		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018

 $Q(\beta^{-})=-2758\ 27;\ S(n)=8785\ 28;\ S(p)=3490\ 40;\ Q(\alpha)=702\ 27$ 2017Wa10 Other experimental papers: 2011Ti05 (production σ for ^{nat}W and ¹⁸¹Ta targets irradiated with 0.04-2.6 GeV protons) 1995Ve08, 1995VeZX (β -decay energy).

Above the 8⁻ isomer, the levels schemes proposed in (HI,xn γ) and (¹⁹F,5n γ) are discrepant, of which the E(level)'s and γ -rays placements of $({}^{19}F,5n\gamma)$ are preferred.

¹⁴⁰Pm Levels

Cross Reference (XREF) Flags

¹⁴⁰ Sm	ε	decav
SIII	C	uccav

A $\frac{126}{(\text{HI},\text{xn}\gamma)} \text{Te}(19\text{F},5\text{n}\gamma)$ B C

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	1+‡	9.2 s 2	A	$\%\varepsilon + \%\beta^+ = 100$
				T _{1/2} : from 1968B114. Others: 9.2 s 5 (1973VaYZ), 9.1 s 5 (1975Ke09).
139.95 7	$(2)^{-}$		Α	J^{π} : γ to 1 ⁺ is E1, the lowest J for negative parity shell-model state in Z=61,
				N=79 nuclei is two-particle configuration=(($\nu h_{11/2}$)($\pi g_{7/2}$)) (1993De40).
225.47 6	$0^+, 1^+, 2^+$		Α	J^{π} : γ to 1 ⁺ is M1.
260.64 8	$(1,2,3)^+$		Α	J^{π} : γ to (2) ⁻ is E1.
335.35 9	+		Α	J^{π} : γ to $0^+, 1^+, 2^+$ is M1.
339.88 7	$(1,2)^+$		A	J^{n} : γ to (2) ⁻ is E1, γ from (1) ⁺ is M1.
344.94 8	+ 1 +		A	J^{π} : γ to $1^+, 2^+, 3^+$ is M1.
415.15 11	1'	5.05 . 5	A	J ^{π} : J=1 from log $ft \approx 6.3$ via 0 ⁺ parent; π =+ from M1 γ to (1,2) ⁺ .
0.0+x	8	5.95 min 5	ABC	$\%\varepsilon + \%\beta' = 100$
				Additional information 1. E(1-1) = 121 + 28 (1) = 121 + 28 (1) = 121 + 28
				E(level): $x=451.28$ (difference in mass excesses for 9.2-s g.s. and 5.95-min
				isomer of 10 Pm, 201 /Au03 and references therein).
				$1_{1/2}$: from 1975Ke09. Others: 0 film 7 (1900Al04), 5.80 film 5 (1907B127), 5.8 min 2 (1072VeVZ) 5.0 min 6 (1074EiZE) 5.6 min 2 (1075Ze10)
				$\pi_{1,2} = \frac{100}{2} - \frac{100}$
				J . 8 assignment based on 1995De40, which removed 7 (1987) c07). log $ft-5.2$ to $7^{-1}(y h11/2)(y d3/2)$ daughter state and deduced $(\pi d5/2)(y$
				h)1/2) parent configuration (the only allowed transition is $\pi d5/2$ to y d3/2)
				GT) of which only the 8 ⁻ counling can feed mainly the 7 ⁻ daughter. The 7 ⁻
				coupling of the parent state should proceed predominantly to 6^- (y
				$h^{11/2}(y d^{3/2})$ daughter state and the 7 ⁻ daughter state should receive much
				weaker population, which removes 7^- . The 7^- was previously assigned
				based on log $ft=7.3$ to 6^+ whose weak population (I($\varepsilon+\beta^+$)=0.5%) could
				more likely arise from preferably E1 transitions from unobserved
				higher-lying 7 ⁻ states.
481.18 9	+		Α	J^{π} : M1 γ 's to + levels (344.94 and 335.35).
503.39 11	$0^+, 1^+, 2^+$		Α	J^{π} : γ to 1^+ is M1.
534.03 15	(+)		Α	J^{π} : γ to 1 ⁺ is (E2).
565.46 8	$(1^+, 2^+)$		Α	J^{π} : $(0^+, 1^+, 2^+)$ from (M1) γ to 1^+ ; 0^+ less likely from γ to $(2)^-$.
572.11 11	$(1^+, 2^+)$		Α	J^{π} : $(0^+, 1^+, 2^+)$ from (M1) γ to 1^+ ; 0^+ less likely from γ to $(2)^-$.
576.27 14	$(0^{-}, 1^{-}, 2^{-})$		Α	J^{π} : γ to 1^+ is (E1).
652.36 10			Α	
670.17 <i>16</i>	(*)		Α	J^{π} : γ to 260, + is (M1).
761.35 13	(*)		Α	J^{π} : γ to 1 ⁺ is (E2).
386.23+x 10	8+	1.0 ns + 10 - 5	BC	J^{π} : E1, $\Delta J=0 \gamma$ to 8 ⁻ .

¹⁴⁰Pm Levels (continued)

E(level)	J^{π}	XREF	Comments						
			$T_{1/2}$: from (HI,xn γ).						
808.16 21		Α							
407.28+x ^b 16	9+	BC	J^{π} : E1 γ to 8 ⁻ .						
844.62 11	$0^+, 1^+, 2^+$	Α	J^{π} : M1 γ from 1670, 1 ⁺ .						
855.81 11		Α							
874.29 15		A							
920.3315	10+	A	π M1.52 (0 ⁺						
532.15+x° 1/ 951.30.16	101	A BC	J^{*} : M1+E2 γ to 9 ⁺ .						
1065 80 16	$(^{+})$	A	I^{π} · M1 γ to + level (339.88)						
1088.99 20		A							
1173.91 16		Α							
806.15+x ^d 16	9(-)	BC	J^{π} : D γ to 8 ⁺ and estimated configuration.						
1278.8 5		Α							
934.29+x ^b 20	11^{+}	BC	J^{π} : M1(+E2) γ to 10 ⁺ .						
1594.6 <i>3</i>		Α							
1618.2 4	4	Α							
1619.25 11	1++	Α							
1623.09 15	1+∓	Α							
1670.11 10	1+‡	Α							
1301.5+x ^d 8	$11^{(-)}$	В	J^{π} : E2 γ to $9^{(-)}$.						
1308.41+x ^b 21	12^{+}	BC	J^{π} : E2 γ to 10 ⁺ .						
1601.65+x? 19	$11^{(-)}$	С	E(level): level resulting from inverted order of trasitions from 2097+x: 495γ -795 γ in						
			(HI,xn γ) (1993De40) with this intermediary level, or 795 γ -495 γ in (¹⁹ F,5n γ)						
			(2010Wa37), which was adopted by evaluator.						
2017 4 5			J^{π} : E2 γ to $9^{(-)}$.						
2017.43	10(+)	A	I_{1}^{T} (M1+F2) (11 ⁺						
$1690.2 + x^{n} 4$	12(*)	BC	$J^{*}: (MI+E2) \gamma$ to II^{*} .						
$18/3.4 + x^{o} 3$	13	BC	J^* : E2 γ to 11 ⁺ .						
1948.3+x" 11	$12^{(+)}$	В	J^{n} : (M1+E2) γ to 11 ⁺ .						
$2097.0+x^{a}$ 3	13(-)	BC	J^{π} : E2 γ to 11 ⁽⁻⁾ .						
$2209.2 + x^{+} 4$	12(+)	BC	J^{π} : (M1+E2) γ to 11 ⁺ .						
$2266.2 + x^{\#} 11$	13(+)	В	J^{π} : (M1+E2) γ to 12 ⁽⁺⁾ .						
2332.1+x ⁰ 8	14+	В	J^{π} : E2 γ to 12 ⁺ .						
2354.2+x [#] 11	14^{+}	В	J^{π} : E2 γ to 12 ⁺ .						
2444.1+x [#] 8	$12^{(+)}$	В	J^{π} : (M1+E2) γ to 11 ⁺ .						
2557.1+x [#] 3	14+	BC	J^{π} : E2 γ to 12 ⁺ .						
2570.7+x [#] 3	14^{+}	BC	J^{π} : E2 γ to 12 ⁺ .						
2595.5+x [#] 5	13 ⁽⁺⁾	BC	J^{π} : (M1+E2) γ to 12 ⁽⁺⁾ .						
2625.2+x ^e 4	$14^{(-)}$	BC	J^{π} : (M1+E2) γ to 13 ⁻ .						
2664.7+x [#] 5	13 ⁽⁺⁾	BC	J^{π} : (M1+E2) γ to 12 ⁽⁺⁾ .						
2747.8+x ^c 4	$15^{(-)}$	BC	J^{π} : D γ to 14 ⁺ , $\Delta \pi$ =yes E1 based on proposed configuration in (¹⁹ F,5n γ) (2010Wa37).						
$2776.7 + x^{\#} 4$	$13^{(+)}$	BC	J^{π} : (M1+E2) γ to 12 ⁺ .						
2830.0+x ^d 9	$15^{(-)}$	В	J^{π} : E2 γ to $13^{(-)}$.						
2905.7+x [#] 4	$14^{(+)}$	BC	J^{π} : (M1+E2) γ to 13 ⁽⁺⁾ .						
2988.5+x ^a 8	(14 ⁺)	В	J^{π} : band head assumed (14 ⁺) (2010Wa37); two γ 's to 13 ⁺ and 13 ⁽⁺⁾ .						
2992.5+x ^c 4	$16^{(-)}$	BC	J^{π} : (M1+E2) γ to $15^{(-)}$.						
3132.6+x ^{&} 5	15 ⁽⁺⁾	BC	J^{π} : (M1+E2) γ to 14 ⁽⁺⁾ .						
3285.9+x ^a 13	(15 ⁺)	В	J^{π} : (M1+E2) γ to (14 ⁺).						

