¹⁴⁰Ce(α , ³He) **2008Ka01**

Type Author Citation Literature Cutoff Date

Full Evaluation N. Nica NDS 187,1 (2023) 12-Oct-2022

2008Ka01: E=51 MeV beam provided by Yale tandem accelerator. The reaction products were analyzed with an Enge magnetic split-pole spectrometer. The 3 He ions were isolated by a gas-filled ionization chamber and plastic scintillator at the focal plane of the Enge spectrometer and using E- Δ E technique. Angular distributions were measured at 6° , 11° and 20° . Resolution (FWHM)=70 keV. DWBA analysis.

Absolute cross sections have typical uncertainty of \approx 7% while relative values are accurate to 5%.

This work focuses on measurement of $i_{13/2}$ and $h_{9/2}$ single- neutron strengths for N=83 nuclides. From cross section data, matrix elements were also deduced for $f_{7/2} \otimes 2^+$ (vib.) and $f_{7/2} \otimes 3^-$ (vib.) configuration mixings.

¹⁴¹Ce Levels

 $\Sigma[C^2S]$: 0.92 13 for h_{9/2}, 1.01 14 for i_{13/2}.

Centroid energy (keV): 1447 10 for $h_{9/2}$, 1702 52 for $i_{13/2}$.

E(level) [†]	$J^{\pi \dagger}$	L	C^2S^{\ddagger}	Comments
1354.52 9	9/2-	5	0.67	$d\sigma/d\Omega$ (mb/sr)=0.54 at 20°, 0.21 at 30°.
1368.7 2	13/2+	6	0.79	$d\sigma/d\Omega$ (mb/sr)=1.01 at 20°, 0.57 at 30°.
1693.3 <i>1</i>	$11/2^{-}$	5	0.25	$d\sigma/d\Omega$ (mb/sr)=0.15 at 11°, 0.13 at 20°, 0.08 at 30°.
2899 2	$13/2^+, 11/2^+$	6	0.22	$d\sigma/d\Omega$ (mb/sr)=0.44 at 6°, 0.31 at 11°, 0.15 at 30°.

[†] From Adopted Levels.

[‡] Typical uncertainties are 10% based on relative cross sections and analysis using a variety of optical parameters listed by 2008Ka01.