Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018

 $Q(\beta^{-})=4064 \ 9$; $S(n)=5413 \ 3$; $S(p)=11804 \ 5$; $Q(\alpha)=-986 \ 3$ 2017Wa10

Fission vields: 2005Ga25, 2005Ga50, 2004Ga60, 2004GaZV, 2004GaZZ, 2004GaZY, 2003Ga21, 2003St03, 2002Ib01, 2000Lh02,

2000Ka02, 2000JoZZ, 2000Ga60, 1998Ph04. Angular momenta of ²⁵²Cf fission fragments: 2005Ja12.

¹⁴⁰Xe Levels

Disagreement comment (reproduced from ²⁵²Cf SF decay dataset): Although there is a general good agreement in between the experimental work of 2016Ur01 (²⁴⁸Cm SF decay), 2016Hu10, and 2017Na15 (²⁵²Cf SF decay; 2017Na15, same group of authors as 2016Ur01) there is disagreement as concern the parity of band D leading to quite different theoretical interpretations. Thus while 2016Ur01 argue for the γ collectivity of band C and D (with π =+ assigned for band C and no parity assigned for band D), 2016Hu10 later argue for s=±1 doublet octupole bands based essentially on assigned π =- for band D. This indeed is based on tentative (E1) assignments for all five $\Delta J=1$ transitions linking band D to C. However 2017Na15 based on the relatively high quadrupole mixing ratio of 821γ , one of these $\Delta J=1$ transitions, concluded that this is rather a (M1+E2) transition which qualifies band D as π =+, which contradicts the interpretation of 2016Hu10 and sustains that of 2016Ur01. However 2017Na15 did not report measurement on any of the other four (E1) linking transitions. Based on these experimental findings the evaluator adopts no parity for band D and no E1 or M1 character for the linking transitions before more extensive and precise measurements are going to be published.

Cross Reference (XREF) Flags

			A 140 B 248 C 252	^D I β^{-} decay D ²³⁵ U(n,F γ) E=thermal ³ Cm SF decay E ²³⁵ U(n,F γ), ²³⁸ U(n,F γ) E=3 MeV ² Cf SE decay E Coulomb excitation							
E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments							
0.0#	0+	13.60 s 10	ABCDEF	$%β^{-}=100$ T _{1/2} : from 1969Ca03. Others: 15.4 s 3 (1974Gr29), 14.3 s <i>I3</i> (1968Al06), 13.70 s <i>I5</i> (1966Ar08), 13.33 s 27 (1965Pa14). RMS charge radius <r<sup>2>^{1/2}=4.8566 fm <i>I</i>25 (2013An02).</r<sup>							
376.658 [#] 15	2+	70.5 ps 20	ABCDEF	 KNIS charge radius <r<sup>->^{-/-}=4.8506 fm 125 (2015An02).</r<sup> μ=1.1 3 T_{1/2}: weighted average of 70.5 ps 22 (β- decay (1999Li18)) and 70.7 ps 49 (γγ(t) (2016II01), ²³⁵U(n,Fγ) E=thermal). Others: 68.6 ps 125 (using ²⁴¹Pu(n,Fγ) reaction also from 2016II01), 70 ps 14 (2007Kr19, Coulex), 113 ps 5 (1980ChZM, γ(t) in ²⁵²Cf SF decay). 2016II01 deduce g factor=0.56 19 using their lifetime and measured gτ from 2009Go09, as compared to g factor=0.35 12 in 2009Go09. J^π: E2 γ to g.s. μ: based on 2009Go09 measured g factor by the method of correlation attenuations in randomly oriented magnetic fields (IPAC) (²⁵²Cf SF decay dataset). The value g=0.35 12 reported by 2009Go09 was based on T_{1/2}=0.113 ns 5 (1980ChZM) from which 2011StZZ deduced μ=0.7 2. Based on the adopted T_{1/2}=70.5 ps 20 one gets g=0.56 19 (also deduced by 2016II01 in ²³⁵U(n,Fγ) 							
834.295 [#] 24	4+	14.2 ps 23	ABCDEF	J ^π : E2 γ to 2 ⁺ . T _{1/2} : weighted average of 16 ps 3 (β- decay (1999Li18)) and 11.8 ps 35 ((γγ(t)							
1304.41 ^{&} 6	3+		BC	J^{π} : M1+E2 γ 's to 2 ⁺ and 4 ⁺ .							