Continued on next page (footnotes at end of table)

¹⁴⁰Pm Levels (continued)

E(level)	$J^{\pi \dagger}$	XREF	Comments
3372.8+x ^e 4	16 ⁽⁻⁾	BC	J^{π} : E2 γ to 14 ⁽⁻⁾ .
3386.6+x ^{&} 5	$16^{(+)}$	BC	J^{π} : (M1+E2) γ to 15 ⁽⁺⁾ .
3498.4+x ^c 8	$17^{(-)}$	BC	J^{π} : E2 γ to $15^{(-)}$.
3519.0+x ^d 10	$17^{(-)}$	В	J^{π} : E2 γ to $15^{(-)}$.
3593.5+x [@] 9	(16 ⁻)	В	J^{π} : assigned by 2010Wa37 In (¹⁹ F,5n γ) dataset from E2 535 γ from 18 ⁽⁻⁾ and 221 γ to 16 ⁽⁻⁾ . As 2010Wa37 do not show proof of the E2 character other possible values are not excluded.
3610.0+x ^a 16	(16^{+})	В	J^{π} : γ to (15 ⁺) and member In M1+E2 band.
3652.3+x ^{&} 8	$17^{(+)}$	BC	J^{π} : E2 γ to $15^{(+)}$.
3887.2+x ^c 9	$18^{(-)}$	В	J^{π} : E2 γ to $16^{(-)}$.
3935.2+x [@] 12	$18^{(-)}$	В	J^{π} : (M1+E2) γ to 17 ⁽⁻⁾ .
4002.8+x ^{<i>a</i>} 19	(17^{+})	В	J^{π} : γ to (16 ⁺) and member In M1+E2 band.
4043.0+x ^{&} 9	$18^{(+)}$	BC	J^{π} : M1+E2 γ to 17 ⁽⁺⁾ .
4128.2+x ^e 9	$18^{(-)}$	BC	J^{π} : E2 γ to $16^{(-)}$.
4393.0+x? 8	19 ⁽⁻⁾	С	E(level): level not confirmed In (¹⁹ F,5n γ) dataset; 895 γ decaying from this level In (HI,xn γ) might have been replaced At 3887 level In (¹⁹ F,5n γ) dataset. I^{π} : E2 γ to 17 ⁽⁻⁾
$4484.4 + x^{c}$ 10	19(-)	В	J^{π} : (M1+E2) γ to $18^{(-)}$.
4486.0+x [@] 11	18(-)	B	J^{π} : (M1+E2) γ to 17 ⁽⁻⁾ .
4508.0+x ^{&} 10	19 ⁽⁺⁾	BC	J^{π} : (M1+E2) γ to 18 ⁽⁺⁾ .
4721.2+x [@] 12	$20^{(-)}$	В	J^{π} : E2 γ to $18^{(-)}$.
4864.5+x [@] 14	19 ⁽⁻⁾	В	J^{π} : (M1+E2) γ to $18^{(-)}$.
4956.4+x [@] 14	$19^{(-)}$	В	J^{π} : (M1+E2) γ to 18 ⁽⁻⁾ .
5012.4+x ^{&} 11	$20^{(+)}$	В	J^{π} : (M1+E2) γ to 19 ⁽⁺⁾ .
5019.8+x ^e 14	$20^{(-)}$	BC	J^{π} : E2 γ to $18^{(-)}$.
5356.4+x ^{&} 12	$21^{(+)}$	В	J^{π} : (M1+E2) γ to 20 ⁽⁺⁾ .
5525.2+x [@] 17	$21^{(-)}$	В	J^{π} : (M1+E2) γ to 20 ⁽⁻⁾ .
5786.2+x [@] 17	(21 ⁻)	В	J^{π} : assigned by 2010Wa37 In (¹⁹ F,5n γ) dataset from E2 922 γ to 19 ⁽⁻⁾ . As 2010Wa37 do not show proof of the E2 character other possible values are not excluded.
5941.4+x ^{&} 16	(22^{+})	В	J^{π} : assigned by 2010Wa37 In (¹⁹ F,5n γ) dataset based on band structure.
6391.5+x [@] 20	23(-)	В	J^{π} : E2 γ to 21 ⁽⁻⁾ .

[†] J≥8 from $\gamma(\theta)$ and DCO, linear pol of γ , excit. based on $J^{\pi}=8^{-}$ for 5.95-min ¹⁴⁰Pm (1993De40).

[‡] log $ft \le 5.7$ via 0⁺ parent.

[#] Possible member of a 4-qp configuration.

[@] Possible member of a 6-qp configuration.

& Band(A): Band based on $15^{(+)}$. Possible 4-qp band, configuration= $\pi h_{11/2} \otimes \nu(f_{7/2}, h_{11/2}^2)$.

^{*a*} Band(B): Band based on (14⁺). Possible 4-qp band, configuration= $\pi h_{11/2} \otimes \nu h_{11/2}^3$.

^b Band(C): Probable $\pi h_{11/2} \otimes v h_{11/2}$ band. Assignment in 2010Wa37 based on systematics of other nuclei in this mass region.

^c Band(D): Band based on $15^{(-)}$. Possible 4-qp configuration= $\pi 11/2[505] \otimes v(1/2[400],h_{11/2}^2)$.

^{*d*} Band(E): Possible $\pi h_{11/2} \otimes \nu 1/2[411]$.

^{*e*} Band(F): Band based on $14^{(-)}$. Possible 4-qp band.

