1990Lu04 $(HI,xn\gamma)$

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018

Includes (HI, $xpyn\gamma$).

¹¹⁴Cd(30 Si,4n γ) E(30 Si)=130 MeV (1990Lu04).

¹⁴²Nd(α ,6n γ) E(α)=95 MeV; ¹⁰⁶Pd(³⁷Cl,p2n γ) E(³⁷Cl)=148 MeV (1988St02).

¹¹⁶Cd(²⁸Si,4n γ) E(²⁸Si)=125 MeV (1988Ba22). ¹⁰⁶Pd(³⁷Cl,p2n γ) E(³⁷Cl)=143 MeV (1991Ca17).

¹²⁴Te(²⁰Ne,4n γ) E(²⁰Ne)=82 MeV (2015Be25).

 $E(\alpha)=90 \text{ MeV}$ (1979Mu03,1976Ma56), $E(\alpha)=94 \text{ MeV}$ (1973HaWA,1972Ha23), $E(^{20}\text{Ne})=96 \text{ MeV}$ (1985Be23), $E(^{32}\text{S})=126-170$ MeV (1984Lu07).

 γ (t), γ (θ), excit (1984Lu07,1979Mu03,1976Ma56) γ (θ ,t,electric field gradient) (1985Be23).

E, E γ , I γ , $\gamma(\theta)$ data are from 1990Lu04.

In the figure of 1990Lu04 the cascade: 218y-324y-382y-465 populate 4404, 14⁺ level, in the table of 1990Lu04 it is shown to populate 3653, 12⁺ level; the evaluator adopted the first (figure) version.

140Sm Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	0+		
530.7 1	2^{+}	6.31 ps 42	$T_{1/2}$: from 2015Be25 by recoil-distance Doppler-shift (RDDS) method.
1245.7 2	4+		
2014.5 4	5-		
2081.8 <i>3</i>	6+		
2326.2 4	7-		
2959.1 6			
2969.4 <i>3</i>	8+		
3127.6 4	9-		
3172.0 4	10^{+}	19.4 ns 7	$\mu = -1.76 \ 20 \ (1988Ba22, 2014StZZ)$
			Q=1.67 48 (1985Be23,2014StZZ)
			$T_{1/2}$: from 1988Ba22; other: 22.3 ns 18 (1988St02).
			μ : From $\gamma(\theta, \mathbf{H}, \mathbf{t})$.
			Q: From $\gamma(\theta, t, e)$ electrical gradient).
3194.4 <i>3</i>	8+		
3210.8 <i>3</i>	10^{+}	5.20 ns 14	μ =+12.7 9 (1988Ba22,2014StZZ)
			$T_{1/2}$: from 1988Ba22; other: 6.2 ns 8(1988St02).
			μ : From $\gamma(\theta, H, t)$.
3652.7 <i>3</i>	12^{+}	15.2 ns 21	$T_{1/2}$: from 1991Ca17 (recoil-distance Doppler-shift method).
3790.7 4	12^{+}	7.6 ns 21	$T_{1/2}$: from 1991Ca17 (recoil-distance Doppler-shift method).
3892.4 5	11^{+}		
4023.9 6	11-		
4044.0 5	11-		
4404.0 4	14^{+}	1.2 ps 5	$T_{1/2}$: from 1991Ca17 (recoil-distance Doppler-shift method).
4445.4 5	13+		
4487.96	14^{+}		
4622.3 4	15		
4682.8 5	12^{+}		
4854.1 5	13+		
4914.2 5	14^{+}		
4946.6 5	16		
4990.0 4	13-		
5087.6 11	(14^{+})		
5194.1 <i>4</i>	14-		
5254.1 8	15+		

Continued on next page (footnotes at end of table)

(HI,xnγ) **1990Lu04** (continued)

E(level)	J^{π}	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	J^{π}^{\dagger}
5328.5 6	17	5794.0 8	18	6420.3 7		7320.4 7	(20^{+})
5373.1 5	(15^{+})	5810.7 5	16^{+}	6435.8 7		7545.7 8	
5393.9 8	(16^{+})	5892.6 9	(16^{+})	6549.3 6	18^{+}	7751.5 8	(21)
5397.8 5	16^{+}	5998.08		6725.4 7		7772.4 7	(20^{+})
5479.1 4	15^{-}	6023.5 5	17	6755.1 7	19	8041.3 9	
5489.5 5	16^{+}	6038.7 6	17	6778.3 9		8100.7 9	
5499.1 4	15^{-}	6166.2 6	16^{+}	6864.2 7	19		
5571.9 5	15^{-}	6272.0 6	18^{+}	7091.5 8			
5706.1 4	16	6397.0 6	18	7269.1 7	(20)		