Adopted Levels, Gammas (continued)

¹⁴⁰Xe Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments				
1416.67 [#] 5	6+	<8.6 ps	ABCD	J^{π} : E2 γ to 4 ⁺ .				
				$T_{1/2}$: from β - decay (1999Li18).				
1443.0 3			В					
1512.86 [@] 20	3-	<7.7 ps	ABC	$T_{1/2}$: from β- decay (1999Li18). J ^π : ΔJ=1 D γ to 2 ⁺ ; E2 γ from 5 ⁻ .				
1572.94 <mark>&</mark> 5	5+		BCD	J^{π} : E2 γ to 3 ⁺ .				
1725.70 ^b 5	6+		BC	J^{π} : stretch E2 γ to 4 ⁺ .				
1771.33 [@] 5	5-	11 ps 3	ABCD	J^{π} : E1 γ to 6 ⁺ ; E1 γ to 4 ⁺ . T _{1/2} : from β- decay (1999Li18).				
1954.38 <mark>&</mark> 5	7+		BCD	J^{π} : E2 γ to 5 ⁺ .				
1983.33 [#] 6	8+		BCD	J^{π} : E2 γ to 6 ⁺ .				
2184.53 [@] 6	7-		BCD	J^{π} : E2 γ to 5 ⁻ ; E1 γ to 6 ⁺ ; γ to 8 ⁺ .				
2256.51 ^b 6	8+		BC					
2282.1 ^{<i>a</i>} 8	(4)		С	J^{π} : $\Delta J=1 D \gamma$ to 3^+ .				
2488.9 ^{<i>a</i>} 7	(6)		С	J^{π} : (E2) γ to (4) and $\Delta J=1 \gamma$ to 5 ⁺ .				
2588.86 ^{&} 7	9+		BC	J^{π} : E2 γ to 7 ⁺ .				
2590.59 [#] 7	10^{+}		BCD	J^{π} : E2 γ to 8 ⁺ .				
2736.12 [@] 6	9-		BCD	J^{π} : E1(+M2) γ to 8 ⁺ .				
2775.07 ^a 9	(8)		BC	J^{π} : D(+Q) γ to 7 ⁺ .				
2933.11 8			BC					
2965.63 ^b 11	10^{+}		BC	J^{π} : E2 γ to 8^+ .				
3159.61 ^{<i>a</i>} 15	(10)		BC	J^{π} : (E2) γ to (8).				
3246.41 ^{^w} 8	11-		BC	J^{π} : E2 γ to 9 ⁻ .				
3269.72 [#] 9	12^{+}		BCD	J^{π} : E2 γ to 10 ⁺ .				
3283.12 ^{&} 8	(11^{+})		BC	J^{π} : (E2) γ to 9 ⁺ .				
3704.3 ^b 4			В					
3729.68 ^{<i>a</i>} 12	(12)		BC	J^{π} : (E2) γ to (10).				
3812.67 [@] 11	(13 ⁻)		BC	J^{π} : (E2) γ to 11 ⁻ .				
3997.97 [#] 11	14+		BC	J^{π} : E2 γ to 12 ⁺ .				
4125.67 ^{&} 12	(13^{+})		BC	J^{π} : (E2) γ to (11 ⁺).				
4433.87 [@] 15	(15^{-})		BC	J^{π} : (E2) γ to (13 ⁻).				
4744.57 [#] 23	(16 ⁺)		BC	J^{π} : (E2) γ to 14 ⁺ .				
5166.67 [@] 17	(17^{-})		BC	J^{π} : (E2) γ to (15 ⁻).				
5504 8 [#] 4	(18^+)		BC	I^{π} : (E2) γ to (16 ⁺)				
5501.0 7	(10)							

[†] From least-squares fit to $E\gamma$'s; χ^2 (norm)=2.1 is slightly higher than χ^2 (critical)=1.7. [‡] Based on measured multipolarities and other arguments of which most often membership in band is tacitly applied.