$\gamma(^{140}\text{Pm})$

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{a}	Comments
139.95	$(2)^{-}$	140.0 <i>1</i>	100	0.0	1+	E1	0.1068	$\alpha(K)=0.0907 \ 13; \ \alpha(L)=0.01273 \ 18; \ \alpha(M)=0.00270 \ 4$
225.47	0+,1+,2+	225.4 <i>1</i>	100	0.0	1+	M1	0.1599	α (N)=0.000601 9; α (O)=8.71×10 ⁻⁵ 13; α (P)=4.66×10 ⁻⁶ 7 α (K)=0.1360 20; α (L)=0.0188 3; α (M)=0.00401 6
260.64	(1,2,3)+	35.2 2	2.7 9	225.47	0+,1+,2+	(M1+E2)	80 75	$\alpha(N)=0.000905 \ 13; \ \alpha(O)=0.0001367 \ 20; \ \alpha(P)=8.70\times10^{-6} \ 13 \ \alpha(L)=62 \ 59; \ \alpha(M)=14 \ 14 \ \alpha(N)=3 \ 1.29; \ \alpha(O)=0.38 \ 36; \ \alpha(P)=0.00110 \ 68$
		120.8 <i>1</i>	100	139.95	(2)-	E1	0.1597	$\alpha(K)=0.1353\ 20;\ \alpha(L)=0.0192\ 3;\ \alpha(M)=0.00409\ 6$ $\alpha(K)=0.00908\ 13;\ \alpha(O)=0.0001307\ 19;\ \alpha(P)=6.82\times10^{-6}\ 10$
		260.6 2	9.4	0.0	1^{+}			
335.35	+	109.9 2	100	225.47	$0^+, 1^+, 2^+$	M1	1.182	$\alpha(K)=1.003 \ 15; \ \alpha(L)=0.1408 \ 21; \ \alpha(M)=0.0301 \ 5$ $\alpha(N)=0.00678 \ 11; \ \alpha(O)=0.001022 \ 16; \ \alpha(P)=6.45\times10^{-5} \ 10$
		195.4 2	20.4	139.95	$(2)^{-}$			
		335.5 2	10.2	0.0	1+			
339.88	$(1,2)^+$	114.6 2	53.3	225.47	$0^+, 1^+, 2^+$	M1	1.049	$\alpha(K)=0.891$ 14; $\alpha(L)=0.1249$ 19; $\alpha(M)=0.0267$ 4
								$\alpha(N)=0.00601$ 9; $\alpha(O)=0.000907$ 14; $\alpha(P)=5.73\times10^{-5}$ 9
		199.9 2	38.9	139.95	$(2)^{-}$	E1	0.0408	$\alpha(K)=0.03475; \alpha(L)=0.004777; \alpha(M)=0.00101215$
								$\alpha(N)=0.000226 4; \alpha(O)=3.31\times10^{-5} 5; \alpha(P)=1.86\times10^{-6} 3$
		339.8 1	100	0.0	1^{+}	E2	0.0370	$\alpha(K)=0.0295\ 5;\ \alpha(L)=0.00588\ 9;\ \alpha(M)=0.001294\ 19$
								$\alpha(N)=0.000287 4; \alpha(O)=4.03\times 10^{-5} 6; \alpha(P)=1.636\times 10^{-6} 23$
344.94	+	84.4 1	100	260.64	$(1,2,3)^+$	M1	2.52	$\alpha(K)=2.14$ 3; $\alpha(L)=0.301$ 5; $\alpha(M)=0.0643$ 10
								$\alpha(N)=0.01449\ 21;\ \alpha(O)=0.00218\ 4;\ \alpha(P)=0.0001376\ 20$
		119.5 2	20.8	225.47	$0^+, 1^+, 2^+$	M1,E2	1.06 14	$\alpha(K)=0.75$ 4; $\alpha(L)=0.24$ 14; $\alpha(M)=0.054$ 31
								$\alpha(N)=0.0120\ 67;\ \alpha(O)=0.00160\ 80;\ \alpha(P)=4.1\times10^{-5}\ 10$
		204.9 2	7.7	139.95	$(2)^{-}$			
		344.9 2	73.9	0.0	1+	(E2)	0.0354	$\alpha(K)=0.0283 4; \alpha(L)=0.00559 8; \alpha(M)=0.001229 18$
								$\alpha(N)=0.000273 4; \alpha(O)=3.83\times10^{-5} 6; \alpha(P)=1.570\times10^{-6} 23$
415.15	1+	75.3 2	100	339.88	$(1,2)^+$	M1	3.50 6	$\alpha(K)=2.975; \alpha(L)=0.4197; \alpha(M)=0.089515$
								$\alpha(N)=0.0202 4; \alpha(O)=0.00304 5; \alpha(P)=0.000191 3$
		189.6 2	10.3	225.47	$0^+, 1^+, 2^+$			
		415.3 2	38.5	0.0	1^{+}			
481.18	+	136.4 2	45	344.94	+	M1	0.641	α (K)=0.544 8; α (L)=0.0762 12; α (M)=0.01626 24
								$\alpha(N)=0.00366\ 6;\ \alpha(O)=0.000553\ 8;\ \alpha(P)=3.50\times10^{-5}\ 6$
		141.3 2	37.5	339.88	$(1,2)^+$	[M1,E2]	0.62 5	$\alpha(K)=0.46 3; \alpha(L)=0.125 56; \alpha(M)=0.028 14$
								$\alpha(N)=0.0061\ 29;\ \alpha(O)=8.4\times10^{-4}\ 34;\ \alpha(P)=2.6\times10^{-5}\ 6$
		145.7 2	32.5	335.35	+	M1	0.533	α (K)=0.453 7; α (L)=0.0632 10; α (M)=0.01350 20
								$\alpha(N)=0.003045; \alpha(O)=0.0004597; \alpha(P)=2.91\times10^{-5}5$
		220.7 1	100	260.64	$(1,2,3)^+$	(M1)	0.1693	$\alpha(K)=0.1440\ 21;\ \alpha(L)=0.0199\ 3;\ \alpha(M)=0.00425\ 6$
								$\alpha(N)=0.000959 \ 14; \ \alpha(O)=0.0001448 \ 21; \ \alpha(P)=9.21\times10^{-6} \ 13$
		255.6 2	22.5	225.47	$0^+, 1^+, 2^+$	(M1)	0.1139	$\alpha(K)=0.0970$ 14; $\alpha(L)=0.01337$ 19; $\alpha(M)=0.00285$ 4
								$\alpha(N)=0.000643 \ 9; \ \alpha(O)=9.71\times10^{-5} \ 14; \ \alpha(P)=6.19\times10^{-6} \ 9$
		481.1 2	12.5	0.0	1+			

$\gamma(^{140}\text{Pm})$ (continued)