¹⁴⁰Sm Levels (continued)

[†] Based on $\gamma(\theta)$ data and assumption that Q γ' s are E2, and systematic correspondence between this nucleus and its isotones (¹³⁹Pm, ¹⁴¹Eu) and isotopes (¹⁴¹Sm, ¹⁴²Sm) – see 1990Lu04 and refs herein. See Adopted dataset for adopted $J^{\pi'}$ s.

$\gamma(^{140}\text{Sm})$

E_{γ}	I_{γ}	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
(16.4)		3210.8	10^{+}	3194.4	8+	[E2]	E_{y} : from 1990Lu04 (omitted by 1994Pe19).
(39)		3210.8	10^{+}	3172.0	10^{+}		$I_{(\gamma+ce)}$: $I_{(\gamma+ce)}(39\gamma)/I_{(\gamma+ce)}(241\gamma)=1.6$ (1988Ba22).
(44)		3172.0	10^{+}	3127.6	9-		$I_{(\gamma+ce)}$: $I_{(\gamma+ce)}(44\gamma)/I_{(\gamma+ce)}(202.6\gamma)=0.3$ (1988Ba22).
134.3 3	60 7	5706.1	16	5571.9	15^{-}		
171.3 <i>3</i>	19 5	4854.1	13+	4682.8	12^{+}	D	Mult.: $A_2 = -0.16 \ 13$, $A_4 = -0.13 \ 24$.
202.6 2	337 <i>34</i>	3172.0	10^{+}	2969.4	8+	Q	Mult.: $A_2 = +0.07 \ 10, \ A_4 = -0.05 \ 14.$
204.2 3	110 30	5194.1	14-	4990.0	13-		
206.9 <i>3</i>	24 7	5706.1	16	5499.1	15^{-}	D	Mult.: $A_2 = -0.04 5$, $A_4 = -0.01 6$.
218.3 2	46 10	4622.3	15	4404.0	14+	D	Mult.: $A_2 = -0.37 \ 14$, $A_4 = -0.07 \ 19$.
224.9 2	41 12	3194.4	8+	2969.4	8+	D+Q	Mult.: $A_2 = +0.26 \ 10, \ A_4 = +0.14 \ 14.$
226.9 <i>3</i>	97 19	5706.1	16	5479.1	15^{-}	D	Mult.: $A_2 = -0.23 \ 9$, $A_4 = -0.24 \ 12$.
233.5 <i>3</i>	66 13	5087.6	(14^{+})	4854.1	13+	D+Q	Mult.: A ₂ =-0.19 11, A ₄ =0.24 15.
241.4 <i>I</i>	264 26	3210.8	10^{+}	2969.4	8+	Q	Mult.: $A_2 = +0.23 2$, $A_4 = -0.02 2$.
254.1 <i>3</i>	21 5	6420.3		6166.2	16+		
269.7 <i>3</i>	23 6	6435.8		6166.2	16+		
285.5 <i>3</i>	43 8	5373.1	(15^{+})	5087.6	(14^{+})	D+Q	Mult.: $A_2 = -0.19 \ 33$, $A_4 = -0.99 \ 47$.
289.6 3	15 4	6725.4		6435.8			
305.0 [‡] 3	45 [‡] 10	5499.1	15-	5194.1	14^{-}	D	Mult.: $A_2 = -0.31 \ 3$, $A_4 = -0.18 \ 5$.
305.0 [‡] 3	17 [‡] 4	6725.4		6420.3			Mult.: $A_2 = -0.31 \ 3$, $A_4 = -0.18 \ 5$.
311.7 <i>1</i>	189 <i>12</i>	2326.2	7-	2014.5	5-	Q	Mult.: $A_2 = +0.38 \ 2$, $A_4 = -0.07 \ 3$.
317.4 2	160 32	6023.5	17	5706.1	16	D	Mult.: $A_2 = -0.27 2$, $A_4 = -0.14 4$.
324.3 2	42 7	4946.6	16	4622.3	15	D	Mult.: $A_2 = -0.55 6$, $A_4 = -0.20 8$.
349.2 <i>3</i>	93	8100.7		7751.5	(21)		
358.1 2	53 5	6755.1	19	6397.0	18	D	Mult.: $A_2 = -0.37 5$, $A_4 = -0.18 7$.
366.1 <i>3</i>	15 4	7091.5		6725.4		(Q)	
373.5 4	74 15	6397.0	18	6023.5	17	D	Mult.: $A_2 = -0.28 \ 9$, $A_4 = -0.06 \ 3$.
377.9 <i>3</i>	21 9	5571.9	15^{-}	5194.1	14-	D	Mult.: $A_2 = -0.31 4$, $A_4 = -0.10 6$.
381.9 <i>3</i>	38 4	5328.5	17	4946.6	16	D	Mult.: $A_2 = -0.28 \ 9$, $A_4 = -0.28 \ 14$.
441.9 <i>1</i>	871 70	3652.7	12^{+}	3210.8	10^{+}	Q	Mult.: $A_2 = +0.46 \ l$, $A_4 = -0.05 \ 2$.
454.2 <i>3</i>	15 5	7545.7		7091.5		(D)	
465.5 5	73	5794.0	18	5328.5	17	(D)	
482.4 <i>3</i>	93	7751.5	(21)	7269.1	(20)		
495.6 <i>4</i>	93	8041.3		7545.7			
514.0 <i>3</i>	19 4	7269.1	(20)	6755.1	19		
519.5 <i>3</i>	73	5892.6	(16^{+})	5373.1	(15^{+})		
530.7 1	1000	530.7	2^{+}	0.0	0^{+}	Q	Mult.: $A_2 = +0.26 2$, $A_4 = +0.00 3$.

