¹⁴¹La β^- decay 1977TaZZ

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 187,1 (2023)	12-Oct-2022

Parent: ¹⁴¹La: E=0.0; $J^{\pi}=7/2^{(+)}$; T_{1/2}=3.92 h 3; Q(β^{-})=2501 4; % β^{-} decay=100 ¹⁴¹La-Q(β^{-}): From 2021Wa16.

Measured: γ , $\gamma\gamma$ (1977TaZZ), β (1959Sc36,1951Du19).

Decay scheme is from 1977TaZZ.

¹⁴¹Ce Levels

E(level) [†]	J π ‡	T _{1/2} ‡	E(level) [†]	Jπ‡	E(level) [†]	J π ‡
0.0	7/2-	32.504 d 13	1626.5 4	$(3/2)^+$	2171.1 3	9/2-
662.06 6	$3/2^{-}$		1693.31 10	$11/2^{-}$	2174.02 16	$5/2^{-}$
1137.0 9	$1/2^{-}$		1739.01 10	$7/2^{-}$	2207.40 14	$(7/2^+)$
1354.50 9	9/2-		1943.9 <i>3</i>		2266.95 15	$(5/2^+)$
1368.71 18	$13/2^{+}$	5.3 ns <i>3</i>	2030.22 20		2328.9 11	$7/2^{-}$
1497.01 9	5/2-		2049.3 <i>3</i>			

[†] From least-squares fit to $E\gamma's$.

[‡] Adopted values.

β^- radiations

Level feedings were derived from intensity imbalance for each level and I(1354 γ)=1.64% 7 (1981Ge04). E(β)=2430 30, I β ≈95% (1951Du19); 2500 100, I β ≈98% (1959Sc36).

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(172 4)	2328.9	0.0005 3	8.5 3	av E β =46.5 12
(234 4)	2266.95	0.050 3	6.92 4	av $E\beta = 64.9 \ 13$
(294 4)	2207.40	0.0153 14	7.75 5	av $E\beta = 83.4 \ 13$
(327 4)	2174.02	0.029 3	7.62 5	av $E\beta = 94.0 \ 13$
(330 4)	2171.1	0.0203 22	7.79 5	av $E\beta = 95.0 \ 13$
(452 4)	2049.3	0.0034 8	9.02 11	av $E\beta = 135.6 \ 14$
(471 4)	2030.22	0.0051 5	8.90 5	av $E\beta = 142.2 \ 14$
(557 4)	1943.9	0.0043 7	9.22 8	av $E\beta = 172.6 \ 15$
(762 4)	1739.01	0.0149 13	9.16 4	av $E\beta = 248.8 \ 16$
(808 4)	1693.31	0.075 5	8.54 <i>3</i>	av E β =266.4 16
$(1004 \ 4)$	1497.01	0.0157 17	9.56 5	av $E\beta = 344.3 \ 17$
$(1132 \ 4)$	1368.71	0.0036 7	10.40 9	av $E\beta = 396.8 \ 17$
(1147 4)	1354.50	1.63 11	7.76 3	av $E\beta = 402.7 \ 17$
(1839 4)	662.06	0.0042 22	12.13 ¹ <i>u</i> 23	av $E\beta = 698.9 \ 18$
2430 30	0.0	98.12 <i>12</i>	7.305 5	av E β =998.9 19

[†] Absolute intensity per 100 decays.

 $\gamma(^{141}\text{Ce})$

Iγ normalization: I(1354γ)=1.64% 7 (1981Ge04).

¹⁴¹La β^- decay **1977TaZZ** (continued)