E_i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{a}	Comments
503.39	$0^+.1^+.2^+$	158.5 2	100	344.94	+	(M1)	0.421	$\alpha(K)=0.358\ 6;\ \alpha(L)=0.0499\ 8;\ \alpha(M)=0.01065\ 16$
	- , ,					()		$\alpha(N)=0.00240$ 4; $\alpha(O)=0.000362$ 6; $\alpha(P)=2.30\times10^{-5}$ 4
		163.6 2	14.3	339.88	$(1,2)^+$	(M1)	0.386	$\alpha(K)=0.328$ 5; $\alpha(L)=0.0457$ 7; $\alpha(M)=0.00975$ 14
								α (N)=0.00220 4; α (O)=0.000332 5; α (P)=2.10×10 ⁻⁵ 3
		503.3 2	90.5	0.0	1^{+}	M1	0.0195	$\alpha(K)=0.01668\ 24;\ \alpha(L)=0.00225\ 4;\ \alpha(M)=0.000478\ 7$
								α (N)=0.0001078 <i>16</i> ; α (O)=1.633×10 ⁻⁵ <i>23</i> ; α (P)=1.053×10 ⁻⁶ <i>15</i>
534.03	$(^{+})$	308.7 2	60	225.47	$0^+, 1^+, 2^+$	(M1)	0.0689	$\alpha(K)=0.0587 9; \alpha(L)=0.00805 12; \alpha(M)=0.001715 25$
			100					α (N)=0.000387 6; α (O)=5.85×10 ⁻⁵ 9; α (P)=3.74×10 ⁻⁶ 6
		533.9 2	100	0.0	1+	(E2)	0.01033	$\alpha(K)=0.00855\ 12;\ \alpha(L)=0.001397\ 20;\ \alpha(M)=0.000302\ 5$
	(1+2+)	150 4 2	20	415 15	1+	(1)	0.407	$\alpha(N)=6.75\times10^{-5}$ 10; $\alpha(O)=9.80\times10^{-6}$ 14; $\alpha(P)=4.99\times10^{-7}$ 7
565.46	$(1^{+}, 2^{+})$	150.4 2	20	415.15	1.	(M1)	0.487	$\alpha(\mathbf{K}) = 0.414 \text{ o}; \ \alpha(\mathbf{L}) = 0.05/8 \text{ y}; \ \alpha(\mathbf{M}) = 0.01234 \text{ 18}$
		220.6.1	100	244.04	+	(M1)	0 1605	$\alpha(\mathbf{N}) = 0.002784; \alpha(\mathbf{O}) = 0.0004200; \alpha(\mathbf{P}) = 2.00\times10^{-5}4$
		220.0 1	100	344.94		$(\mathbf{W}\mathbf{I}\mathbf{I})$	0.1095	$\alpha(\mathbf{K}) = 0.1442 21, \alpha(\mathbf{L}) = 0.0200 3, \alpha(\mathbf{N}) = 0.00420 0$ $\alpha(\mathbf{N}) = 0.000060 14, \alpha(\mathbf{O}) = 0.0001450 21, \alpha(\mathbf{D}) = 0.22\times 10^{-6} 12$
		339.8.1	20	225 47	0^+ 1 ⁺ 2 ⁺	(F2)	0.0370	$\alpha(N) = 0.000900 \ 14, \ \alpha(O) = 0.0001450 \ 21, \ \alpha(F) = 9.22 \times 10^{-1} \ 15$ $\alpha(K) = 0.0295 \ 5; \ \alpha(L) = 0.00588 \ 9; \ \alpha(M) = 0.001294 \ 19$
		557.01	20	223.77	0,1,2	(L2)	0.0570	$\alpha(\mathbf{N}) = 0.00287 4; \alpha(\Omega) = 4.03 \times 10^{-5} 6; \alpha(\mathbf{P}) = 1.636 \times 10^{-6} 23$
		425.6.2	22	139.95	$(2)^{-}$			$u(1) = 0.0002077, u(0) = 1.03 \times 10^{-1}, 0.00010^{-1}$
		565.6 2	66	0.0	1+	(M1)	0.01457	$\alpha(K)=0.01245$ 18; $\alpha(L)=0.001672$ 24; $\alpha(M)=0.000356$ 5
						× /		$\alpha(N) = 8.02 \times 10^{-5} 12; \ \alpha(O) = 1.215 \times 10^{-5} 17; \ \alpha(P) = 7.84 \times 10^{-7} 11$
572.11	$(1^+, 2^+)$	237.0 2	33	335.35	+	(M1)	0.1396	$\alpha(K)=0.1188 \ 17; \ \alpha(L)=0.01641 \ 24; \ \alpha(M)=0.00350 \ 5$
								α (N)=0.000789 <i>12</i> ; α (O)=0.0001192 <i>17</i> ; α (P)=7.59×10 ⁻⁶ <i>11</i>
		311.4 2	83	260.64	$(1,2,3)^+$	(M1)	0.0674	$\alpha(K)=0.0574 8$; $\alpha(L)=0.00786 11$; $\alpha(M)=0.001676 24$
								α (N)=0.000378 6; α (O)=5.71×10 ⁻⁵ 8; α (P)=3.65×10 ⁻⁶ 6
		431.9 2	20	139.95	(2)-			
		572.2 2	100	0.0	1+	(M1)	0.01416	$\alpha(K)=0.01210\ 17;\ \alpha(L)=0.001624\ 23;\ \alpha(M)=0.000345\ 5$
57(07	(0 = 1 = 2 =)	126.2.2	15	120.05	$\langle 0 \rangle =$			$\alpha(N) = 7.79 \times 10^{-5} 11; \ \alpha(O) = 1.180 \times 10^{-5} 17; \ \alpha(P) = 7.62 \times 10^{-7} 11$
5/6.2/	(0 ,1 ,2)	430.3 2	15	139.95	(2)	(E1)	0.00200	$(K) = 0.00258 (4 + (1 + 0.00022) (5 + (0.0) - 7.10 + 10^{-5}) 10$
		570.52	100	0.0	1	(E1)	0.00300	$\alpha(\mathbf{K}) = 0.002384; \alpha(\mathbf{L}) = 0.0003303; \alpha(\mathbf{M}) = 7.12\times10^{-5}10$
652.36		312 4 2	100	330.88	$(1 2)^+$			$\alpha(N)=1.599\times10^{-2}25; \ \alpha(O)=2.40\times10^{-2}4; \ \alpha(P)=1.488\times10^{-2}21$
052.50		427.0.2	59	225 47	(1,2) $0^+ 1^+ 2^+$			
		652.5 2	100	0.0	1^+			
670.17	(+)	409.5 2	100	260.64	$(1,2,3)^+$	(M1)	0.0330	$\alpha(K)=0.0282 4; \alpha(L)=0.00383 6; \alpha(M)=0.000814 12$
								$\alpha(N)=0.000184 \ 3; \ \alpha(O)=2.78\times10^{-5} \ 4; \ \alpha(P)=1.78\times10^{-6} \ 3$
761.35	(+)	421.6 2		339.88	$(1,2)^+$			
		761.5 2	100	0.0	1^{+}	(E2)	0.00431	α (K)=0.00363 5; α (L)=0.000535 8; α (M)=0.0001147 16
								$\alpha(N)=2.57\times10^{-5} 4; \ \alpha(O)=3.80\times10^{-6} 6; \ \alpha(P)=2.16\times10^{-7} 3$
386.23+x	8+	386.2 1	100	0.0+x	8-	E1	0.00755	$B(E1)(W.u.) = 4.3 \times 10^{-6} + 43 - 22$
								$\alpha(K)=0.00647 \ 9; \ \alpha(L)=0.000859 \ 12; \ \alpha(M)=0.000182 \ 3$
000.16		160 5 3	26.5	220.00	(1.0)+			$\alpha(N)=4.08\times10^{-5}$ 6; $\alpha(O)=6.08\times10^{-6}$ 9; $\alpha(P)=3.66\times10^{-7}$ 6
808.16		468.5 3	36.6	339.88	$(1,2)^{T}$			
		668.2.2	100	139.95	(2)			

S

					ntinued)				
						γ (¹⁴⁰ Pm)	(continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	$\delta^{\&b}$	α^{a}	Comments
808.16		808.3 ^d	18	0.0	1+				
407.28+x	9+	(21.3) 407.5 2	100	386.23+x 0.0+x	8 ⁺ 8 ⁻	E1		0.00664	$\alpha(K)=0.00569 \ 8; \ \alpha(L)=0.000754 \ 11; \ \alpha(M)=0.0001597 \ 23$
844.62	0+,1+,2+	279.0 2	23	565.46	(1+,2+)	(M1)		0.0902	$\alpha(N)=3.58\times10^{-5} 5; \ \alpha(O)=5.34\times10^{-6} 8; \ \alpha(P)=3.23\times10^{-7} 5$ $\alpha(K)=0.0768 \ 11; \ \alpha(L)=0.01055 \ 15; \ \alpha(M)=0.00225 \ 4$ $\alpha(N)=0.000507 \ 8; \ \alpha(O)=7.67\times10^{-5} \ 11; \ \alpha(P)=4.89\times10^{-6} \ 7$
		341.3 2	100	503.39	0+,1+,2+				
		844.8 2	30	0.0	1+				
855.81		520.5 2	100	335.35	0+1+2+				
		855.8.2	40 67	223.47	0°,1°,2° 1 ⁺				
874.29		648.9 2	52	225.47	$0^+.1^+.2^+$				
		874.2 2	100	0.0	1+				
926.33		586.3 2	61	339.88	$(1,2)^+$				
		701.0 2	100	225.47	$0^+, 1^+, 2^+$				
		926.3 ^{<i>a</i>} 2	32	0.0	1+				
532.15+x	10+	124.8 <i>1</i>	100	407.28+x	9+	M1+E2		0.93 11	$\alpha(\mathbf{K})=0.66\ 4;\ \alpha(\mathbf{L})=0.20\ 11;\ \alpha(\mathbf{M})=0.046\ 25$
951 30		05112	100	0.0	1+				$\alpha(N)=0.0100$ 54; $\alpha(O)=0.00135$ 64; $\alpha(P)=3.7\times10^{-5}$ 9
1065.80	(+)	725.8.2	100	339.88	$(1 2)^+$	(M1)		0.00788	$\alpha(K)=0.00674.10$; $\alpha(L)=0.000898.13$; $\alpha(M)=0.000191.3$
1005.00	()	125.0 2	100	557.00	(1,2)	(1411)		0.00700	$\alpha(N)=4.30\times10^{-5} \ 6; \ \alpha(O)=6.52\times10^{-6} \ 10; \ \alpha(P)=4.23\times10^{-7} \ 6$
		1065.5 ^d 5	13	0.0	1+				
1088.99		863.5 2	46	225.47	$0^+, 1^+, 2^+$				
		1089.1 5	100	0.0	1+				
1173.91		608.3 2	100	565.46	$(1^+, 2^+)$	0			
806.15+x	9(-)	273.7 2	76 [#] 3	532.15+x	10^{+}	D [@]			
		399.4 2	31 [#] 5	407.28+x	9+				
		419.8 2	100 [#] 11	386.23+x	8+	D			
		805.7 4	55 [#] 8	0.0+x	8-				
1278.8		1018.2 5	100	260.64	$(1,2,3)^+$				
		1053.5 ^d 5	60	225.47	$0^+, 1^+, 2^+$				
934.29+x	11+	402.1 <i>1</i>	100	532.15+x	10+	(M1+E2)	+0.07 4	0.0346	$\alpha(K)=0.0295 5; \alpha(L)=0.00401 6; \alpha(M)=0.000853 12$
1504.6		1022.6.5	55	572 11	(1+2+)				$\alpha(N)=0.000192 3; \alpha(O)=2.91\times10^{-5} 5; \alpha(P)=1.8/\times10^{-6} 3$
1374.0		1249.5.5	100	344.94	(1,2) +				
		1254.7 5	62	339.88	$(1,2)^+$				
		1594.7 ^d 5	12	0.0	1+				
1618.2		1278.1 5	100	339.88	$(1,2)^+$				
		1283.0 5	95	335.35	+				
1619.25	1+	445.2 2	7.8	1173.91					