Band(A): Yrast band.

[@] Band(B): 3⁻ octupole band.

[&] Band(C): Positive band based on 3^+ .

^a Band(D): Band based on J=(4). Assigned as band referring to the work of 2016Ur01 by 2017Na15 (²⁵²Cf Decay) in a discussion about its nature in contradiction with 2016Hu10 ((see the disagreement comment); no parity was adopted because of opposite assignments of 2016Hu10 (π =-) and 2017Na15 (π =+).

^b Band(E): band based on $J=6^+$.

$\gamma(^{140}\text{Xe})$

See ¹⁴⁰I β - for unplaced γ 's.

ω

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	E_f	J_f^{π}	Mult. [#]	$\delta^{\#d}$	α ^C	Comments
376.658	2+	376.657 [@] 15	100	0.0	0+	E2		0.0205	B(E2)(W.u.)=24.0 7 α (K)=0.01714 24; α (L)=0.00270 4; α (M)=0.000555 8 α (N)=0.0001131 16; α (O)=1.326×10 ⁻⁵ 19 Mult.: α (K)exp in β ⁻ dataset.
834.295	4+	457.630 [@] 19	100	376.658	2+	E2		0.01154	B(E2)(W.u.)=45 +9-6 α (K)=0.00973 14; α (L)=0.001444 21; α (M)=0.000296 5 α (N)=6.05×10 ⁻⁵ 9; α (O)=7.21×10 ⁻⁶ 10 Mult.: α (K)exp in β ⁻ dataset.
1304.41	3+	470.10 9	70 ^{&} 1	834.295	4+	M1+E2	-0.11 2	0.01295	α (K)=0.01118 <i>16</i> ; α (L)=0.001417 <i>20</i> ; α (M)=0.000287 <i>4</i> α (N)=5.94×10 ⁻⁵ <i>9</i> ; α (O)=7.46×10 ⁻⁶ <i>11</i>
		927.90 9	100 ^{&} 3	376.658	2+	M1+E2	+0.65 15	0.00235 7	α (K)=0.00204 6; α (L)=0.000255 7; α (M)=5.15×10 ⁻⁵ 14 α (N)=1.07×10 ⁻⁵ 3; α (O)=1.34×10 ⁻⁶ 4
1416.67	6+	582.44 5	100	834.295	4+	E2		0.00593	B(E2)(W.u.)>22.6 α (K)=0.00505 7; α (L)=0.000707 10; α (M)=0.0001442 21 α (N)=2.96×10 ⁻⁵ 5; α (O)=3.58×10 ⁻⁶ 5 Mult.: α (K)exp in β ⁻ dataset.
1443.0		1066.3 <i>3</i>	100 ^b	376.658	2^{+}				
1512.86	3-	678.6 [@]	39 5	834.295	4+	(E1)		1.49×10 ⁻³	B(E1)(W.u.)>2.43×10 ⁻⁵ α (K)=0.001294 <i>19</i> ; α (L)=0.0001583 <i>23</i> ; α (M)=3.19×10 ⁻⁵ <i>5</i> α (N)=6.59×10 ⁻⁶ <i>10</i> ; α (O)=8.22×10 ⁻⁷ <i>12</i>
		1136.7 [@]	100 11	376.658	2+	(E1)		5.48×10 ⁻⁴	B(E1)(W.u.)>1.48×10 ⁻⁵ α (K)=0.000469 7; α (L)=5.64×10 ⁻⁵ 8; α (M)=1.135×10 ⁻⁵ 16 α (N)=2.35×10 ⁻⁶ 4; α (O)=2.95×10 ⁻⁷ 5; α (IPF)=8.80×10 ⁻⁶ 13
1572.94	5+	156.3 1	4.0 ^{&} 3	1416.67	6+	M1+E2 ^{<i>a</i>}		0.31 8	α (K)=0.24 5; α (L)=0.049 23; α (M)=0.0103 49 α (N)=0.00207 96; α (O)=2.31×10 ⁻⁴ 93
		268.60 6	11.3 ^{&} 6	1304.41	3+	E2 ^a		0.0599	α (K)=0.0489 7; α (L)=0.00877 13; α (M)=0.00182 3 α (N)=0.000368 6; α (O)=4.18×10 ⁻⁵ 6
		738.64 5	100 ^{&} 2	834.295	4+	M1+E2 ^{<i>a</i>}	+0.51 ^{<i>a</i>} 4	0.00411 7	α (K)=0.00355 6; α (L)=0.000448 7; α (M)=9.06×10 ⁻⁵ 14 α (N)=1.87×10 ⁻⁵ 3; α (O)=2.35×10 ⁻⁶ 4
1725.70	6+	309.10 5	70 ^{&} 2	1416.67	6+	M1+E2	+0.48 4	0.0378	α (K)=0.0323 5; α (L)=0.00438 7; α (M)=0.000892 14 α (N)=0.000184 3; α (O)=2.26×10 ⁻⁵ 4
		891.20 7	100 ^{&} 2	834.295	4+	E2 ^a		0.00209	α (K)=0.00180 3; α (L)=0.000234 4; α (M)=4.75×10 ⁻⁵ 7 α (N)=9.79×10 ⁻⁶ 14; α (O)=1.210×10 ⁻⁶ 17

