		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 154,1 (2018)	20-Nov-2018

Q(β⁻)=-6045 24; S(n)=10316 28; S(p)=6729 9; Q(α)=-175 3 2017Wa10 Other experimental papers: 2014Le18 (σ for ¹⁴⁵Nd(p,t3n)¹⁴⁰Nd), 2009He03 (excitation function for ¹⁴¹Pr(d,3n)¹⁴⁰Nd), 2008Na05 (Eγ, Iγ, activation yields for ¹⁴⁴Sm(γ,α)¹⁴⁰Nd, 2007Qa03, 2007Zh23, 2005Hi24 (measured yields, excitation function and yields for ^{nat}Ce(³He,xn)¹⁴⁰Nd and ¹⁴¹Pr(p,2n)¹⁴⁰Nd), 2005HiZX (σ for ¹⁴¹Pr(p,2n)¹⁴⁰Nd), 2005Ya03, 2003KoZR, 2000KoZQ (Auger electrons), 2002Wa24 (quasi-continuous γ spectrum), 1999GaZX, 1987AlZB (charge radii).

¹⁴⁰Nd Levels

Cross Reference (XREF) Flags

	A B C	¹⁴⁰ Nd IT de ¹⁴⁰ Pm ε dec ¹⁴⁰ Pm ε dec	ecay (0.60 ms) cay (9.2 s) cay (5.95 min)	E ${}^{96}Zr({}^{48}Ca,4n\gamma):SD$ I ${}^{142}Nd(p,t) E=52 \text{ MeV}$ F ${}^{126}Te({}^{18}O,4n\gamma)$ J Coulomb excitation G ${}^{140}Ce({}^{3}He,3n\gamma)$
	D	⁹⁶ Zr(⁴⁸ Ca,4	ηγ)	H 142 Nd(p,t) E=35.6 MeV
E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments
0.0 ^{&}	0+	3.37 d 2	ABCD FGHIJ	$\% \varepsilon = 100$ T _{1/2} : from 1968La17. RMS charge radius $< r^2 > 1/2 = 4.9101$ fm 26 (2013Ap02)
773.65 ^{&} 6	2+	1.40 ps <i>11</i>	ABCD FGHIJ	B(E2) \uparrow =0.725 56 J ^{π} : γ to 0 ⁺ is E2. B(E2) \uparrow : weighted average (by evaluator) of BE2 \uparrow =0.74 8 and 0.71 8 with ⁴⁸ Ti and ⁶⁴ Zn targets, respectively. 2013Ba38 (Coulomb excitation dataset) list BE2 \uparrow =0.72 5.
1413 03 11	0^{+}		BG	$I_{1/2}$: deduced by evaluator from BE2 = 0.725 50. I^{π} : transition to 0 ⁺ is E0
1414 2	2^{+}		Н	J^{π} : from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
1489.41 7	$(2)^{+}$		B GHI	J^{π} : γ to 2^+ is M1+E2, γ to 0^+ is (E2).
1801.84 <mark>&</mark> 9	4+		A CD FGHI	J^{π} : γ to 773, 2 ⁺ is $\Delta J=2$, E2.
1935.16 12	3-		B GH	J ^{π} : from (p,t) E=35.6 MeV measured d σ /d Ω and DWBA calculations.
2124.0? 8	3(-)		F	J^{π} : γ to 2^+ is $\Delta J=1$, D; γ to 4^+ ; syst of 3^- levels.
2139.84 11	2+	152 fs 62	B GH	J ^{π} : from (p,t) E=35.6 MeV measured d σ /d Ω and DWBA calculations. T _{1/2} : effective T _{1/2} from DSAM (2010Gl05, ¹⁴⁰ Ce(³ He,3n γ) dataset).
2221.65 9	7-	0.60 ms 5	A CD FGHI	%IT=100 $T_{1/2}$: from IT decay data (1962Re04). J^{π} : γ to 4 ⁺ is E3; also from (p,t) E=35.6 MeV, measured d $\sigma/d\Omega$ and DWBA calculations
2275.96 11	5-		C FGH	I^{π} : γ to 4 ⁺ is AI=1. E1: γ from 2366. 6 ⁺ is E1.