$\gamma(^{141}\text{Ce})$ (continued) α^{\dagger} I_{γ}^{\ddagger} J_{\perp}^{π} E_{γ} E_i (level) \mathbf{J}_i^{π} E_f Mult. Comments 0.8 3 1693.31 $11/2^{-}$ 1368.71 13/2+ [E1] 0.01019 324.6 4 *α*(K)=0.00875 *13*; *α*(L)=0.001139 *17*; $\alpha(M) = 0.000237 4$ $\alpha(N)=5.22\times10^{-5} 8; \alpha(O)=8.36\times10^{-6}$ 12; $\alpha(P)=5.97\times10^{-7}$ 9 $\% I\gamma = 0.0013 5$ $\%I\gamma = 0.00075$ 435.08 0.4.3 2174.02 $5/2^{-}$ 1739.01 7/2-474.9 9 0.4 3 1137.0 $1/2^{-}$ 662.06 3/2- $%I_{\nu}=0.00075$ $(3/2)^+$ 547.1 5 0.6 3 2174.02 $5/2^{-}$ 1626.5 [E1] 0.00292 $\alpha(K)=0.00252 4; \alpha(L)=0.000321 5;$ $\alpha(M) = 6.66 \times 10^{-5} 10$ $\alpha(N) = 1.474 \times 10^{-5} 21;$ $\alpha(O)=2.38\times10^{-6}$ 4; $\alpha(P)=1.765\times10^{-7} 25$ $\% I_{\gamma} = 0.0010 5$ x561.8 6 0.6 3 $\% I_{\gamma} = 0.0010 5$ 581.1 5 0.7 3 2207.40 $(7/2^+)$ 1626.5 $(3/2)^+$ [E2] 0.00723 $\alpha(K)=0.00608 9; \alpha(L)=0.000912 13;$ $\alpha(M)=0.000192$ 3 $\alpha(N)=4.24\times10^{-5}$ 6; $\alpha(O)=6.69\times10^{-6}$ 10; $\alpha(P)=4.32\times10^{-7}$ 7 $\% I_{\gamma} = 0.0012 5$ 589.9 6 0.6 3 1943.9 1354.50 9/2- $\%I\gamma = 0.00105$ $\alpha(K)=0.00440$ 7; $\alpha(L)=0.000638$ 9; 662.06 6 15.8 9 662.06 $3/2^{-}$ 0.0 $7/2^{-}$ [E2] 0.00520 $\alpha(M) = 0.0001342$ 19 $\alpha(N)=2.96\times10^{-5}$ 5; $\alpha(O)=4.70\times10^{-6}$ 7; $\alpha(P)=3.15\times10^{-7}$ 5 %Iy=0.0259 19 676.8 5 $\%I\gamma = 0.0013 5$ 0.8 3 2174.02 $5/2^{-}$ 1497.01 5/2-694.9 6 2049.3 $\% I \gamma = 0.0012 7$ 0.741354.50 9/2- 1.66×10^{-3} 1.9 4 2207.40 *α*(K)=0.001435 21; *α*(L)=0.000181 3; 710.4 2 $(7/2^+)$ 1497.01 5/2-[E1] $\alpha(M) = 3.75 \times 10^{-5} 6$ $\alpha(N) = 8.31 \times 10^{-6} 12;$ $\alpha(O)=1.344\times10^{-6}$ 19; $\alpha(P)=1.013\times10^{-7}$ 15 $\% I_{\gamma} = 0.0031$ 7 834.8 4 1.2 4 1497.01 $5/2^{-}$ 662.06 3/2- $%I\gamma = 0.00207$ 853.0 3 1.9 4 2207.40 $(7/2^+)$ 1354.50 9/2-[E1] 1.15×10^{-3} $\alpha(K)=0.000992$ 14; $\alpha(L)=0.0001242$ 18; $\alpha(M)=2.57\times10^{-5}$ 4 $\alpha(N)=5.70\times10^{-6} 8; \alpha(O)=9.24\times10^{-7}$ 13; $\alpha(P)=7.03\times10^{-8}$ 10 $%I\gamma = 0.00317$ 9.06×10^{-4} $\alpha(K)=0.000783 \ 11; \ \alpha(L)=9.76\times 10^{-5}$ 0.9 5 $(3/2)^+$ 662.06 3/2-[E1] 964.08 1626.5 14; $\alpha(M)=2.02\times10^{-5}$ 3 $\alpha(N)=4.48\times10^{-6}$ 7; $\alpha(O)=7.27\times10^{-7}$ 11; $\alpha(P)=5.56\times10^{-8}$ 8 $\% I_{\gamma} = 0.0015 8$. %Iγ=1.64 7 1354.52 9 1000 54 1354.50 $9/2^{-}$ 0.0 $7/2^{-}$ 1368.7 2 3.0 3 1368.71 $13/2^{+}$ 0.0 $7/2^{-}$ [E3] 0.00206 $\alpha(K)=0.001738\ 25;\ \alpha(L)=0.000243\ 4;$ $\alpha(M) = 5.10 \times 10^{-5} 8$ $\alpha(N)=1.128\times 10^{-5}$ 16; $\alpha(O) = 1.81 \times 10^{-6} 3;$ $\alpha(P)=1.300\times10^{-7}$ 19; α (IPF)=1.293×10⁻⁵ 19 $%I\gamma = 0.00495$ 1497.0 1 11.1 7 1497.01 $5/2^{-}$ $0.0 \quad 7/2^{-}$ %Iy=0.0182 14