6

 $^{140}_{61} Pm_{79}$ -6

L

From ENSDF

 $^{140}_{61}Pm_{79}$ -6

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	$\delta^{\&b}$	α^{a}	Comments
1619.25	1+	774.7 2 858.0 5 967.0 2 1046.9 5 1116.0 5 1138.1 3 1274.2 3 1393.5 3 1479.9 5	22.8 2.2 10 10 12.8 100 88.9 66.7 6.1	844.62 761.35 652.36 572.11 503.39 481.18 344.94 225.47 139.95	$\begin{array}{c} & & \\ & & \\ 0^+, 1^+, 2^+ \\ (^+) \\ & & \\ 0^+, 1^+, 2^+ \\ & + \\ 0^+, 1^+, 2^+ \\ (2)^- \\ 1^+ \end{array}$				
1623.09	1+	1619.14 5 671.6 2 862.0 2 1119.6 5 1278.1 5 1283.0 5 1397.5 5 1623.0 ^d 5	3.3 7.1 36 43 100 95 27 5 4	$\begin{array}{c} 0.0\\ 951.30\\ 761.35\\ 503.39\\ 344.94\\ 339.88\\ 225.47\\ 0.0\\ \end{array}$	$ \begin{array}{c} 1^{+} \\ (^{+}) \\ 0^{+}, 1^{+}, 2^{+} \\ (1,2)^{+} \\ 0^{+}, 1^{+}, 2^{+} \\ 1^{+} \end{array} $				
1670.11	1+	604.2 2 814.5 2 825.5 2	16.9 23.9 57.7	1065.80 855.81 844.62	$(^+)$ $0^+, 1^+, 2^+$	M1		0.00577	$\alpha(K)=0.00494\ 7;\ \alpha(L)=0.000655\ 10;\ \alpha(M)=0.0001390\ 20$ $\alpha(N)=3\ 14\times10^{-5}\ 5;\ \alpha(O)=4\ 76\times10^{-6}\ 7;\ \alpha(P)=3\ 09\times10^{-7}\ 5$
		999.9 2 1017.8 2 1093.9 5 1098.0 5 1166.7 5 1188.9 5 1324.9 5 1330.0 5 1444.4 5 1530.2 3 1670.0 5	9.2 11.5 9.2 40 53 10.8 33.9 23.9 10.8 100 33.9	670.17 652.36 576.27 572.11 503.39 481.18 344.94 339.88 225.47 139.95 0.0	$(^{+}) \\ (0^{-},1^{-},2^{-}) \\ (1^{+},2^{+}) \\ 0^{+},1^{+},2^{+} \\ + \\ (1,2)^{+} \\ 0^{+},1^{+},2^{+} \\ (2)^{-} \\ 1^{+} \end{cases}$				u(1)=3.14×10 3, u(0)=4.70×10 7, u(1)=3.05×10 3
1301.5+x	11 ⁽⁻⁾	495.1 [#]	100#	806.15+x	9(-)	E2 [@]		0.01262	α (K)=0.01040 <i>15</i> ; α (L)=0.001745 <i>25</i> ; α (M)=0.000379 <i>6</i> α (N)=8.45×10 ⁻⁵ <i>12</i> ; α (O)=1.221×10 ⁻⁵ <i>17</i> ; α (P)=6.03×10 ⁻⁷ <i>9</i>
1308.41+x	12+	374.1 <i>1</i>	100 3	934.29+x	11+	M1(+E2)	+0.08 10	0.0416 7	$\alpha(K)=0.0355\ 6;\ \alpha(L)=0.00484\ 7;\ \alpha(M)=0.001031\ 15$ $\alpha(N)=0.000232\ 4;\ \alpha(O)=3.51\times10^{-5}\ 6;\ \alpha(P)=2.25\times10^{-6}\ 4$
		776.4 2	8.5 21	532.15+x	10+	E2 [@]		0.00412	α (K)=0.00348 5; α (L)=0.000509 8; α (M)=0.0001092 16 α (N)=2.45×10 ⁻⁵ 4; α (O)=3.62×10 ⁻⁶ 5; α (P)=2.07×10 ⁻⁷ 3
1601.65+x?	11(-)	795.5 1	100	806.15+x	9(-)	E2		0.00390	α (K)=0.00329 5; α (L)=0.000480 7; α (M)=0.0001028 15 α (N)=2.30×10 ⁻⁵ 4; α (O)=3.41×10 ⁻⁶ 5; α (P)=1.96×10 ⁻⁷ 3
2017.4		1677.5 5	100	339.88	$(1,2)^+$				

7

From ENSDF

 $^{140}_{61} Pm_{79}$ -7

 $^{140}_{61} Pm_{79}$ -7

						$\gamma(^{14}$	⁰ Pm) (conti	inued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ ^{&b}	α^{a}	Comments
1690.2+x	12 ⁽⁺⁾	755.9 3	100	934.29+x	11+	(M1+E2) [@]		0.0058 14	$\alpha(K)=0.0049 \ 12; \ \alpha(L)=0.00068 \ 14; \ \alpha(M)=0.00014 \ 3 \ \alpha(N)=3.3\times10^{-5} \ 7; \ \alpha(O)=4.9\times10^{-6} \ 11; \ \alpha(P)=3.01\times10^{-7} \ 82$
1873.4+x	13+	565.0 2	100 [#] 5	1308.41+x	12+	M1+E2 [@]	+0.13 6	0.01452 23	α (K)=0.01240 20; α (L)=0.00167 3; α (M)=0.000355 6 α (N)=8.00×10 ⁻⁵ 12; α (O)=1.211×10 ⁻⁵ 19; α (P)=7.81×10 ⁻⁷ 13
		938.7 [#]	12 [#] 3	934.29+x	11+	E2 [@]		0.00270	α (K)=0.00229 4; α (L)=0.000323 5; α (M)=6.90×10 ⁻⁵ 10 α (N)=1.548×10 ⁻⁵ 22; α (O)=2.31×10 ⁻⁶ 4; α (P)=1.374×10 ⁻⁷ 20
1948.3+x	12 ⁽⁺⁾	1014.0 [#]	100 [#]	934.29+x	11+	(M1+E2) [@]		0.0029 7	α (K)=0.0025 6; α (L)=0.00033 7; α (M)=7.1×10 ⁻⁵ 14 α (N)=1.6×10 ⁻⁵ 3; α (O)=2.4×10 ⁻⁶ 5; α (P)=1.5×10 ⁻⁷ 4
2097.0+x	13 ⁽⁻⁾	495.4 ^{<i>d</i>} 2		1601.65+x?	11 ⁽⁻⁾	E2		0.01260	$\alpha(K)=0.01038 \ I5; \ \alpha(L)=0.001742 \ 25; \ \alpha(M)=0.000378 \ 6 \ \alpha(N)=8.43\times10^{-5} \ I2; \ \alpha(O)=1.218\times10^{-5} \ I8; \ \alpha(P)=6.02\times10^{-7} \ 9 \ \gamma \text{ ray placed here by in (HI,xn\gamma) (1993De40) but at 1301+x in (^{19}E 5n\gamma) (2010Wa37), which was adopted by$
		705 o#		1201.5	11(-)	F 2 [@]		0.00201	evaluator.
		795.2"		1301.5+x	11()	E2 C		0.00391	$\alpha(K)=0.00330$ 5; $\alpha(L)=0.000480$ /; $\alpha(M)=0.0001028$ 75 $\alpha(N)=2.31\times10^{-5}$ 4; $\alpha(O)=3.42\times10^{-6}$ 5; $\alpha(P)=1.97\times10^{-7}$ 3
2209.2+x	12 ⁽⁺⁾	1274.8 <i>3</i>	100	934.29+x	11+	(M1+E2) [@]		0.0018 4	α (K)=0.0015 3; α (L)=0.00020 4; α (M)=4.2×10 ⁻⁵ 8 α (N)=9.5×10 ⁻⁶ 17; α (O)=1.4×10 ⁻⁶ 3; α (P)=9.2×10 ⁻⁸ 19; α (IPF)=1.67×10 ⁻⁵ 5
2266.2+x	13 ⁽⁺⁾	576.0 [#]	100 [#]	1690.2+x	12 ⁽⁺⁾	(M1+E2) [@]		0.011 3	α (K)=0.0095 25; α (L)=0.00136 24; α (M)=0.00029 5 α (N)=6.5×10 ⁻⁵ 12; α (O)=9.8×10 ⁻⁶ 19; α (P)=5.8×10 ⁻⁷ 17
2332.1+x	14+	458.9 [#]	100 [#] 9	1873.4+x	13+	(M1+E2) [@]		0.020 5	α (K)=0.017 5; α (L)=0.0025 4; α (M)=0.00054 7 α (N)=0.000122 16; α (O)=1.8×10 ⁻⁵ 3; α (P)=1.03×10 ⁻⁶ 30
		1023.6 [#]	50 [#] 23	1308.41+x	12+	E2 [@]		0.00225	$\alpha(K)=0.00191 \ 3; \ \alpha(L)=0.000265 \ 4; \ \alpha(M)=5.65\times10^{-5} \ 8 \\ \alpha(N)=1.270\times10^{-5} \ 18; \ \alpha(O)=1.90\times10^{-6} \ 3; \ \alpha(P)=1.147\times10^{-7} \\ 16 $
2354.2+x	14+	1045.8 [#]	100 [#]	1308.41+x	12+	E2 [@]		0.00215	α (K)=0.00183 3; α (L)=0.000253 4; α (M)=5.38×10 ⁻⁵ 8 α (N)=1.210×10 ⁻⁵ 17; α (O)=1.81×10 ⁻⁶ 3; α (P)=1.097×10 ⁻⁷ 16
2444.1+x	12 ⁽⁺⁾	1509.5 [#]	100 [#]	934.29+x	11+	(M1+E2) [@]		0.00130 20	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00105 \ 17; \ \alpha(\mathrm{L}) = 0.000137 \ 21; \ \alpha(\mathrm{M}) = 2.9 \times 10^{-5} \ 5 \\ &\alpha(\mathrm{N}) = 6.5 \times 10^{-6} \ 10; \ \alpha(\mathrm{O}) = 9.9 \times 10^{-7} \ 16; \ \alpha(\mathrm{P}) = 6.4 \times 10^{-8} \ 11; \\ &\alpha(\mathrm{IPF}) = 8.2 \times 10^{-5} \ 3 \end{aligned}$