							Adopte	l Leve	els, Gammas (c	continued)
								$\gamma(^{140}$	Xe) (continued	<u>1)</u>
	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α ^{C}	Comments	
	1771.33	5-	258.5 2	7.1 ^{&} 10	1512.86	3-	E2 ^a	(0.0679	B(E2)(W.u.)=64 +38-22 α (K)=0.0552 8; α (L)=0.01010 15; α (M)=0.00210 3
			355.0	6.9 5	1416.67	6+	E1	(0.00676	$\begin{aligned} &\alpha(N) = 0.000424 \ 6; \ \alpha(O) = 4.80 \times 10^{-5} \ 7 \\ &B(E1)(W.u.) = 3.1 \times 10^{-5} \ +16 - 9 \\ &\alpha(K) = 0.00585 \ 9; \ \alpha(L) = 0.000731 \ 11; \ \alpha(M) = 0.0001474 \ 21 \\ &\alpha(N) = 3.04 \times 10^{-5} \ 5; \ \alpha(O) = 3.75 \times 10^{-6} \ 6 \end{aligned}$
			937.03 5	100 2	834.295	4+	E1	,	7.75×10 ⁻⁴	Mult.: $\alpha(K)\exp in \beta^{-}$ dataset. B(E1)(W.u.)=2.4×10 ⁻⁵ +10-6 $\alpha(K)$ =0.000673 10; $\alpha(L)$ =8.15×10 ⁻⁵ 12; $\alpha(M)$ =1.640×10 ⁻⁵ 23 $\alpha(N)$ =3.39×10 ⁻⁶ 5; $\alpha(O)$ =4.25×10 ⁻⁷ 6
	1954.38	7+	228.70 7	16.9 ^{&} 14	1725.70	6+	(E2) ^{<i>a</i>}	(0.1021	Mult.: $\alpha(K) \exp in \beta^-$ dataset. $\alpha(K) = 0.0821 \ 12; \ \alpha(L) = 0.01597 \ 23; \ \alpha(M) = 0.00333 \ 5$ $\alpha(N) = 0.000671 \ 10; \ \alpha(Q) = 7.50 \times 10^{-5} \ 11$
			381.48 5	100 ^{&} 4	1572.94	5+	E2	(0.0197	$\alpha(K) = 0.01650 \ 24; \ \alpha(L) = 0.00259 \ 4; \ \alpha(M) = 0.000532 \ 8 \\ \alpha(K) = 0.001084 \ 16; \ \alpha(O) = 1.273 \times 10^{-5} \ 18$
			537.70 5	48 ^{&} 1	1416.67	6+	(M1(+E2)) ^{<i>a</i>}	(0.0083 10	α (K)=0.0071 9; α (L)=0.00095 7; α (M)=0.000193 12 α (N)=4.0×10 ⁻⁵ 3; α (O)=4.9×10 ⁻⁶ 5
•	1983.33	8+	566.64 5	100 ^{&}	1416.67	6+	E2	(0.00638	α (K)=0.00543 8; α (L)=0.000764 11; α (M)=0.0001560 22 α (N)=3.20×10 ⁻⁵ 5; α (O)=3.87×10 ⁻⁶ 6