2330 10	0^{+}		I	J^{π} : L=0 in (p,t) E=52 MeV (1971Be29).
2332.28 12	2+		B GH	XREF: H(2336) J ^{π} : from (p,t) E=35.6 MeV measured d σ /d Ω and DWBA calculations; log ff=6 1 via 1 ⁺ parent M1+F2 γ to 2 ⁺
2358.76 12	0^{+}		в н	J^{π} : from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
2366.55 11	6+		C FG	J^{π} : γ to 7 ⁻ is E1, γ to 5 ⁻ is $\Delta J=1$, E1.
2400.0 7	4+		GH	J ^{π} : from (p,t) E=35.6 MeV measured d σ /d Ω and DWBA calculations.
2466.97 11	2+		B H	J ^{π} : from (p,t) E=35.6 MeV measured d σ /d Ω and DWBA calculations.
2514 <i>3</i>	5-		Н	J ^{π} : from (p,t) E=35.6 MeV measured d σ /d Ω and DWBA calculations.
2546.89 9	0^{+}		B H	J^{π} : 0 ⁺ ,1 ⁺ ,2 ⁺ from log <i>ft</i> =5.6 via 1 ⁺ parent; (0 ⁺) from measured $d\sigma/d\Omega$ and DWBA calculation in (p,t) E=35.6 MeV; E2 γ to 2 ⁺ .
2575 3	$(4^+, 5^-)$		Н	J ^{π} : from (p,t) E=35.6 MeV measured d σ /d Ω and DWBA calculations.

¹⁴⁰Nd Levels (continued)

E(level) [†]	J ^{π‡}	T _{1/2}	XRE	EF	Comments
2585.16 12	0^{+}		В		$J^{\pi}: 0^+, 1^+, 2^+$ from log ft=6.4 via 1 ⁺ parent; 0 ⁺ from E2 γ to 2 ⁺ .
2606 3	3-			Н	J^{π} : from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
2611.07 9	(2^{+})		В		J ^{π} : 0,1,2 from log ft=6.4 via 1 ⁺ parent; (2 ⁺ ,4 ⁺) supported by $\gamma\gamma(\theta)$ for
	· /				1837-774 cascade; (2^+) from γ to 0^+ g.s.
2670 10				I	
2686 <i>3</i>	4+			Н	J ^{π} : from (p,t) E=35.6 MeV measured d σ /d Ω and DWBA calculations.
2713.96 12	2+		В	Н	J ^{π} : from (p,t) E=35.6 MeV measured d σ /d Ω and DWBA calculations.
2810 10				I	
2832.97 12	(2^{+})		В	Н	J ^{π} : from (p,t) E=35.6 MeV measured d σ /d Ω and DWBA calculations.
2842.26 11	7(-)		С		J^{π} : log $ft=7.4$ via 8 ⁻ parent. γ to 5 ⁻ .
2889 3	(5 ⁻)			Н	J ^{π} : from (p,t) E=35.6 MeV measured d σ /d Ω and DWBA calculations.
2908.77 12	0^{+}		В	н	J^{π} : from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
2943.31 12	(6 ⁺ ,7 ⁻)		C	H	J^{π} : (7 ⁻) from 7,8,9 from log <i>ft</i> =7.2 via 8 ⁻ parent and (5 ⁻ ,6,7 ⁻) from γ 's to 5 ⁻ and 7 ⁻ ; (6 ⁺) from measured d σ /d Ω and DWBA calculation in (p,t)
2014 4	4+				E=33.0 MeV. $M_{\rm e}$ from (n t) $E=25.6$ MeV measured d $\sigma/d\Omega$ and DWDA coloulations
3014 4 2026 04 17	(1.2)		ъ	нт	J [*] : from (p,t) E=53.0 MeV measured $d\sigma/ds2$ and DWBA calculations.