Continued on next page (footnotes at end of table)

$(HI,xn\gamma)$ 1990Lu04 (continued)

$\gamma(^{140}\text{Sm})$ (continued)

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
575.3 2	64 6	5489.5	16+	4914.2 14+	Q	Mult.: $A_2 = +0.52$ 7, $A_4 = 0.22$ 9.
604.1 2	41 5	5998.0		5393.9 (16 ⁺)		
618.7 <i>1</i>	196 20	3790.7	12^{+}	3172.0 10+	Q	Mult.: $A_2 = +0.45 \ 3, A_4 = -0.5 \ 4.$
632.9 4	23 7	2959.1		2326.2 7-	(D)	
640.9 <i>3</i>	61 6	6038.7	17	5397.8 16+	D	Mult.: $A_2 = -0.29 \ 10, \ A_4 = -0.09 \ 14.$
681.7 5	116 12	3892.4	11^{+}	3210.8 10+	D	Mult.: $A_2 = -0.67 \ 11$, $A_4 = +0.08 \ 15$.
^x 686.2 4	18 5					
715.0 <i>1</i>	948 50	1245.7	4+	530.7 2+	Q	Mult.: $A_2 = +0.22 \ I$, $A_4 = -0.04 \ 2$.
751.3 2	637 70	4404.0	14^{+}	3652.7 12+	Q	Mult.: $A_2 = +0.43 \ 2$, $A_4 = -0.09 \ 2$.
768.8 <i>3</i>	286 29	2014.5	5-	1245.7 4+	D	Mult.: $A_2 = -0.17 \ 3$, $A_4 = -0.00 \ 4$.
771.1 <i>3</i>	18 5	7320.4	(20^{+})	6549.3 18+	(Q)	
780.3 4	21 6	6778.3		5998.0	(D)	
782.5 2	51 10	6272.0	18^{+}	5489.5 16+	Q	Mult.: $A_2 = +0.38$ 7, $A_4 = +0.16$ 10.
790.2 4	20 5	5194.1	14-	4404.0 14+		
790.5 4	26 8	4682.8	12^{+}	3892.4 11+		
792.6 4	44 5	4445.4	13+	3652.7 12+	(D)	
801.3 2	120 12	3127.6	9-	2326.2 7-	Q	Mult.: $A_2 = +0.29 4$, $A_4 = +0.01 6$.
808.3 <i>3</i>	13 4	5254.1	15^{+}	4445.4 13+	(Q)	
825.5 <i>3</i>	73 7	6864.2	19	6038.7 17	Q	Mult.: $A_2 = +0.35$ 7, $A_4 = -0.07$ 10.
835.3 5	110 12	4487.9	14^{+}	3652.7 12+		
836.1 2	710 60	2081.8	6^{+}	1245.7 4+	Q	Mult.: $A_2 = +0.22 \ l$, $A_4 = -0.03 \ 2$.
850.5 <i>3</i>	54 5	5254.1	15^{+}	4404.0 14+	D	Mult.: $A_2 = -0.65 \ 9$, $A_4 = -0.01 \ 12$.
887.6 <i>1</i>	659 <i>33</i>	2969.4	8^{+}	2081.8 6+	Q	Mult.: $A_2 = +0.21 2$, $A_4 = -0.06 3$.