	2184.53	7-	413.20 7	19.6 ^{&} 14	1771.33	5-	E2 ^{<i>a</i>}	(0.01554	α (K)=0.01304 <i>19</i> ; α (L)=0.00199 <i>3</i> ; α (M)=0.000409 <i>6</i> α (N)=8.35×10 ⁻⁵ <i>12</i> ; α (O)=9.87×10 ⁻⁶ <i>14</i> Mult.: deduced in SF decay: E2,M2 for this γ , M2 excluded by non-observance of T _{1/2} >10 ns for the octupole band.
			767.92 5	100.0 ^{&} 2	1416.67	6+	E1		1.15×10^{-3}	α (K)=0.000999 <i>14</i> ; α (L)=0.0001218 <i>17</i> ; α (M)=2.45×10 ⁻⁵ <i>4</i> α (N)=5.07×10 ⁻⁶ <i>7</i> ; α (O)=6.33×10 ⁻⁷ <i>9</i>
	2256.51	8+	273.24 6	29 ^{&} 1	1983.33	8+	(M1+E2) ^{<i>a</i>}	(0.0543 25	α (K)=0.0455 <i>10</i> ; α (L)=0.0070 <i>13</i> ; α (M)=0.0014 <i>3</i> α (N)=0.00029 <i>6</i> ; α (O)=3.5×10 ⁻⁵ <i>5</i>
			302.22 9	23 ^{&} 1	1954.38	7+	(M1+E2) ^a	(0.0404 8	α (K)=0.0340 7; α (L)=0.0051 7; α (M)=0.00104 15 α (N)=0.00021 3; α (O)=2.55×10 ⁻⁵ 23
			530.55 12	71 ^{&} 2	1725.70	6+	(E2) ^{<i>a</i>}	(0.00762	α (K)=0.00647 9; α (L)=0.000925 13; α (M)=0.000189 3 α (N)=3.87×10 ⁻⁵ 6; α (O)=4.66×10 ⁻⁶ 7
			839.79 7	100 ^{&} 2	1416.67	6+	E2	(0.00240	α (K)=0.00206 3; α (L)=0.000270 4; α (M)=5.48×10 ⁻⁵ 8 α (N)=1.130×10 ⁻⁵ 16; α (O)=1.393×10 ⁻⁶ 20
	2282.1	(4)	769.1 <mark>b</mark>	100 ^{&} 10	1512.86	3-	$D(+Q)^{a}$			Mult.: (M1+E2) not adopted (see general disagreement comment).
			977.8 ^b	71 ^{&} 6	1304.41	3+	D ^a			Mult.: (E1) not adopted (see general disagreement comment).
	2488.9	(6)	206.7 ^{be}	<26 ^{&}	2282.1	(4)	(E2) ^{<i>a</i>}	(0.1437	α (K)=0.1142 <i>16</i> ; α (L)=0.0235 <i>4</i> ; α (M)=0.00492 7 α (N)=0.000990 <i>14</i> ; α (O)=0.0001093 <i>16</i>
			717.7 ^b	34 ^{&} 5	1771.33	5-	$D(+Q)^{a}$			Mult.: (M1+E2) not adopted (see general disagreement comment).
			915.9 <mark>0</mark>	100 [∞] 5	1572.94	5+	D ^u			Mult.: (E1) not adopted (see general disagreement comment).