Continued on next page (footnotes at end of table)

¹⁴¹La β^- decay 1977TaZZ (continued)

$\gamma(^{141}\text{Ce})$ (continued)

E_{γ}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
1512.1 2	5.6 5	2174.02	$5/2^{-}$	662.06	$3/2^{-}$			%Iy=0.0092 9
1604.8 2	5.2 5	2266.95	$(5/2^+)$	662.06	$3/2^{-}$	[E1]	6.61×10^{-4}	$\alpha(K)=0.000317 5; \alpha(L)=3.89\times10^{-5} 6;$
			,					$\alpha(M) = 8.05 \times 10^{-6} 12$
								$\alpha(N) = 1.786 \times 10^{-6} 25; \alpha(O) = 2.90 \times 10^{-7} 4;$
								$\alpha(P)=2.26\times10^{-8}$ 4; $\alpha(IPF)=0.000295$ 5
								%Iy=0.0085 9
1693.3 <i>1</i>	45.0 25	1693.31	$11/2^{-}$	0.0	$7/2^{-}$	[E2]	8.55×10^{-4}	$\alpha(K)=0.000605 \ 9; \ \alpha(L)=7.68\times 10^{-5} \ 11;$
								$\alpha(M) = 1.596 \times 10^{-5} 23$
								$\alpha(N) = 3.54 \times 10^{-6} 5; \alpha(O) = 5.74 \times 10^{-7} 8;$
								$\alpha(P)=4.40\times10^{-8}$ 7; $\alpha(IPF)=0.0001526$ 22
								%Iy=0.074 5
1739.0 <i>1</i>	9.5 6	1739.01	$7/2^{-}$	0.0	$7/2^{-}$			%Iy=0.0156 <i>12</i>
1943.7 <i>3</i>	2.0 3	1943.9		0.0	$7/2^{-}$			%Iγ=0.0033 5
2030.2 2	3.1 3	2030.22		0.0	$7/2^{-}$			$\%$ I γ =0.0051 5
2049.2 3	1.4 2	2049.3		0.0	7/2-			$\%$ I γ =0.0023 4
2171.1 3	12.4 12	2171.1	9/2-	0.0	7/2-			$\%1\gamma = 0.0203\ 22$
2173.9 3	10.0 12	2174.02	5/2-	0.0	7/2-			%1y=0.0164 21
2207.3 2	4.8 4	2207.40	$(7/2^+)$	0.0	7/2-	[E1]	9.51×10 ⁻⁴	α (K)=0.000190 3; α (L)=2.32×10 ⁻⁵ 4; α (M)=4.79×10 ⁻⁶ 7
								$\alpha(N) = 1.064 \times 10^{-6}$ 15; $\alpha(O) = 1.732 \times 10^{-7}$ 25;
								$\alpha(P)=1.358\times 10^{-8}$ 19: $\alpha(IPF)=0.000731$ 11
								%Iy=0.0079 7
2267.0 2	25.2 15	2266.95	$(5/2^+)$	0.0	$7/2^{-}$	[E1]	9.82×10^{-4}	$\alpha(K)=0.000183 \ 3; \ \alpha(L)=2.23\times 10^{-5} \ 4;$
								$\alpha(M) = 4.60 \times 10^{-6} 7$
								$\alpha(N) = 1.020 \times 10^{-6} \ 15; \ \alpha(O) = 1.662 \times 10^{-7} \ 24;$
								$\alpha(P)=1.304\times10^{-8}$ 19; $\alpha(IPF)=0.000771$ 11
								%Iγ=0.041 <i>3</i>
2328.9 11	0.3 2	2328.9	$7/2^{-}$	0.0	$7/2^{-}$			%Iy=0.0005 3

[†] Additional information 1. [‡] For absolute intensity per 100 decays, multiply by 0.00164 7. ^x γ ray not placed in level scheme.

¹⁴¹La β^- decay 1977TaZZ

4