3050.04 17	(1,2) A^+		D	u	J : 0,1,2 from (n t) E=25.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations
3001.4	4 7-		CD E	п	J [*] . from (p,t) $E=53.0$ MeV measured $dO/ds2$ and $DWBA calculations.$
3136 1	(A^{+})		CD F	u	J. γ to 7 is $\Delta J=0$, M1+(E2). I^{π} : from (n t) E=25.6 MeV measured $d\sigma/d\Omega$ and DWRA calculations
3140.07.12	(+) 0 ⁺		D	п	J. from log $f_{t=6}^{-6}$ via 1 ⁺ parent: stratched E2 v to 2 ⁺
3185 3 8	0 8+		D F	c	J : 0,1,2 from log μ =0.9 via 1 parent, stretched E2 y to 2 . I ^{π} : α to 6 ⁺ is E2
3206 1	(2^+)		r	u u	J. Y to 0 is E2. I^{π} : from (n t) E-35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations
3239 4	(2^+)			н	I^{π} : from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
3230 65 ^{<i>a</i>} 12	(2) Q-				I^{π} : 7.8.0 from log $f_{-7.0}$ via 8^{-} parent: M1+E2 or to 7^{-} in $\frac{126}{180}$ ($\frac{180}{180}$ ($\frac{180}{180}$)
3239.03 12	0		CD F		$J = 1,0,0$ from $\log (1-1,0)$ via 8 parent, $MT + 12,0$ to 7 in $Te(0,0,0)$ dataset.
3286 4	4 ⁺			H	J^{π} : from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
3324 4	2'&4'			H	J [*] : from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
338/4	2'			Н	J [*] : from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
3419.16 22	7,8,9(-)		C F		J^{π} : log ft=6.0 via 8 ⁻ parent, γ to 2221, 7 ⁻ .
3454.94 ^{<i>a</i>} 12	9-		DF		J^{n} : γ to 2221, 7^{-1} is $\Delta J=2$, E2; γ to 8 ⁻¹ is $\Delta J=1$, M1+E2.
3460 5	4 ⁺			H	J^{π} : from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
3493 5	4+		_	Н	J^{π} : from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
3506.88 21	01,1,2		В		J ^{Λ} : log ft=6.3 via 1 ⁺ parent, γ to 2 ⁺ .
3510.5	(2 +)			H	
3501 5	(2^{+})			H	J [*] : from (p,t) E=55.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
35/4 5	3 (1+)			H	J [*] : from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
3621 5	(4')	27 5		н	J [*] : from (p,t) $E=55.6$ MeV measured $d\sigma/d\Omega$ and DWBA calculations.
3621.52 13	10.	27 ns 5	DF		$\mu = -1.92 \ I2 \ (2014St24)$ T = maximum di 22 m l (1081M-00) 22 m l (1080M-11) 25 m 8
					μ : based on 1980Me11, by time dependent perturbed angular distribution method; other: -1.64 22 (1982KaZO).
2650 10				-	J : γ 10 9 18 ΔJ=1, E1.
3650 10	(7-)				
3666 5	(/)		-	Н	J [*] : from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
36/2.82 14	<u> </u>		C		J [*] : log $ft=0.7$ via 8 parent, γ to 5.
3/33 0	(+			H	
3/33 0	0.			н	J:: from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
3/80/10					
3010 0 2011 6	(6^+)			H U	$\pi_{\rm s}$ from (n t) E-25 (MeV measured $J = /JO = J DWDA = J = J = J'$
3044 U 3880 6	(0)			n u;	J. HOIL (P,1) E=33.0 MEV measured $d\sigma/d\Omega 2$ and DWBA calculations.
5007 0	(1)			пт	AREF. 1(3702)

¹⁴⁰Nd Levels (continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					J^{π} : from (p,t) E=35.6 MeV measured $d\sigma/d\Omega$ and DWBA calculations.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3925 7			Hi	XREF: i(3920)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3949 7			Н	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3958.9 4	(9 ⁻)		F	J^{π} : γ' s to 7 ⁻ and 8 ⁻ in ¹²⁶ Te(¹⁸ O,4n γ) dataset.
