¹⁴⁰Pm ε decay (5.95 min) 1975Ke09,2009Wi18

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018

Parent: ¹⁴⁰Pm: E=0.0+x 28; $J^{\pi}=8^-$; $T_{1/2}=5.95 \text{ min } 5$; $Q(\varepsilon)=6045 \ 24$; $\%\varepsilon+\%\beta^+$ decay=100.0

¹⁴⁰Pm-E: x=431 28 (difference of Q values for ε decay of 9.2 s and 5.95 min of ¹⁴⁰Pm, 2017Au03).

¹⁴⁰Pm-J^{π},T_{1/2}: from ¹⁴⁰Pm Adopted Levels.

¹⁴⁰Pm-Q(ε): from 2017Wa10.

1975Ke09: measured γ , $\gamma\gamma$, β^+ at Foster Radiation Laboratory at McGill University.

2009Wi18 (and 2009WiZV): measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, mixing ratios using eight Compton-suppressed high-purity Ge clover detectors at the Wright Nuclear Structure Laboratory (WNSL) at Yale University.

Others: 1966At04, 1967Bl27, 1973VaYZ, 1973HaWA, 1974FiZF, 1975Za10.

Measured: γ , ce (semi), $\gamma\gamma$ (semi-semi), β^+ (scin).

Of the two main references presented above 1975Ke09 give separate level schemes for each of the 9.2 s, 1⁺ g.s. and for the 5.95 min, 8⁻ isomer $\varepsilon + \beta^+$ decays, while 2009Wi18 give a single level scheme for both decays. The evaluator attempted a separation of the 2009Wi18 data into two separate level schemes based on the fact the only common element of the two level schemes is the 773 γ from the first 2⁺ state to g.s. in ¹⁴⁰Nd (and all spins in 2009Wi18 data seem to cluster either around 1⁺ or around 8⁻). However when checking the intensity balances some anomalous situations were found. For example the levels 2276, 5⁻ and 2366, 6⁺ whose J^{π} values were established independently of the $\varepsilon + \beta^+$ decay, have their beta feeding in accordance with these J^{π} values in the level scheme of 1975Ke09; however with the data from 2009Wi18 the feeding of the 2276 level is about 10 times bigger which would be compatible with a spin value closer to 8, while the feeding of the 2366 level is negative indicating a very forbidden beta branch, so a much smaller spin value than 6. As these assignments are incompatible with the independently established J^{π} values, and with the fact that the separation of the two level schemes could be much more properly done by the authors, the evaluator did not include in the present dataset the data from 2009Wi18 by B. Karamy and B. Singh (McMaster).

140Nd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	0+	3.37 d 2	$\% \varepsilon = 100$ $\% \varepsilon$: from Adopted Levels.
773.60 <i>10</i> 1801.70 <i>10</i> 2221.51 <i>10</i>	2 ⁺ 4 ⁺ 7 ⁻	1.40 ps <i>11</i>	
2275.93 <i>13</i> 2366.23 <i>13</i>	5 ⁻ 6 ⁺	0.00 IIIS 5	
2842.23 <i>13</i> 2943.22 <i>13</i> 3060 75 <i>14</i>	$7^{(-)}$ (6 ⁺ ,7 ⁻) 7 ⁻		
3238.8 <i>5</i> 3418.51 <i>15</i>	8 ⁻ 7,8,9 ⁽⁻⁾		
3672.73 <i>15</i> 4349.32 <i>25</i> 4366.9 <i>8</i>	7 ⁽⁻⁾ 7,8,9 7,8,9 ⁽⁻⁾		

[†] From least-squares fit to the $E\gamma's$.

[‡] Adopted values.

