¹⁴⁰Eu ε decay **1991Fi03**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018

Parent: ¹⁴⁰Eu: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=1.51$ s 2; $Q(\varepsilon)=8470$ 50; $\mathscr{K}\varepsilon+\mathscr{K}\beta^+$ decay=100.0 ¹⁴⁰Eu-E, J^{π} , $T_{1/2}$: from ¹⁴⁰Eu Adopted Levels.

 $Eu-E, J^{*}, I_{1/2}$: Ironi Eu Adopted Lev

¹⁴⁰Eu-Q(ε): from 2017WA10.

1991Fi03: A=140 nuclei produced by 92 Mo(HI,xpyn) reaction with 312 MeV 54 Fe and 244 MeV 52 Cr projectiles. Measured γ , $\gamma\gamma$, γ -K x ray, deduced level scheme.

Other measurements: γ (1987Ke05,1986DeZW,1973WeZK,1972WeZE), γγ, γ-K x ray (1991Fi03,1987Ke05), β endpoint (1995Ve08).

2015Sa40,2015Kl01 mainly used for Coulex data (see this dataset for description). Decay scheme is from 1991Fi03.

140Sm Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	0^{+}	14.82 min 12	$\%\epsilon + \%\beta^+ = 100$
			T _{1/2} : from Adopted Levels. $\%\epsilon + \%\beta^+$: from Adopted Levels.
530.95 10	2+		
990.64 12	2+		
1246.52 18	4+		
1420.31 20	(1,2)		
1599.10 12	0^{+}		J^{π} : from angular correlation coefficients for 1068 γ -531 γ cascade (2015Kl01,2015Sa40).
1628.65 22	0,1,2		
1933.15 22	0,1,2		
2284.14 13	2+		
2289.88 20	(1,2)		
2482.34 17	$(1,2)^+$		
2595.9 4	0,1,2		

 ε, β^+ radiations

[†] Adopted values.

E(decay) E(level) $I\beta^+$ Iε Log ft $I(\varepsilon + \beta^+)^{\dagger}$ Comments 2595.9 $(5.87 \times 10^3 5)$ 0.80 17 0.13 3 5.49 10 0.93 20 av E\u03c8=2226 24; \varepsilonK=0.115 3; \varepsilonL=0.0164 5; €M+=0.00470 13 $(5.99 \times 10^3 5)$ 2482.34 0.93 14 0.137 21 5.47 7 1.07 16 av E\beta=2279 24; EK=0.108 3; EL=0.0154 4; €M+=0.00444 12 $(6.18 \times 10^3 5)$ 2289.88 0.030 9 0.23 7 6.16 14 0.26 8 av Eβ=2371 24; εK=0.0983 25; εL=0.0140 4; €M+=0.00402 11 $(6.19 \times 10^3 5)$ 2284.14 1.16 18 0.152 24 5.46 7 1.31 20 av Eβ=2373 24; εK=0.0980 25; εL=0.0140 4; €M+=0.00401 11 $(6.54 \times 10^3 5)$ 1933.15 0.23 6 0.025 7 6.28 12 0.26 7 av Eβ=2540 24; εK=0.0827 20; εL=0.0118 3; €M+=0.00338 9 1628.65 $(6.84 \times 10^3 5)$ 0.53 10 0.049 9 6.03 9 0.58 11 av Eβ=2686 24; εK=0.0718 17; εL=0.01022 24; €M+=0.00294 7 $(6.87 \times 10^3 5)$ 1599.10 3.2 6 0.29 6 5.26 9 3.5 7 av E_β=2700 24; εK=0.0708 17; εL=0.01008 24; €M+=0.00290 7 $(7.05 \times 10^3 5)$ 1420.31 0.32 6 0.027 5 av Eβ=2785 24; εK=0.0654 15; εL=0.00930 21; 6.32 9 0.35 7 €M+=0.00267 6 $(7.48 \times 10^3 5)$ 990.64 1.5 4 0.10 3 5.79 11 1.6 4 av Eβ=2991 24; εK=0.0544 12; εL=0.00773 17;

Continued on next page (footnotes at end of table)

$^{140}\mathrm{Eu}\,\varepsilon\,\mathrm{decay}$ 1991Fi03 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ †	$I\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
						εM+=0.00222 5
$(7.94 \times 10^3 5)$	530.95	19 4	1.1 2	4.83 9	20 4	av Eβ=3212 24; εK=0.0451 9; εL=0.00641 13; εM+=0.00184 4
$(8.47 \times 10^3 5)$	0.0	67 4	3.1 2	4.43 3	70 4	av E β =3469 25; ε K=0.0368 7; ε L=0.00523 10; ε M+=0.00150 3

[†] Absolute intensity per 100 decays.