4

From ENSDF

						Adopt	ed Levels, Ga	mmas (continu	ed)
							$\gamma(^{140}\text{Xe})$ (c	continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#d}$	α^{c}	Comments
2588.86	9+	605.0 <i>3</i>	71 ^{&} 6	1983.33	8+	(M1+E2)		0.0062 9	$\alpha(K)=0.0053 \ 8; \ \alpha(L)=0.00070 \ 7; \ \alpha(M)=0.000141 \ 12$ $\alpha(N)=2.9\times10^{-5} \ 3; \ \alpha(O)=3.6\times10^{-6} \ 4$
		634.50 5	100 ^{&} 2	1954.38	7+	E2 ^a		0.00475	$\alpha(K)=0.00405\ 6;\ \alpha(L)=0.000557\ 8;\ \alpha(M)=0.0001135\ 16$ $\alpha(K)=2\ 33\times10^{-5}\ 4;\ \alpha(Q)=2\ 84\times10^{-6}\ 4$
2590.59	10^{+}	607.25 5	100	1983.33	8+	E2 ^{<i>a</i>}		0.00532	$\alpha(K)=2.63\times10^{-5}$ <i>i</i> , $\alpha(C)=2.61\times10^{-5}$ <i>i</i> $\alpha(K)=0.0001282$ <i>18</i> $\alpha(K)=0.00453$ <i>7</i> ; $\alpha(L)=0.000629$ <i>9</i> ; $\alpha(M)=0.0001282$ <i>18</i> $\alpha(N)=2.63\times10^{-5}$ <i>4</i> ; $\alpha(Q)=3.19\times10^{-6}$ 5
2736.12	9-	479.55 8	30.8 ^{&} 13	2256.51	8+	(E1) ^{<i>a</i>}		0.00325	$\alpha(K)=0.00281 \ 4; \ \alpha(L)=0.000348 \ 5; \ \alpha(M)=7.02\times10^{-5} \ 10 \ \alpha(N)=1.447\times10^{-5} \ 21; \ \alpha(\Omega)=1.80\times10^{-6} \ 3$
		551.64 5	100 ^{&} 5	2184.53	7-	[E2]		0.00686	$\alpha(K) = 0.00583 \ 9; \ \alpha(L) = 0.000826 \ 12; \ \alpha(M) = 0.0001685 \ 24 \ \alpha(N) = 3.46 \times 10^{-5} \ 5; \ \alpha(Q) = 4.17 \times 10^{-6} \ 6$
		752.85 8	77 <mark>&</mark> 2	1983.33	8+	E1(+M2)	+0.007 14	$1.20 \times 10^{-3} 2$	$\alpha(\mathbf{K}) = 0.001041 \ I5; \ \alpha(\mathbf{L}) = 0.0001270 \ I9; \ \alpha(\mathbf{M}) = 2.56 \times 10^{-5} \ 4 \ \alpha(\mathbf{N}) = 5 \ 28 \times 10^{-6} \ 8; \ \alpha(\mathbf{O}) = 6 \ 60 \times 10^{-7} \ I0$
2775.07	(8)	286.4 ^e	<8 ^{&}	2488.9	(6)	(E2) ^{<i>a</i>}		0.0486	$\alpha(\mathbf{K}) = 0.0399 \ 6; \ \alpha(\mathbf{L}) = 0.00695 \ 10; \ \alpha(\mathbf{M}) = 0.001440 \ 21 \ \alpha(\mathbf{N}) = 0.00292 \ 4; \ \alpha(\mathbf{O}) = 3.34 \times 10^{-5} \ 5$
