma(^{141}\text{Eu})$ (continued)

Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [†]	α^{\ddagger}	Comments
560.5 1	27 3	656.73	$(9/2^+)$	96.46	$11/2^{-}$			%Iv=3.8 7
574.9 1	57 6	671.65	13/2-	96.46	$11/2^{-1}$	M1+E2	0.0129 35	$\% I\gamma = 8.1 \ 15$
								$\alpha(K) = 0.0108 \ 31;$
								$\alpha(L)=0.00159 32;$
								$\alpha(M)=0.00035$ 7
								$\alpha(N)=7.9\times10^{-5}$ 15;
								$\alpha(O)=1.24\times10^{-5}\ 26;$
								$\alpha(P)=1.1\times10^{-6} 4$
590.0 1	13 2	1047.44	9/2,11/2,13/2(+)	457.60	$(9/2^+)$			%Iγ=1.8 <i>4</i>
599.6 <i>1</i>	12 2	1047.44	9/2,11/2,13/2 ⁽⁺⁾	447.75	9/2,11/2,13/2			%Iγ=1.7 <i>4</i>
647.3 <i>1</i>	23 2	967.66	9/2,11/2,13/2	320.36	9/2,11/2,13/2			%I _y =3.3 6
652.9 <i>1</i>	21 2	749.36	9/2,11/2,13/2	96.46	$11/2^{-}$			%Iγ=3.0 <i>5</i>
657.0 2	42	656.73	$(9/2^+)$	0.0	5/2+			%Iγ=0.57 <i>30</i>
^x 700.6 1	82							%Iγ=1.13 <i>33</i>
740.7 1	18 2	837.05	9/2,11/2,13/2	96.46	11/2-			$\%$ I γ =2.5 5
^x 746.4 1	72							$%I\gamma = 0.99 \ 32$
773.5 1	15 2	869.88	9/2,11/2,13/2(+)	96.46	$11/2^{-}$			$\%$ I γ =2.1 4
826.7 1	92	923.15	$11/2^{(-)}, 13/2$	96.46	$11/2^{-}$			$%I\gamma = 1.27 \ 34$
^x 841.4 <i>1</i>	72							%Iγ=0.99 <i>32</i>
^x 864.4 <i>1</i>	62							$\%1\gamma = 0.85 \ 31$
972.2 1	10 2	2019.57	9/2(+),11/2,13/2	1047.44	9/2,11/2,13/2(+)			$\%$ I γ =1.4 4
976.2 I	92	10/2.65	$(9/2^+)$	96.46	$11/2^{-}$			$\%1\gamma = 1.27 34$
^{*1036.4} <i>I</i>	42	1072 (5	$(0/2^{\pm})$	0.0	5/2+			$\%1\gamma = 0.57 30$
10/2.6 Z	21	1072.65	$(9/2^{+})$	0.0	5/2			$\%1\gamma = 0.28$ 15
1149.5 1	122	1920 45	0/0 = 11/0 12/0(+)	(71 (5	12/2-			$\%1\gamma = 1.74$
1148.5 1	52	1820.45	$9/2$, $11/2$, $13/2^{(+)}$	6/1.65	13/2			$\%1\gamma = 0.7130$
1164.0 <i>I</i>	52	1820.45	9/2 ,11/2,13/2(1)	656.73	$(9/2^+)$			$\%1\gamma = 0.7130$
1220.0.2	02	1705 (0	0/0.11/0.12/0(+)	157 (0	(0/0+)			$\%1\gamma = 0.85 31$
1338.0 2	63	1795.68	$9/2,11/2,13/2^{(+)}$	457.60	$(9/2^+)$			$\%1\gamma = 0.84$
1348.0 2	62	1/95.68	9/2,11/2,13/2(+)	447.75	9/2,11/2,13/2			$\%1\gamma = 0.85 31$
~1397.2.2	92	2010.55	0/0(+) 11/0 12/2	06.46	11/0-			$\%1\gamma = 1.2/34$
1922.8-2	6.2	2019.57	$9/2^{(\pm)}, 11/2, 13/2$	96.46	$11/2^{-}$			$\%1\gamma = 0.85 \ 31$

[†] Adopted values.
[‡] Additional information 2.
[#] For absolute intensity per 100 decays, multiply by 0.142 22.
^x γ ray not placed in level scheme.

¹⁴¹Gd ε decay (24.5 s) 1989Gi06

4