			140 Pm ε	¹⁴⁰ Pm $ε$ decay (5.95 min) 1975Ke09,2009Wi18 (continued)							
				ε, β^+ radiations							
E(decay)	E(level)	I β^+ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments					
(1678 24)	4366.9	0.051 9	0.70 10	6.15 7	0.75 11	av Eβ=493 17; εK=0.788 7; εL=0.1126 10; εM+=0.0322 3					
(1696 24)	4349.32	0.011 4	0.14 6	6.86 18	0.15 6	av E β =501 17; ε K=0.785 7; ε L=0.1121 10; ε M+=0.0321 3					
(2372 24)	3672.73	0.13 2	0.35 5	6.70 7	0.48 7	av E β =802 17; ε K=0.619 11; ε L=0.0877 16; ε M+=0.0251 5					
(2626 24)	3418.51	1.3 1	2.4 2	5.95 4	3.7 3	av E β =917 17; ε K=0.543 11; ε L=0.0768 16; ε M+=0.0219 5					
(2806 24)	3238.8	0.26 5	0.35 6	6.83 8	0.61 11	av E β =999 17; ε K=0.490 11; ε L=0.0692 16; ε M+=0.0198 5					
(2984 24)	3060.75	0.26 6	0.29 6	6.97 10	0.55 12	av Eβ=1080 17; εK=0.441 10; εL=0.0621 15; εM+=0.0177 4					
(3102 24)	2943.22	0.21 8	0.19 7	7.17 17	0.40 15	av E β =1134 <i>17</i> ; ε K=0.410 <i>10</i> ; ε L=0.0577 <i>14</i> ; ε M+=0.0165 <i>4</i>					
(3203 24)	2842.23	0.16 8	0.13 7	7.36 23	0.29 15	av Eβ=1180 17; εK=0.384 9; εL=0.0542 13; εM+=0.0155 4					
(3679 24)	2366.23	0.35 9	0.18 4	7.34 11	0.53 13	av Eβ=1400 17; εK=0.283 7; εL=0.0398 10; εM+=0.0114 3					
(3769 24)	2275.93	<0.3	<0.1	>7.5	<0.4	av Eβ=1442 18; εK=0.267 7; εL=0.0375 9; εM+=0.0107 3					
4249 28	2221.51	63.4 17	27.8 10	5.173 21	91.2 22	av $E\beta$ =1467 <i>18</i> ; ε K=0.258 <i>7</i> ; ε L=0.0362 <i>9</i> ; ε M+=0.01034 <i>25</i> E(decay): from Q(ε)=6484 <i>70</i> measured by 1975Ke09					
						and adjusted by 2012AU05 to 6471 28.					

[†] Absolute intensity per 100 decays.

γ (¹⁴⁰Nd)

I γ normalization: $\Sigma I \gamma(g.s.) = 100\%$.

Eγ	I_{γ} [‡] <i>b</i>	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^{#@}	α^{\dagger}	Comments
90.1 2	0.19 3	2366.23	6+	2275.93 5-	E1	0.345 6	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.291 \ 5; \ \alpha(\mathrm{L}) = 0.0422 \ 7; \ \alpha(\mathrm{M}) = 0.00891 \ 14 \\ \alpha(\mathrm{N}) = 0.00196 \ 3; \ \alpha(\mathrm{O}) = 0.000281 \ 5; \\ \alpha(\mathrm{P}) = 1.430 \times 10^{-5} \ 22 \end{array} $
144.9 <i>1</i>	0.35 4	2366.23	6+	2221.51 7-	E1	0.0940	Mult.: from α (K)exp=0.26 20. α (K)=0.0800 12; α (L)=0.01107 16; α (M)=0.00233 4 α (N)=0.000516 8; α (O)=7.56×10 ⁻⁵ 11; α (P)=4 18×10 ⁻⁶ 6
177.8 <i>1</i>	0.12 2	3238.8	8-	3060.75 7-	M1(+E2)	0.286 7	Mult.: from $\alpha(K)$ exp=0.11 7. $\alpha(K)$ =0.224 15; $\alpha(L)$ =0.049 16; $\alpha(M)$ =0.0107 37 $\alpha(N)$ =0.00234 78; $\alpha(O)$ =3.29×10 ⁻⁴ 92; $\alpha(P)$ =1.3×10 ⁻⁵ 3
419.81 <i>I</i>	1.4 8 92 2	2221.51	7-	1801.70 4+	E3	0.0598	$\begin{aligned} &\alpha(\text{K}) = 0.0437 \ 7; \ \alpha(\text{L}) = 0.01256 \ 18; \ \alpha(\text{M}) = 0.00282 \ 4 \\ &\alpha(\text{N}) = 0.000619 \ 9; \ \alpha(\text{O}) = 8.54 \times 10^{-5} \ 12; \\ &\alpha(\text{P}) = 2.64 \times 10^{-6} \ 4 \\ &\text{E}_{\gamma}: \ \text{from } 1974\text{FiZF}. \\ &\text{Mult.: \ from } \alpha(\text{K}) \text{exp} = 4.7 \times 10^{-2} \ 4 \ (1975\text{Ke09}), \\ &\text{K/L} = 3.9 \ 6 \ (1973\text{VaYZ}). \end{aligned}$