		820.67 7	100 ^{&}	1954.38	7+	D(+Q)			Mult., δ : contradictorily assigned in ²⁵² Cf decay dataset as (M1+E2) with δ =+0.21 <i>11</i> or or +3.9 <i>15</i> (2017Na15), and (E1) (2016Hu10), neither of which being adopted here (see general disagreement comment).
2933.11		197.8 2	33 ^b 11	2736.12	9-				E_{γ} : poor fit ($E\gamma$ differs by ΔE (levels) by more than 4σ).
		949.70 6	100 ^b 11	1983.33	8+				
2965.63	10+	376.8 2	100 2 7	2588.86	9+	(M1) ^{<i>a</i>}		0.0226	α (K)=0.0195 3; α (L)=0.00249 4; α (M)=0.000505 7 α (N)=0.0001045 15; α (O)=1.311×10 ⁻⁵ 19
		709.40 15	<34 ^{&}	2256.51	8+	(E2) ^{<i>a</i>}		0.00359	α (K)=0.00307 5; α (L)=0.000414 6; α (M)=8.41×10 ⁻⁵ 12 α (N)=1.731×10 ⁻⁵ 25; α (O)=2.12×10 ⁻⁶ 3
		981.9 2	<34 ^{&}	1983.33	8+	E2 ^a		1.69×10^{-3}	α (K)=0.001453 21; α (L)=0.000187 3; α (M)=3.78×10 ⁻⁵ 6 α (N)=7.80×10 ⁻⁶ 11; α (O)=9.67×10 ⁻⁷ 14
3159.61	(10)	384.45 15	20 ^{&} 1	2775.07	(8)	(E2) ^{<i>a</i>}		0.0193	α (K)=0.01613 23; α (L)=0.00252 4; α (M)=0.000518 8 α (N)=0.0001057 15; α (O)=1.241×10 ⁻⁵ 18
		570.6	100 ^{&} 3	2588.86	9+	D ^a			Mult.: (E1) not adopted (see general disagreement comment).
3246.41	11-	280.92 21	10 ^{&} 1	2965.63	10+	(E1) ^{<i>a</i>}		0.01235	α (K)=0.01067 <i>15</i> ; α (L)=0.001345 <i>19</i> ; α (M)=0.000271 <i>4</i> α (N)=5.58×10 ⁻⁵ <i>8</i> ; α (O)=6.85×10 ⁻⁶ <i>10</i>
		313.3 2	10 ^{&} 1	2933.11					
		510.30 6	100 ^{&} 3	2736.12	9-	E2 ^{<i>a</i>}		0.00848	α (K)=0.00719 <i>10</i> ; α (L)=0.001037 <i>15</i> ; α (M)=0.000212 <i>3</i> α (N)=4.34×10 ⁻⁵ <i>6</i> ; α (O)=5.21×10 ⁻⁶ <i>8</i>
		655.3 <i>3</i>	<3 ^{&}	2590.59	10+	(E1) ^{<i>a</i>}		1.61×10^{-3}	α (K)=0.001394 20; α (L)=0.0001708 24; α (M)=3.44×10 ⁻⁵ 5 α (N)=7.10×10 ⁻⁶ 10; α (O)=8.86×10 ⁻⁷ 13
3269.72	12+	679.11 5	100	2590.59	10+	E2 ^{<i>a</i>}		0.00400	$\alpha(K)=0.00342 5; \alpha(L)=0.000464 7; \alpha(M)=9.44\times10^{-5} 14$ $\alpha(N)=1.94\times10^{-5} 3; \alpha(O)=2.37\times10^{-6} 4$