4157.19 10* F \mathcal{P} : γ to \mathcal{P}^* is E2. 4175.62 10 0 F \mathcal{P}^* : γ to \mathcal{P}^* is M1+E2. 4175.62 10 0 F \mathcal{P}^* : γ to \mathcal{P}^* is \mathcal{B}^* to \mathcal{P}^* is \mathcal{B}^* . 4350.33 7.8.9 C \mathcal{P}^* : γ from 13* is E2. \mathcal{P}^* . 4384.714 11" F \mathcal{P}^* : γ from 13* is E2. \mathcal{P}^* . 4384.714 12" 0.25 ns D F \mathcal{P}^* : γ from 13* is E2. 4703.27 ^d 18 13" D F \mathcal{P}^* : γ from 14% is E2. \mathcal{P}^* . 4703.27 ^d 18 13" D F \mathcal{P}^* : γ to 363, 10° is M1+E2. \mathcal{P}^* . 4705.10* is E2. \mathcal{P}^* . \mathcal{P}^* : γ to 475.10° is E2. \mathcal{P}^* .	4031.15 ^a 14	10-		DF	J^{π} : γ to 9 ⁻ is M1+E2.
4170 / 0 T F J^2 ; y to J^2 is M1+E2. 4232.34 ² / 5 11 ⁻ D F J^2 ; y to J^2 is M1+E2. 4350.0 7.8.9 C J^2 ; log J^2 =6.2 via 8 ⁻ parent. 4367.1.8 7.8.9 C J^2 ; log J^2 =6.2 via 8 ⁻ parent. y to 7 ⁻ . 4383.7.1.8 11 ⁻ F J^2 : y to 10 ⁻ is E2. 4375.2.70 It T F J^2 : y to 30 ⁻ (16 ⁰ O, any) (1981Me09). 4703.270 It T F J^2 : y to 31 ⁻ is M1+E2. 4703.274 It T F J^2 : y to 321.0 ⁺ is M1+E2. 4703.274 It T F J^2 : y to 475.10 ⁻ is M1+E2. 4703.274 It T F J^2 : y to 475.10 ⁻ is E2. 4703.284 It T F J^2 : y to 475.10 ⁻ is E2. 513.84 It T F J^2 : y to 475.10 ⁻ is E2. 513.84 It T F J^2 : y to 473.10 ⁻ is $\Delta I = 1$. 513.84 It T D J^2 : y to 473.10 ⁻ is $\Delta I = 1$. 513.84 It It T	4157.1 9	10^{+}		F	J^{π} : γ to 8^+ is E2.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4170 10			I	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4175.62 19	10-		DF	J^{π} : γ to 9 ⁻ is M1+E2.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4323.34 ^{<i>a</i>} 15	11-		D F	J^{π} : γ to 9 ⁻ is E2; γ to 10 ⁻ is M1+E2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4350.0 <i>3</i>	7,8,9		C	J^{π} : log ft=6.9 via 8 ⁻ parent.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4367.1 8	$7,8,9^{(-)}$		C	J^{π} : log ft=6.2 via 8 ⁻ parent, γ to 7 ⁻ .