 ∞

 $^{140}_{61} Pm_{79}$ -8

L

						Adopted L	evels, Gamma	s (continued)				
	γ ⁽¹⁴⁰ Pm) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{a}	Comments				
2557.1+x	14+	1248.6 2	100	1308.41+x	12+	E2 [@]	1.51×10 ⁻³	$ \begin{aligned} &\alpha(\text{K}) = 0.001277 \ 18; \ \alpha(\text{L}) = 0.0001721 \ 25; \ \alpha(\text{M}) = 3.66 \times 10^{-5} \ 6 \\ &\alpha(\text{N}) = 8.23 \times 10^{-6} \ 12; \ \alpha(\text{O}) = 1.236 \times 10^{-6} \ 18; \ \alpha(\text{P}) = 7.68 \times 10^{-8} \ 11; \\ &\alpha(\text{IPF}) = 1.218 \times 10^{-5} \ 18 \end{aligned} $				
2570.7+x	14+	697.4 2	100 [#] 7	1873.4+x	13+	(M1+E2) [@]	0.0070 17	α (K)=0.0059 <i>15</i> ; α (L)=0.00083 <i>17</i> ; α (M)=0.00018 <i>4</i> α (N)=4.0×10 ⁻⁵ <i>8</i> ; α (O)=6.0×10 ⁻⁶ <i>13</i> ; α (P)=3.7×10 ⁻⁷ <i>11</i>				
		1262.5 7	60 [#] 8	1308.41+x	12+	E2 [@]	1.48×10 ⁻³	$\alpha(K)=0.001249 \ 18; \ \alpha(L)=0.0001681 \ 24; \ \alpha(M)=3.57\times10^{-5} \ 5 \ \alpha(N)=8.04\times10^{-6} \ 12; \ \alpha(O)=1.207\times10^{-6} \ 17; \ \alpha(P)=7.51\times10^{-8} \ 11; \ \alpha(IPF)=1.430\times10^{-5} \ 23$				
2595.5+x	$13^{(+)}$	386.0 [#]	71 [#] 14	2209.2+x	$12^{(+)}$	D+O						
		905.1 [#]	100 [#] 14	1690.2+x	12 ⁽⁺⁾	(M1+E2) [@]	0.0038 9	α (K)=0.0032 8; α (L)=0.00044 9; α (M)=9.3×10 ⁻⁵ 18 α (N)=2.1×10 ⁻⁵ 5; α (O)=3.2×10 ⁻⁶ 7; α (P)=1.98×10 ⁻⁷ 50				
2625.2+x	14 ⁽⁻⁾	528.2 2	100	2097.0+x	13(-)	(M1+E2) [@]	0.014 4	α (K)=0.0118 30; α (L)=0.0017 3; α (M)=0.00037 6 α (N)=8.3×10 ⁻⁵ 13; α (O)=1.23×10 ⁻⁵ 22; α (P)=7.2×10 ⁻⁷ 21				
2664.7+x	$13^{(+)}$	220.2 [#]	20 [#] 4	2444.1+x	$12^{(+)}$							
		455.2 [#]	41 [#] 6	2209.2+x	12 ⁽⁺⁾	(M1+E2) [@]	0.021 5	α (K)=0.017 5; α (L)=0.0026 4; α (M)=0.00055 7 α (N)=0.000124 16; α (O)=1.8×10 ⁻⁵ 3; α (P)=1.05×10 ⁻⁶ 31				
		974.3 [#]	100 [#] 14	1690.2+x	12 ⁽⁺⁾	(M1+E2) [@]	0.0032 7	α (K)=0.0027 6; α (L)=0.00037 8; α (M)=7.8×10 ⁻⁵ 15 α (N)=1.8×10 ⁻⁵ 4; α (O)=2.7×10 ⁻⁶ 6; α (P)=1.7×10 ⁻⁷ 4				
2747.8+x	15(-)	177.1 3	100 [#] 7	2570.7+x	14+	[E1] [@]	0.0565	α(K)=0.0480 7; α(L)=0.00664 10; α(M)=0.001409 21 α(N)=0.000314 5; α(O)=4.59×10-5 7; α(P)=2.54×10-6 4 Mult.: relatively pure stretched D, Δπ=yes E1 based on proposed configuration in (19F,5ηγ) (2010Wa37).				
		190.6 <i>3</i>	24 [#] 2	2557.1+x	14+	[E1] [@]	0.0463					
2776.7+x	13(+)	1468.4 <i>3</i>	100	1308.41+x	12+	(M1+E2) [@]	0.00136 21	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00111 \ 18; \ \alpha(\mathrm{L}) = 0.000145 \ 23; \ \alpha(\mathrm{M}) = 3.1 \times 10^{-5} \ 5 \\ &\alpha(\mathrm{N}) = 6.9 \times 10^{-6} \ 11; \ \alpha(\mathrm{O}) = 1.05 \times 10^{-6} \ 17; \ \alpha(\mathrm{P}) = 6.8 \times 10^{-8} \ 12; \\ &\alpha(\mathrm{IPF}) = 6.75 \times 10^{-5} \ 25 \end{aligned}$				
2830.0+x	15 ⁽⁻⁾	732.8 [#]	100 [#]	2097.0+x	13(-)	E2 [@]	0.00472	$\alpha(K)=0.00397\ 6;\ \alpha(L)=0.000589\ 9;\ \alpha(M)=0.0001265\ 18$ $\alpha(N)=2\ 83\times10^{-5}\ 4;\ \alpha(O)=4\ 18\times10^{-6}\ 6;\ \alpha(P)=2\ 36\times10^{-7}\ 4$				
2905.7+x	$14^{(+)}$	129.1 3	40 10	2776.7+x	$13^{(+)}$	D+O						
		240.9 3	80 20	2664.7+x	13(+)	(M1+E2) [@]	0.121 13	α (K)=0.098 <i>16</i> ; α (L)=0.0181 <i>25</i> ; α (M)=0.0040 <i>7</i> α (N)=0.00088 <i>13</i> ; α (O)=0.000126 <i>13</i> ; α (P)=5.8×10 ⁻⁶ <i>15</i>				
		310.1 <i>3</i>	100 30	2595.5+x	13 ⁽⁺⁾	(M1+E2) [@]	0.059 10	α (K)=0.048 <i>10</i> ; α (L)=0.00803 <i>14</i> ; α (M)=0.00174 <i>6</i> α (N)=0.000389 <i>9</i> ; α (O)=5.65×10 ⁻⁵ <i>15</i> ; α (P)=2.90×10 ⁻⁶ <i>80</i>				
2988.5+x	(14^{+})	324.0 [#]	<7 #	2664.7+x	13(+)							
	. /	1115.0 [#]	100 [#] 21	1873.4+x	13+							