S

From ENSDF

L

$\gamma(^{140}\text{Xe})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _f J	\int_{f}^{π} Mult. [#]	α^{c}	Comments
3283.12	(11^{+})	350.0 4	13 ^{&} 6	2933.11			
	. ,	692.6 <i>1</i>	81 ^{&} 13	2590.59 10	+ $(M1+E2)^{a}$	0.0044 7	α (K)=0.0038 6; α (L)=0.00049 6; α (M)=0.000100 11 α (N)=2.06×10 ⁻⁵ 23; α (O)=2.6×10 ⁻⁶ 4
		694.26 6	100 ^{&} 13	2588.86 9+	(E2) ^{<i>a</i>}	0.00378	α (K)=0.00324 5; α (L)=0.000438 7; α (M)=8.91×10 ⁻⁵ 13 α (N)=1.83×10 ⁻⁵ 3; α (O)=2.24×10 ⁻⁶ 4
3704.3		738.7 <i>3</i>	100	2965.63 10	÷		
3729.68	(12)	446.6 <i>1</i>	100 <mark>&</mark> 9	3283.12 (11	⁺) D ^{<i>a</i>}		Mult.: (E1) not adopted (see general disagreement comment).
		569.9 2	57 ^{&} 11	3159.61 (10)) (E2) ^{<i>a</i>}	0.00629	α (K)=0.00535 8; α (L)=0.000752 11; α (M)=0.0001534 22 α (N)=3.15×10 ⁻⁵ 5; α (O)=3.80×10 ⁻⁶ 6
3812.67	(13 ⁻)	543.0 <i>3</i>	8 ^b 4	3269.72 12	÷		
		566.25 7	100 ^{&} 12	3246.41 11	- (E2) ^a	0.00639	α (K)=0.00544 8; α (L)=0.000766 11; α (M)=0.0001563 22 α (N)=3.21×10 ⁻⁵ 5; α (O)=3.87×10 ⁻⁶ 6
3997.97	14+	728.25 6	100	3269.72 12	+ E2 ^{<i>a</i>}	0.00337	α (K)=0.00288 4; α (L)=0.000387 6; α (M)=7.86×10 ⁻⁵ 11 α (N)=1.617×10 ⁻⁵ 23; α (O)=1.98×10 ⁻⁶ 3
4125.67	(13+)	842.6 1	100 7	3283.12 (11	(E2) ^{<i>a</i>}	0.00238	α (K)=0.00205 3; α (L)=0.000268 4; α (M)=5.44×10 ⁻⁵ 8 α (N)=1.121×10 ⁻⁵ 16; α (O)=1.382×10 ⁻⁶ 20
		855.5 <i>3</i>	27 4	3269.72 12	+ (M1+E2) ^{<i>a</i>}	0.0027 4	$\alpha(K)=0.0023 \ 4; \ \alpha(L)=0.00029 \ 4; \ \alpha(M)=5.9\times10^{-5} \ 8 \ \alpha(N)=1.23\times10^{-5} \ 15; \ \alpha(O)=1.54\times10^{-6} \ 21$
4433.87	(15 ⁻)	621.2 <i>1</i>	100	3812.67 (13	6 ⁻) (E2) ^{<i>a</i>}	0.00501	α (K)=0.00428 6; α (L)=0.000591 9; α (M)=0.0001203 17 α (N)=2.47×10 ⁻⁵ 4; α (O)=3.00×10 ⁻⁶ 5
4744.57	(16 ⁺)	746.6 2	100	3997.97 14	+ (E2) ^{<i>a</i>}	0.00317	$\alpha(K)=0.00272 \ 4; \ \alpha(L)=0.000363 \ 5; \ \alpha(M)=7.37\times10^{-5} \ 11 \ \alpha(N)=1.517\times10^{-5} \ 22; \ \alpha(O)=1.86\times10^{-6} \ 3$
5166.67	(17 ⁻)	732.80 8	100	4433.87 (15	5 ⁻) (E2) ^{<i>a</i>}	0.00331	$\alpha(K)=0.00284 \ 4; \ \alpha(L)=0.000380 \ 6; \ \alpha(M)=7.73\times10^{-5} \ 11 \ \alpha(N)=1.591\times10^{-5} \ 23; \ \alpha(O)=1.95\times10^{-6} \ 3$
5504.8	(18+)	760.22 24	100 ^{&}	4744.57 (16	6 ⁺) (E2)	0.00303	α (K)=0.00260 4; α (L)=0.000346 5; α (M)=7.03×10 ⁻⁵ 10 α (N)=1.449×10 ⁻⁵ 21; α (O)=1.778×10 ⁻⁶ 25

 † From $^{248}\mathrm{Cm}$ decay unless noted otherwise.

[‡] From ¹⁴⁰I β^- decay unless noted otherwise. [#] Unless noted otherwise, from ²⁴⁸Cm decay from measured $\gamma\gamma(\theta)$ (2016Ur01 and 2003Ur02) and polarization measurements (2003Ur02) combined with extra ^(a) From ²⁵²Cf SF decay. ^(b) From ²⁵²Cf SF decay. ^(c) From ²⁵²Cf SF decay.

^c Additional information 1.

Adopted Levels, Gammas (continued)

 $\gamma(^{140}\text{Xe})$ (continued)

- ^{*d*} If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities. ^{*e*} Placement of transition in the level scheme is uncertain.

¹⁴⁰₅₄Xe₈₆

9

Adopted Levels, Gammas

¹⁴⁰₅₄Xe₈₆