4514.31° 18 12° 0.25 ns D F J ² ; y to 10° is E2. T _{1/2} : from (¹ 60.4ny) (1981Me09). 4703.27° 18 13° D F J ² ; y from higher 14° to this level is M1+E2. 4703.27° 18 13° D F J ² ; y to 475, 10° is E2; y to 4878, 11° is M1+E2. 5098.94 21 12° D F J ² ; y to 475, 10° is E2; y to 4878, 11° is M1+E2. 513.84 22 11° F J ² ; y to 137, 10° is E2; y to 4878, 11° is M1+E2. 531.84 12° D F J ² ; y to 137, 13° is Δ1–1, M1+E2. 543.196° 18 14° D F J ² ; y to 13°, 13° is Δ1–1, M1+E2. 5613.88° 19 15° D F J ² ; y to 14° is M1+E2. 5056.83 (14°) D F J ² ; y to 14° is M1+E2. 5970.58 24 15° D F J ² ; y to 14° is M1+E2. 5970.58 24 15° D F J ² ; y to 15°. 5987.6° 11 (15°) D F J ² ; y to 16°. 5987.6° 11 (15°) D F J ² ; y to 17° is E2. 6158.35 21 16 ⁴ D F J ² ; y from 18° is E2; 16° in 2005Pe24 and 2006Pe25 based on M1+E2 y to 15°; 2006Pe25 argue as possible the assignment 16 ⁴ (not excluded by DCO value), finally adopted by 2013Le22. 6183.4° 11 (16°) D J ² ; y to 16° is M1+E2; in (⁴⁸ Ca,4ny). 6407.89 23 15° D F J ² ; y to 16° is M1+E2; in (⁴⁸ Ca,4ny). 6407.89 23 15° D F J ² ; y to 16° is M1+E2; in (⁴⁸ Ca,4ny). 6410.43 25 16 F J ² ; y to 16° is M1+E2; in (⁴⁸ Ca,4ny). 6410.43 25 16 F J ² ; y to 16° is M1+E2; in (⁴⁸ Ca,4ny). 6423.4° 11 (17°) D J ² ; y to 16° is M1+E2; in (⁴⁸ Ca,4ny). 6432.4° 11 (17°) D J ² ; y to 16° is M1+E2; in (⁴⁸ Ca,4ny). 673.1.1° 3 (15°) D J ² ; y to 16° is M1+E2; in (⁴⁸ Ca,4ny). 6745.7° I 17 N D F J ² ; y to 16° is M1+E2; in (⁴⁸ Ca,4ny). 6745.7° I 11 (18°) D J ² ; y to 16° is M1+E2; in (⁴⁸ Ca,4ny). 6763.7 F J ² ; to 15° is D+Q. 6801.2 3 16° D J ² ; y to 15° is M1+E2; in (⁴⁸ Ca,4ny). 6763.7 F J ² ; y to 15° is M1+E2; in (⁴⁸ Ca,4ny). 6763.7 F J ² ; y to 15° is M1+E2; in (⁴⁸ Ca,4ny). 677.4 3 16° D J ² ; y to 15° is M1+E2; in (⁴⁸ Ca,4ny). 677.9 O H ² ; y to 15° is M1+E2; in (⁴⁸ Ca,4ny). 677.9 O H ² ; y to 15° is M1+E2; in (⁴⁸ Ca,4ny). 677.9 O H ² ; y to 15° is E2. 6891.9 ³ (16°) D J ² ; y to 15° is E2. 6891.9 ³ (16°) D J ² ; y to 15° is E2. 713.77 3 (17°) D F J ²	4388.7 13	11-		F	J^{π} : γ from 13 ⁻ is E2.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4514.31 ^{<i>a</i>} 18	12-	0.25 ns	DF	J^{π} : γ to 10^{-} is E2.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>a</i>				$T_{1/2}$: from (¹⁶ O,4n γ) (1981Me09).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4703.27 ^{<i>a</i>} 18	13-		DF	J^{π} : γ from higher 14 ⁻ to this level is M1+E2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4878.5 4	11-		F	J^{π} : γ to 4175, 10 ⁻ is M1+E2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4915.34 22	11+		F	J^{π} : γ to 3621, 10 ⁺ is M1+E2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5098.94 21	12-		DF	J^{π} : γ to 4175, 10 ⁻¹ is E2; γ to 48/8, 11 ⁻¹ is M1+E2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5138.84 21	12		F	J^{*} : γ to 4175, 10 is E2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5312.03 18	13			J^{\prime} : γ to 12 is M1+E2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5431.96 18	14			$J^{n}: \gamma$ to 4/03, 13 is $\Delta J=1$, M1+E2.