9

From ENSDF

L

 $\gamma(^{140}\text{Pm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{a}	Comments
2992.5+x	16 ⁽⁻⁾	244.8 2	100	2747.8+x 1	15 ⁽⁻⁾	(M1+E2) [@]	0.116 <i>13</i>	$\alpha(K)=0.094 \ 15; \ \alpha(L)=0.0172 \ 22; \ \alpha(M)=0.0038 \ 6 \ \alpha(N)=0.0084 \ 12; \ \alpha(\Omega)=0.000120 \ 11; \ \alpha(P)=5 \ 5\times 10^{-6} \ 15$
3132.6+x	15 ⁽⁺⁾	226.9 2	100	2905.7+x 1	14 ⁽⁺⁾	(M1+E2) [@]	0.145 13	$\alpha(K) = 0.0108 \ 20; \ \alpha(O) = 0.000154 \ 20; \ \alpha(P) = 6.8 \times 10^{-6} \ 17$ $\alpha(K) = 0.0108 \ 20; \ \alpha(O) = 0.000154 \ 20; \ \alpha(P) = 6.8 \times 10^{-6} \ 17$
3285.9+x	(15+)	297.4 [#]	100 [#]	2988.5+x ((14+)	(M1+E2) [@]	0.066 11	$\alpha(K) = 0.054 \ II; \ \alpha(L) = 0.0092 \ 3; \ \alpha(M) = 0.00199 \ IO \ \alpha(N) = 0.000444 \ I8; \ \alpha(O) = 6.43 \times 10^{-5} \ IO; \ \alpha(P) = 3.25 \times 10^{-6} \ 88$
3372.8+x	16 ⁽⁻⁾	747.6 2	100	2625.2+x 1	14(-)	E2 [@]	0.00450	$\alpha(K) = 0.00379 \ 6; \ \alpha(L) = 0.000560 \ 8; \ \alpha(M) = 0.0001202 \ 17 \ \alpha(N) = 2 \ 69 \times 10^{-5} \ 4; \ \alpha(\Omega) = 3 \ 98 \times 10^{-6} \ 6; \ \alpha(P) = 2 \ 26 \times 10^{-7} \ 4$
3386.6+x	16 ⁽⁺⁾	254.0 2	100	3132.6+x 1	15 ⁽⁺⁾	(M1+E2) [@]	0.104 12	$\alpha(K) = 0.085 \ 15; \ \alpha(L) = 0.0152 \ 17; \ \alpha(M) = 0.0033 \ 5 \ \alpha(N) = 0.0074 \ 9; \ \alpha(O) = 0.000106 \ 8; \ \alpha(P) = 5.0 \times 10^{-6} \ 13$
3498.4+x	17 ⁽⁻⁾	505.9 [#]	100 [#] 8	2992.5+x 1	16 ⁽⁻⁾	(M1+E2) [@]	0.016 4	$\alpha(K) = 0.0131 \ 34; \ \alpha(L) = 0.0019 \ 3; \ \alpha(M) = 0.00041 \ 6$ $\alpha(N) = 9.3 \times 10^{-5} \ 14; \ \alpha(O) = 1.38 \times 10^{-5} \ 24; \ \alpha(P) = 8.1 \times 10^{-7} \ 24$
		750.6 [#]	11 [#] 4	2747.8+x 1	$15^{(-)}$			
3519.0+x	17 ⁽⁻⁾	688.8 [#]	100 [#]	2830.0+x 1	15 ⁽⁻⁾	E2 [@]	0.00546	α (K)=0.00458 7; α (L)=0.000691 10; α (M)=0.0001486 21 α (N)=3.33×10 ⁻⁵ 5; α (O)=4.90×10 ⁻⁶ 7; α (P)=2.72×10 ⁻⁷ 4
3593.5+x	(16^{-})	220.8 [#]	100 [#]	3372.8+x 1	$16^{(-)}$			
3610.0+x	(16 ⁺)	324.1 [#]	100 [#]	3285.9+x ((15^{+})			
3652.3+x	17 ⁽⁺⁾	265.8 [#]	100 [#] 4	3386.6+x 1	16 ⁽⁺⁾	(M1+E2) [@]	0.091 12	α (K)=0.074 <i>13</i> ; α (L)=0.0131 <i>11</i> ; α (M)=0.0029 <i>3</i> α (N)=0.00064 <i>6</i> ; α (O)=9.2×10 ⁻⁵ <i>5</i> ; α (P)=4.4×10 ⁻⁶ <i>12</i>
		519.7 [#]	6 [#] 1	3132.6+x 1	15 ⁽⁺⁾	E2 [@]	0.01109	$\alpha(K)=0.00917 \ I3; \ \alpha(L)=0.001511 \ 22; \ \alpha(M)=0.000327 \ 5 \ \alpha(N)=7.31\times10^{-5} \ I1; \ \alpha(O)=1.059\times10^{-5} \ I5; \ \alpha(P)=5.34\times10^{-7} \ 8$
3887.2+x	$18^{(-)}$	388.8 <mark>#</mark>	100 [#] 10	3498.4+x 1	$17^{(-)}$			
		894.7 [#]	67 [#] 10	2992.5+x 1	16 ⁽⁻⁾	E2 [@]	0.00300	$\alpha(K)=0.00254 4; \ \alpha(L)=0.000361 5; \ \alpha(M)=7.72\times10^{-5} 11$ $\alpha(N)=1.733\times10^{-5} 25; \ \alpha(Q)=2.58\times10^{-6} 4; \ \alpha(P)=1.522\times10^{-7} 22$
3935.2+x	18 ⁽⁻⁾	416.2 [#]	100 [#]	3519.0+x 1	17 ⁽⁻⁾	(M1+E2) [@]	0.026 6	$\alpha(K) = 0.022 \ 6; \ \alpha(L) = 0.0033 \ 4; \ \alpha(M) = 0.00072 \ 7$ $\alpha(N) = 0.00161 \ 16; \ \alpha(O) = 2.4 \times 10^{-5} \ 3; \ \alpha(P) = 1.33 \times 10^{-6} \ 39$
4002.8 + x	(17^{+})	392.8 <mark>#</mark>	100 [#]	3610.0+x ((16^{+})			
4043.0+x	$18^{(+)}$	390.7 [#]	100 [#] 5	3652.3+x 1	$17^{(+)}$	(M1+E2) [@]	0.031 7	$\alpha(K)=0.026\ 6;\ \alpha(L)=0.0040\ 4;\ \alpha(M)=0.00086\ 6$ $\alpha(N)=0.000193\ 15;\ \alpha(O)=2\ 8\times10^{-5}\ 3;\ \alpha(P)=1\ 57\times10^{-6}\ 45$
		656 5 <mark>#</mark>	2.3 [#] 6	3386 6+x 1	$16^{(+)}$			
4128.2+x	$18^{(-)}$	534.6 [#]	$9.2^{\#}25$	3593.5 + x ((16^{-})			
	10	755.4 ^{c#}	100 ^{<i>c</i>#} 9	3372.8+x 1	$16^{(-)}$	E2 [@]	0.00439	$\alpha(K)=0.00370\ 6;\ \alpha(L)=0.000546\ 8;\ \alpha(M)=0.0001170\ 17$ $\alpha(N)=2\ 62\times10^{-5}\ 4;\ \alpha(O)=3\ 88\times10^{-6}\ 6;\ \alpha(P)=2\ 20\times10^{-7}\ 3$
4393.0+x?	19 ⁽⁻⁾	894.6 <i>3</i>	100	3498.4+x 1	17 ⁽⁻⁾	E2	0.00300	$\alpha(K) = 0.00254 \ 4; \ \alpha(L) = 0.000361 \ 5; \ \alpha(M) = 7.72 \times 10^{-5} \ 11 \\ \alpha(N) = 1.733 \times 10^{-5} \ 25; \ \alpha(Q) = 2.58 \times 10^{-6} \ 4; \ \alpha(P) = 1.522 \times 10^{-7} \ 22$
4484.4+x	19 ⁽⁻⁾	597.2 [#]	100 [#] 13	3887.2+x 1	18 ⁽⁻⁾	(M1+E2) [@]	0.0102 25	$\alpha(K) = 0.0087 \ 23; \ \alpha(L) = 0.00124 \ 23; \ \alpha(M) = 0.00026 \ 5 \ \alpha(N) = 5.9 \times 10^{-5} \ 11; \ \alpha(O) = 8.9 \times 10^{-6} \ 18; \ \alpha(P) = 5.3 \times 10^{-7} \ 16$