 $\gamma(^{140}\text{Sm})$

I γ normalization: From I(K x ray)/I(531 γ)=0.142 14 one obtains I(531 γ)=29% 3.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	Comments
352.4 [@] 2	0.4 2	1599.10	0+	1246.52	4+		$\%$ I γ =0.12 6, using the calculated normalization.
459.9 1	11.0 8	990.64	2+	530.95	2^{+}		$\%$ I γ =3.2 4, using the calculated normalization.
531.0 <i>I</i>	100 9	530.95	2+	0.0	0^{+}	E2	Mult.: Q from 2015Sa40 ($\gamma\gamma(\theta)$).
							$\%$ I γ =29.0 25, using the calculated normalization.
608.6 1	1.9 2	1599.10	0^{+}	990.64	2^{+}		$\%$ I γ =0.55 8, using the calculated normalization.
685.1 2	0.9 <i>3</i>	2284.14	2^{+}	1599.10	0^{+}		$\%$ I γ =0.26 9, using the calculated normalization.
715.4 2	0.6 1	1246.52	4+	530.95	2^{+}	E2	$\%$ I γ =0.17 4, using the calculated normalization.
882.7 <i>3</i>	0.2 1	2482.34	$(1,2)^+$	1599.10	0^+		$\%$ I γ =0.06 3, using the calculated normalization.
1068.0 <i>1</i>	11.0 11	1599.10	0^{+}	530.95	2^{+}	E2	$\%$ I γ =3.2 4, using the calculated normalization.
							$A_2 = +0.27 \ 11$, $A_4 = +1.03 \ 17$ for $1068\gamma - 531\gamma$ cascade
							(2015Sa40,2015Kl01).
							Mult.: $\Delta J=2$, E2 γ based on angular correlation coefficients.
1097.7 2	2.0 3	1628.65	0,1,2	530.95	2^{+}		$\%$ I γ =0.58 <i>10</i> , using the calculated normalization.
1293.6 <i>1</i>	1.2 2	2284.14	2+	990.64	2+		$\%$ I γ =0.35 7, using the calculated normalization.
1299.4 2	0.3 1	2289.88	(1,2)	990.64	2^{+}		$\%$ I γ =0.09 3, using the calculated normalization.
1402.2 2	0.9 2	1933.15	0,1,2	530.95	2^{+}		$\%$ I γ =0.26 7, using the calculated normalization.
1420.3 2	1.2 2	1420.31	(1,2)	0.0	0^{+}		$\%$ I γ =0.35 7, using the calculated normalization.
1491.3 2	2.1 3	2482.34	$(1,2)^+$	990.64	2^{+}		$\%$ I γ =0.61 10, using the calculated normalization.
1752.8 2	1.9 3	2284.14	2+	530.95	2+		$\%$ I γ =0.55 <i>10</i> , using the calculated normalization.
1758.7 4	0.4 2	2289.88	(1,2)	530.95	2^{+}		$\%$ I γ =0.12 6, using the calculated normalization.
1952.0 2	1.4 2	2482.34	$(1,2)^+$	530.95	2^{+}		$\%$ I γ =0.41 7, using the calculated normalization.
							E_{γ} : differs by 3σ from ΔE_{levels} .
2064.9 3	3.2 6	2595.9	0,1,2	530.95	2+		$\%$ I γ =0.93 19, using the calculated normalization.
2283.9 <i>3</i>	0.5 2	2284.14	2+	0.0	0^{+}		$\%$ I γ =0.15 6, using the calculated normalization.
2289.1 5	0.2 1	2289.88	(1,2)	0.0	0^{+}		%I γ =0.06 3, using the calculated normalization.

[†] From 1991Fi03.
[‡] From Adopted Gammas.
[#] For absolute intensity per 100 decays, multiply by 0.29 5.
[@] Placement of transition in the level scheme is uncertain.

 $^{140}_{62}$ Sm₇₈-3

¹⁴⁰Eu ε decay 1991Fi03