5044,04/25 15 D F M1+E2 y to 15 ⁻ . 5902,57 ² /23 16 ⁻ D F M1+E2 y to 15 ⁻ . 5902,57 ² /23 16 ⁻ D F J ⁺ : (14 ⁻) assumed in (⁴⁸ Ca,4ny) but no evidence reported. 597,6 ^R 11 (15 ⁻) D F J ⁺ : (15 ⁻) assumed as y in Δ J=1 band in (⁴⁸ Ca,4ny) (no evidence reported). 6158,35 21 16 ⁺ D F J ⁺ : y from 18 ⁺ is E2; 16 ⁻ in 2005Pe24 and 2006Pe25 based on M1+E2 γ to 15 ⁻ : 2006Pe25 argue as possible the assignment 16 ⁺ (not excluded by DCO value), finally adopted by 2013Le22. 6183,4 ^R 11 (16 ⁻) D J ⁺ : y from 16 ⁺ is M1+E2 in (⁴⁸ Ca,4ny). 6407,89 23 17 ⁻ D F J ⁺ : y to 15 ⁻ is M1+E2. 6410,43 16 F J ⁺ : y to 15 ⁻ is M1+E2 in (⁴⁸ Ca,4ny). 6451,5 ⁺ 6432,4 ^R 11 (17 ⁻) D J ⁺ : y to (16 ⁻) in AJ=1 band in (⁴⁸ Ca,4ny). 6451,5 ⁺ 6431,4 ^R 11 (17 ⁻) D J ⁺ : y to 15 ⁻ is M1+E2 in (⁴⁸ Ca,4ny). 6471,9 ⁺ 6432,4 ^R 11 (17 ⁻) D J ⁺ : y to (16 ⁻) is M1+E2 in (⁴⁸ Ca,4ny). 6763,7 16 ⁺ <td>5613.88 19</td> <td>15</td> <td></td> <td></td> <td>J^{T}: γ to 14 is M1+E2.</td>	5613.88 19	15			J^{T} : γ to 14 is M1+E2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$500257\frac{a}{22}$	15 16 ⁻			$J : M1 + E2 \gamma to 14$. π : M1 + E2 α to 15 ⁻
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5902.57 25	(14^{-})		Dr	J. WITHEZ γ to 15. π . (14 ⁻) accumulation (⁴⁸ Co. Anal) but no avidance reported
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5900.8 5 5070 58 24	(14)		DE	$J^{(14)}$ (14) assumed in (${}^{(16)}$ Ca,4n γ) but no evidence reported.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5970.3824	(15-)		Dr	J: γ 10 15 18 E2.
6158.35 2116 ⁺ DF J^{π_1} : γ from 18 ⁺ is E2; 16 ⁻ in 2005Pe24 and 2006Pe25 based on M1+E2 γ to 15 ⁻ ; 2006Pe25 argue as possible the assignment 16 ⁺ (not excluded by DCO value), finally adopted by 2013Le22.6183.4 ⁿ 11(16 ⁻)D J^{π_1} : M1+E2 γ to (15 ⁻) in Δ I=1 band in (⁴⁸ Ca,4n γ).6351.8 315 ⁺ DJ ^{\pi} : γ to 16 ⁻ is M1+E2.6407.89 2317 ⁻ DFJ ^{\pi} : γ to 16 ⁻ is M1+E2.6410.43 2516FJ ^{\pi} : γ to 16 ⁻ is M1+E2.6432.4 ⁿ 11(17 ⁻)DJ ^{\pi} : γ to 16 ⁻ is Δ L=0 band in (⁴⁸ Ca,4n γ).6515.5 [*] 4(14 ⁺)DJ ^{\pi} : γ to (16 ⁻) in Δ I=1 band in (⁴⁸ Ca,4n γ).6731.1 ^r 3(15 ⁺)DJ ^{\pi} : γ to (15 ⁺) is Δ I=0, M1+E2 in (⁴⁸ Ca,4n γ).6745.7 ⁿ 11(18 ⁻)DJ ^{\pi} : γ to (17 ⁻) is M1+E2 in (⁴⁸ Ca,4n γ).6753.7 5FJ ^{\pi} : γ to 15 ⁺ is M1+E2 in (⁴⁸ Ca,4n γ).6763.7 5FJ ^{\pi} : γ to 15 ⁺ is M1+E2 in (⁴⁸ Ca,4n γ).6861.2 316 ⁺ DJ ^{\pi} : γ to 15 ⁺ is M1+E2 in (⁴⁸ Ca,4n γ).6861.2 316 ⁺ DJ ^{\pi} : γ to 15 ⁺ is M1+E2 in (⁴⁸ Ca,4n γ).6966.7 317 ⁻ DFJ ^{\pi} : γ to 15 ⁻ is E2.7132.7 ^r 3(17 ⁺)DJ ^{\pi} : γ to 15 ⁻ is E2.7132.7 ^r 3(17 ⁺)DJ ^{\pi} : γ to 17 ⁻ is M1+E2.737.9 ³ 3(18 ⁺)DFJ ^{\pi} : γ to 17 ⁻ is M1+E2.737.9 ³ 3(18 ⁺)DFJ ^{\pi} : γ to 17 ⁻ is M1+E2.737.9 3<	3987.0" 11	(15)		D	$J^{(1)}(13)$ assumed as $\gamma \text{ In } \Delta J=1$ band in (${}^{(3)}Ca,4\pi\gamma$) (no evidence