Continued on next page (footnotes at end of table)

¹⁴⁰₆₀Nd₈₀-3

			140 Pm ε d	ecay (5.95	min)	1975Ke09,2009Wi18 (continued)				
				$\gamma(^{140}\text{Nd})$	(continued)					
Eγ	Ι _γ ‡ b	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. ^{#@}	α^{\dagger}	Comments		
474.2 1	1.0 2	2275.93	5-	1801.70	4+	E1	0.00445	$\alpha(K)=0.00382 \ 6; \ \alpha(L)=0.000498 \ 7; \\ \alpha(M)=0.0001048 \ 15 \\ \alpha(N)=2.34\times10^{-5} \ 4; \\ \alpha(O)=3.52\times10^{-6} \ 5; \\ \alpha(P)=2.21\times10^{-7} \ 3 \\ Mult: from \ \alpha(K)=0.005 \ 6 \\ \alpha(D)=0.005 \ 6 \\ \alpha(D)=0.$		
564.5 2	0.20 10	2366.23	6+	1801.70	4+	E2	0.00855	$\alpha(K) = 0.00713 \ 10; \ \alpha(L) = 0.001119$ $16; \ \alpha(M) = 0.000240 \ 4$ $\alpha(N) = 5.33 \times 10^{-5} \ 8;$ $\alpha(O) = 7.83 \times 10^{-6} \ 11;$ $\alpha(P) = 4.22 \times 10^{-7} \ 6$		
566.30 <i>3</i> ^x 635.1 ^{&} <i>4</i> ^x 651.8 ^{&} <i>4</i>	0.29 <i>15</i> 0.4 0.5 <i>3</i>	2842.23	7 ⁽⁻⁾	2275.93	5-					
667.3 1	0.20 10	2943.22	$(6^+, 7^-)$	2275.93	5-		0.00100			
695.1 2	0.20 4	3060.75		2366.23	6-	(EI)	0.00192	$\alpha(K)=0.001652\ 24;\ \alpha(L)=0.000212$ 3; $\alpha(M)=4.46\times10^{-5}\ 7$ $\alpha(N)=9.95\times10^{-6}\ 14;$ $\alpha(O)=1.506\times10^{-6}\ 22;$ $\alpha(P)=9.70\times10^{-8}\ 14$		
773.74 6	0.20 <i>10</i> 100 <i>5</i>	773.60	(6 ⁺ ,7 ⁻) 2 ⁺	0.0	/ 0 ⁺	E2	0.00396	α (K)=0.00334 5; α (L)=0.000483 7; α (M)=0.0001028 15 α (N)=2.29×10 ⁻⁵ 4; α (O)=3.42×10 ⁻⁶ 5; α (P)=2.01×10 ⁻⁷ 3 E _{γ} : from 1974FiZF. Mult.: from K/L=6.3 10 (1073YaYZ) suct		
839.1 1	0.50 10	3060.75	7-	2221.51	7-	M1(+E2)	0.0042 10	$\alpha(K)=0.0036 \ 8; \ \alpha(L)=0.00049 \ 10; \alpha(M)=0.000103 \ 19 \alpha(N)=2.3\times10^{-5} \ 5; \ \alpha(O)=3.5\times10^{-6} 7; \ \alpha(P)=2.2\times10^{-7} \ 6$		
^x 880.4 ^{&} 4	0.5 4	1210 22	780	2419 51	7 8 0(-)					
1017.3 <i>4</i>	0.45 10	3238.8	7,8,9 8 ⁻	2221.51	7-	M1+E2	0.0027 6	$\alpha(K)=0.0023 \ 5; \ \alpha(L)=0.00031 \ 6; \\ \alpha(M)=6.5\times10^{-5} \ 12 \\ \alpha(N)=1.5\times10^{-5} \ 3; \ \alpha(O)=2.2\times10^{-6} \\ 5; \ \alpha(P)=1.4\times10^{-7} \ 4$		
1028.19 7	100 2	1801.70	4+	773.60	2+	E2	0.00211	A ₂ =+0.09 <i>I</i> ; A ₄ =+0.04 <i>I</i> $\alpha(K)=0.00180 \ 3; \ \alpha(L)=0.000247 \ 4;$ $\alpha(M)=5.22\times10^{-5} \ 8$ $\alpha(N)=1.165\times10^{-5} \ I7;$ $\alpha(O)=1.755\times10^{-6} \ 25;$ $\alpha(P)=1.091\times10^{-7} \ I6$ E _{γ} : from 1974FiZF. Mult.: from $\alpha(K)\exp=1.7\times10^{-3} \ 2.$ $\gamma\gamma(\theta)$ for 1028-774 cascade		
^x 1110.3 ^a 5 1197.0 1	0.20 <i>4</i> 3.8 2	3418.51	7,8,9 ⁽⁻⁾	2221.51	7-			///// tor 1020 /// euseudo.		
x1261.9 ^{&} 4	1.0 3	2670 72	7(-)	1266 12	6+					
1306.4 <i>2</i> 1396.8 <i>1</i>	0.11 3 0.13 3	3672.73	7 ⁽⁻⁾	2300.23 2275.93	5 ⁻					

