¹⁴⁰Sb IT decay (41 μs) 2016Lo01

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018

Parent: ¹⁴⁰Sb: E=298.2+x; J^{π} =(6⁻,7⁻); $T_{1/2}$ =41 µs 8; %IT decay=100.0

¹⁴⁰Sb-%IT decay: 100% isomeric transition is assumed.

2016Lo01 is the first spectroscopic study of the ¹⁴⁰Sb nuclide.

Compiled for XUNDL compilation by B. Singh (McMaster).

2016Lo01: ¹⁴⁰Sb isomer populated in ⁹Be(²³⁸U,X) reaction with E(²³⁸U)⁸⁶⁺=345 MeV/nucleon (target thickness=2.9 mm) with ¹⁴⁰Sb selected based on Δ E-tof-B ρ method using the BigRIPS and ZeroDegree spectrometers at RIBF-RIKEN. Selected ions implanted in WAS3ABi stopper, a stack of double-sided silicon detectors (DSSSDs). Measured E γ , I γ , γ (t), (implanted ions) γ -coin, isomer half-life using 4 π EURICA array of 12 Ge cluster detectors and 18 LaBr₃(Ce) detectors. Detected \approx 9300 well separated ¹⁴⁰Sb nuclei. Deduced levels, J, π , isomer, configuration, single-particle excitations. Comparison with shell-model, and mean-field calculations.

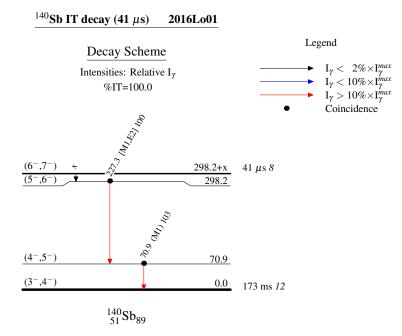
All data are from 2016Lo01 unless noted otherwise.

140Sb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments	
0.0	(3-,4-)	173 ms 12	J ^{π} : adopted values, from β feedings to (2 ⁺) and (4 ⁺) of ¹⁴⁰ Te daughter; (4 ⁻) not excluded (2017Mo12).	
			$T_{1/2}$: adopted values, from 2017Mo12 (γ (t)).	
70.9 8	$(4^{-},5^{-})$			
298.2 10	$(5^{-}, 6^{-})$			
298.2+x	$(6^{-},7^{-})$	41 µs 8	%IT=100	
		-	Possible configuration= $\pi g_{7/2}^1 \otimes \nu f_{7/2}^{-1}$.	
			E(level): $x < 30$ keV (2016 ^{1/2} 01). ^{1/2}	
			$T_{1/2}$: from 70.9 γ (t) and 227.3 γ (t) (2016Lo01).	

[†] From $E\gamma$ values.

[‡] Assigned by 2016Lo01 (same as the adopted values) based on $(3^-, 4^-)$ for the ground state and model predictions for the higher states.


 $\gamma(^{140}\text{Sb})$

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	α^{\ddagger}	Comments
X		298.2+x	(6 ⁻ ,7 ⁻)	298.2 (5 ⁻ ,6 ⁻)			E_{γ} : x<30 keV if E2, <1-2 keV if M1 (2016Lo01), based on consideration of transition rates in this mass region, and γ -energy detection threshold in this experiment.
70.9 8	103 <i>31</i>	70.9	(4 ⁻ ,5 ⁻)	0.0 (3 ⁻ ,4 ⁻)	(M1)	1.66 6	Mult.: pure E2 is ruled out by 2016Lo01 since with a total conversion coefficient of 5.61, its I γ would be about five times smaller than that of the 227.3 transition. Note that even with M1 multipolarity of the 70.9 transition, its total intensity (I(γ +ce)) is about 2.7 times larger than that of the 227 transition whereas one would expect equal intensity if the decay scheme of the isomer is complete.
227.3 5	100	298.2	(5 ⁻ ,6 ⁻)	70.9 (4 ⁻ ,5 ⁻)	[M1,E2]	0.079 15	E_{γ} : this transition is unlikely to be the isomeric transition since the implied B(M1) or B(E2) would be too small to be consistent with expected transition rates from Weisskopf estimates.

¹⁴⁰Sb IT decay (41 μ s) 2016Lo01 (continued)

$\gamma(^{140}\text{Sb})$ (continued)

- [†] E1, E3 and M2 type of transitions between levels of opposite parities are not considered likely based on expected active spherical orbitals involved in the low-lying structure of ¹⁴⁰Sb.
- ^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