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6158.35 <i>21</i>	16+		D F	J^{π} : γ from 18 ⁺ is E2; 16 ⁻ in 2005Pe24 and 2006Pe25 based on M1+E2 γ to 15 ⁻ ; 2006Pe25 argue as possible the assignment 16 ⁺ (not excluded by DCC unlass), for large datated by 2012Le22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(102 M 1)	(1(-))		D	π_{π} M1 ± 22 sets (15 ⁻) in AL 1 hand in (48Cs 4ms)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0185.4" 11	(10)		D	J ^T : M1+E2 γ to (15) in Δ J=1 band in ("Ca,4n γ).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6351.8 3	15		DE	J^{*} : γ from 10° is M1+E2 in (*°Ca,4n γ).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6410 42 25	1/			J^{T} : γ to 10 is M1+E2. I^{T} : α to 15^{-1} is D+O
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6410.4323	(17-)		r D	$J = \gamma (0 15 15 D+Q)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0432.4 11	(17)		U D	$J : \gamma = 0 (10^{-1}) = 10 \text{ and } = 10 \text{ and } = 1 (-Ca, 4\pi\gamma).$
6731.1^{-5} (13^{-1}) D J^{+1} γ to (15^{-1}) is $\Delta J=0$, $M1+E2$ in $(^{+4}Ca, 4n\gamma)$. 6745.7^{n} II (18^{-1}) D J^{π} : γ to (17^{-}) is $M1+E2$ in $(^{48}Ca, 4n\gamma)$. 6763.75 F J^{π} : γ to (15^{-1}) is $M1+E2$ in $(^{48}Ca, 4n\gamma)$. 6770.43 16^{+} D J^{π} : γ from 18^{+} is $E2$ in $(^{48}Ca, 4n\gamma)$. 6807.43 16^{+} D J^{π} : γ to 15^{-1} is $M1+E2$ in $(^{48}Ca, 4n\gamma)$. 6861.23 16^{+} D J^{π} : γ to 15^{+1} is $M1+E2$ in $(^{48}Ca, 4n\gamma)$. 6861.73 16^{+} D J^{π} : γ to (15^{+}) is $M1+E2$ in $(^{48}Ca, 4n\gamma)$. 6966.73 17^{-} D J $7057.0^{0}4$ 17^{-} D J $7122.7^{t}3$ (17^{+}) D J^{π} : γ to 15^{-1} is $E2$. $7132.7^{t}3$ (17^{+}) D J^{π} : γ to (16^{+}) is $M1+E2$. $7170.2^{t1}11$ (19^{-}) D J^{π} : γ to (18^{-}) is $M1+E2$. $7207.5^{0}3$ 18^{-} D J^{π} : γ to 17^{-} is $M1+E2$. 7397.93 (18^{+}) D F J^{π} : γ to 17^{-} is $M1+E2$. 7435.14 (20^{+}) $1.23 \ \mu s 7$ D F J^{π} : γ from 21^{-} is $(E1)$ and γ' s to 17^{-} , 18^{-} and (18^{+}) . $2006Pe25$	$(721 1^{2})^{-2}$	(14^{+})		D	J ^{**} : assigned by 2015Le22 in (*Ca,4iry) based on $\Delta J=0$, (E1) γ to 14 [×] γ .