896.3 4	13 5	4023.9	11-	3127.6 9-	Q	Mult.: $A_2 = +0.54$ 7, $A_4 = -0.47$ 10.
906.0 5	77 8	5393.9	(16^{+})	4487.9 14+	(Q)	Mult.: $A_2 = +0.03 5$, $A_4 = -0.27 7$.
916.4 <i>3</i>	33 6	4044.0	11-	3127.6 9-	Q	Mult.: $A_2 = +0.36 \ 15$, $A_4 = -0.02 \ 22$.
993.8 <i>3</i>	110 9	5397.8	16+	4404.0 14+	Q	Mult.: $A_2 = +0.46 \ 3, \ A_4 = -0.11 \ 4.$
1063.4 <i>3</i>	53 <i>5</i>	4854.1	13+	3790.7 12+	D	Mult.: $A_2 = -0.38 \ 8, \ A_4 = +0.09 \ 12.$
1075.0 2	83 8	5479.1	15-	4404.0 14+	D	Mult.: $A_2 = -0.17$ 6, $A_4 = -0.15$ 9.
1095.1 2	58 6	5499.1	15^{-}	4404.0 14+	D	Mult.: $A_2 = -0.14$ 7, $A_4 = +0.10$ 11.
^x 1103.0 4	22 3					
1112.8 3	50 8	3194.4	8+	2081.8 6+	Q	Mult.: $A_2 = +0.15 \ 9$, $A_4 = -0.10 \ 13$.
1123.5 3	180 <i>30</i>	4914.2	14+	3790.7 12+	Q	Mult.: $A_2 = +0.24 6$, $A_4 = -0.17 8$.
1151.5 3	709	6549.3	18+	5397.8 16+	Q	Mult.: $A_2 = +0.25$ 7, $A_4 = -0.13$ 10.
1223.1 4	21 4	7772.4	(20^{+})	6549.3 18+	(Q)	
1252.0 4	40 4	6166.2	16+	4914.2 14+	Q	Mult.: $A_2 = +0.22 \ 11$, $A_4 = -0.28 \ 16$.
1322.8 7	31 4	5810.7	16+	4487.9 14+	Q	Mult.: $A_2 = +0.56 \ 13, \ A_4 = -0.10 \ 17.$
1337.4 2	92 9	4990.0	13-	3652.7 12+	D	Mult.: $A_2 = -0.165$, $A_4 = +0.008$.
1406.6 4	73	5810.7	16+	4404.0 14+	Q	Mult.: $A_2 = +0.80 \ 40, \ A_4 = -0.48 \ 56.$

[†] For γ 's: 454.2, 465.5, 632.9, 780.3, 792.6 I γ (90°)/I γ (37°) \leq 0.8 suggests D; for γ 's: 366.1, 771.1, 808.3, 1223.1 ¹ γ (190°)/ $I\gamma$ (37°) \geq 1 suggests Q (1990Lu04). [‡] Multiply placed with intensity suitably divided. ^x γ ray not placed in level scheme.

(HI,xnγ) 1990Lu04

 $^{140}_{62}{
m Sm}_{78}$

4

(HI,xnγ) 1990Lu04

Intensities: Relative I_{γ} @ Multiply placed: intensity suitably divided

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$

(HI,xnγ) 1990Lu04