From ENSDF

L

$\gamma(^{140}\text{Pm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α ^{<i>a</i>}	Comments
4484.4+x	$19^{(-)}$	986.0 [#]	13 [#] 8	3498.4+x 1	$17^{(-)}$			
4486.0+x	18(-)	892.5 [#]	20 [#] 8	3593.5+x ((16-)	E2	0.00302	α (K)=0.00256 4; α (L)=0.000363 5; α (M)=7.77×10 ⁻⁵ 11 α (N)=1.743×10 ⁻⁵ 25; α (O)=2.59×10 ⁻⁶ 4; α (P)=1.530×10 ⁻⁷ 22
		966.9 [#]	100 [#] 25	3519.0+x 1	17(-)	(M1+E2) [@]	0.0032 8	α (K)=0.0028 7; α (L)=0.00037 8; α (M)=8.0×10 ⁻⁵ 16 α (N)=1.8×10 ⁻⁵ 4; α (O)=2.7×10 ⁻⁶ 6; α (P)=1.7×10 ⁻⁷ 5
4508.0+x	19 ⁽⁺⁾	465.0 [#]	100 [#] 6	4043.0+x 1	18 ⁽⁺⁾	(M1+E2) [@]	0.019 5	α (K)=0.016 4; α (L)=0.0024 4; α (M)=0.00052 7 α (N)=0.000117 15; α (O)=1.7×10 ⁻⁵ 3; α (P)=1.00×10 ⁻⁶ 29
		855.7 [#]	7.0 [#] 12	3652.3+x 1	$17^{(+)}$			
4721.2+x	$20^{(-)}$	593.1 [#]	<5.3 [#]	4128.2+x 1	$18^{(-)}$			
		785.9 [#]	100 [#] 21	3935.2+x 1	18 ⁽⁻⁾	E2 [@]	0.00401	α (K)=0.00338 5; α (L)=0.000494 7; α (M)=0.0001059 15 α (N)=2.37×10 ⁻⁵ 4; α (O)=3.52×10 ⁻⁶ 5; α (P)=2.02×10 ⁻⁷ 3
4864.5+x	19 ⁽⁻⁾	736.3 [#]	100 [#]	4128.2+x 1	18(-)	(M1+E2) [@]	0.0061 15	α (K)=0.0052 <i>13</i> ; α (L)=0.00072 <i>15</i> ; α (M)=0.00015 <i>3</i> α (N)=3.5×10 ⁻⁵ <i>7</i> ; α (O)=5.2×10 ⁻⁶ <i>11</i> ; α (P)=3.21×10 ⁻⁷ 88
4956.4+x	19 ⁽⁻⁾	828.2 [#]	100 [#]	4128.2+x 1	18 ⁽⁻⁾	(M1+E2) [@]	0.0046 11	α (K)=0.0040 <i>10</i> ; α (L)=0.00054 <i>11</i> ; α (M)=0.000115 <i>23</i> α (N)=2.6×10 ⁻⁵ <i>6</i> ; α (O)=3.9×10 ⁻⁶ <i>9</i> ; α (P)=2.43×10 ⁻⁷ <i>64</i>
5012.4+x	20(+)	504.4 [#]	100 [#] 8	4508.0+x 1	19(+)	(M1+E2) [@]	0.016 4	α (K)=0.0132 34; α (L)=0.0019 3; α (M)=0.00042 6 α (N)=9.4×10 ⁻⁵ 14; α (O)=1.39×10 ⁻⁵ 24; α (P)=8.1×10 ⁻⁷ 24
		969.4 <mark>#</mark>	15 # 7	4043.0+x 1	$18^{(+)}$			
5019.8+x	20 ⁽⁻⁾	891.6 [#]	100 [#]	4128.2+x 1	18 ⁽⁻⁾	E2 [@]	0.00302	α (K)=0.00256 4; α (L)=0.000364 5; α (M)=7.79×10 ⁻⁵ 11 α (N)=1.747×10 ⁻⁵ 25; α (O)=2.60×10 ⁻⁶ 4; α (P)=1.533×10 ⁻⁷ 22
5356.4+x	21 ⁽⁺⁾	344.0 [#]	100 [#] 13	5012.4+x 2	$20^{(+)}$	(M1+E2) [@]	0.044 9	α (K)=0.036 8; α (L)=0.00584 22; α (M)=0.00126 3 α (N)=0.000283 9; α (O)=4.1×10 ⁻⁵ 3; α (P)=2.20×10 ⁻⁶ 62
		848.4 [#]	<4.4 [#]	4508.0+x 1	19(+)			
5525.2+x	21(-)	505.4 [#]	100 [#]	5019.8+x 2	20(-)	(M1+E2) [@]	0.016 4	α (K)=0.0132 34; α (L)=0.0019 3; α (M)=0.00041 6 α (N)=9.3×10 ⁻⁵ 14; α (O)=1.38×10 ⁻⁵ 24; α (P)=8.1×10 ⁻⁷ 24
5786.2+x	(21 ⁻)	921.7 [#]	100 [#]	4864.5+x 1	19 ⁽⁻⁾			
5941.4+x	(22+)	585.0 <mark>#</mark>	100 [#]	5356.4+x 2	$21^{(+)}$			
6391.5+x	23(-)	866.3 [#]	100 [#]	5525.2+x 2	21 ⁽⁻⁾	E2 [@]	0.00322	α (K)=0.00273 4; α (L)=0.000390 6; α (M)=8.34×10 ⁻⁵ 12 α (N)=1.87×10 ⁻⁵ 3; α (O)=2.78×10 ⁻⁶ 4; α (P)=1.631×10 ⁻⁷ 23

[†] From (HI,xn γ) for γ 's from levels that decay to the 0.0+x keV, 8⁻ isomer, unless noted otherwise; from ¹⁴⁰Sm ε for the other γ 's.

[‡] From (HI,xn γ) for γ 's from levels that decay to the 0.0+x keV, 8⁻ isomer by $\gamma(\theta)$, DCO except where noted; from ¹⁴⁰Sm ε for the other γ 's by $\alpha(K)$ exp. [#] From ¹²⁶Te(¹⁹F,5n γ).

^(a) From ¹²⁶Te(¹⁹F,5n γ) based on measurements of DCO ratios (2010Wa37), $\gamma(\theta)$, and linear pol ((1981PoZV, 1982PoZX), from in ¹²⁶Te(¹⁹F,5n γ). When linear pol is not available Q transitions are most likely E2 based on heavy ion reaction type, deformation, and rotational character of the bands; and admixed

From ENSDF

γ (¹⁴⁰Pm) (continued)

D+Q transitions are tentatively M1+E2 (combined with level scheme arguments). Few pure D transitions were adopted as E1 (also combined with level scheme arguments).

[&] From 126 Te(19 F,5n γ).

12

- ^{*a*} Additional information 2. ^{*b*} If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^c Multiply placed with intensity suitably divided.

^d Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Adopted Levels, Gammas

Level Scheme (continued)

Level Scheme (continued)

¹⁴⁰₆₁Pm₇₉

¹⁴⁰₆₁Pm₇₉

 $^{140}_{61}$ Pm₇₉-17

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

;

17

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹⁴⁰₆₁Pm₇₉

¹⁴⁰₆₁Pm₇₉

¹⁴⁰₆₁Pm₇₉