Continued on next page (footnotes at end of table)

$^{140}\mathbf{Pm}\ \varepsilon$ decay (5.95 min) 1975Ke09,2009Wi18 (continued)

γ (¹⁴⁰Nd) (continued)

Eγ	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Eγ	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
1451.6 5	0.24 5	3672.73	$7^{(-)}$	2221.51	7^{-}	^x 1957.4 ^a 5	0.22 4				
^x 1486.4 ^a 5	0.12 3					2145.4 8	0.75 10	4366.9	7,8,9 ⁽⁻⁾	2221.51	7-
^x 1733.8 ^{&} 4	0.3 1					^x 2240.3 ^a 5	0.20 4				
^x 1837.8 ^{&} 4	0.2 1					^x 2247.6 ^a 5	0.14 3				
^x 1907.1 ^a 5	0.40 5					^x 2407.7 10	0.02 1				

[†] Additional information 1. [‡] Relative intensities from 1975Ke09. [#] From α (K)exp (1973VaYZ, normalized to α (K)(773 γ)=3.3×10⁻³ (E2), I γ from 1975Ke09) and $\gamma\gamma(\theta)$ (2009Wi18). [@] A₂ and A₄ coefficients are from email reply from E. Williams, (2009Wi18) to XUNDL compiler November 25, 2009. [&] Weak γ observed only by 1975Za10.

^{*a*} Weak γ observed by 1975Ke09.

^b Absolute intensity per 100 decays.

 $x \gamma$ ray not placed in level scheme.