6745.7^{*} 11 (18°) D $J^{*}: \gamma$ to (17°) is M1+E2 in $(^{**}Ca,4n\gamma)$. 6763.75 F $J^{\pi}: \gamma$ to (17°) is M1+E2 in $(^{18}O,4n\gamma)$ not adopted. 6770.43 16^{+} D $J^{\pi}: \gamma$ from 18^{+} is E2 in $(^{48}Ca,4n\gamma)$. 6807.43 16^{+} D $J^{\pi}: \gamma$ to 15^{+} is M1+E2 in $(^{48}Ca,4n\gamma)$. 6861.23 16^{+} D $J^{\pi}: \gamma$ to 15^{+} is M1+E2 in $(^{48}Ca,4n\gamma)$. 6861.73 16^{+} D $J^{\pi}: \gamma$ to (15^{+}) is M1+E2 in $(^{48}Ca,4n\gamma)$. 6966.73 17^{-} DF $J^{\pi}: \gamma$ to 15^{-} is E2. $7132.7^{*}3$ (17^{+}) DF $J^{\pi}: \gamma$ to 16^{+}) is M1+E2. 7170.2^{n} 11 (19^{-}) D $J^{\pi}: \gamma$ to (18^{-}) is M1+E2. $7207.5^{\circ}3$ 18^{-} DF $J^{\pi}: \alpha$ signed by $2006Pe25$ ($^{18}O,4n\gamma$) and ($^{48}Ca,4n\gamma$). 7397.93 (18^{+}) DF $J^{\pi}: \alpha$ signed by $2006Pe25$ ($^{18}O,4n\gamma$) by selection from possible J^{π} values $19^{-}, 18^{-}, 19^{+}, 18^{+}$ based on internal conversion of 37γ and $T_{1/2}(7435)$ arguments. 7435.14 (20^{+}) $1.23 \ \mu s 7$ DF $J^{\pi}: \gamma$ from 21^{-} is (E1) and γ' s to $17^{-}, 18^{-}$ and (18^{+}) . $2006Pe25$	$0/31.1^{\circ}$ 3	(15^{+})		D	$J^{n}: \gamma$ to (15 ⁺) is $\Delta J=0$, M1+E2 in (*Ca,4n γ).
6763.75 F J^{n} : 16 from γ to 15 in (10 O,4n γ) not adopted. 6770.43 16 ⁺ D J^{π} : γ from 18 ⁺ is E2 in (48 Ca,4n γ). 6807.43 16 ⁺ D J^{π} : γ to 15 ⁺ is M1+E2 in (48 Ca,4n γ). 6861.23 16 ⁺ D J^{π} : γ to 15 ⁺ is M1+E2 in (48 Ca,4n γ). 6861.73 16 ⁺ D J^{π} : γ to (15 ⁺) is M1+E2 in (48 Ca,4n γ). 6966.73 17 ⁻ DF J^{π} : γ to 15 ⁻ is E2 in (18 O,4n γ). 7057.0° 417 ⁻ DF J^{π} : γ to 15 ⁻ is E2. 7132.7^{F} (17 ⁺)DJ ^{\pi} : γ to (16 ⁺) is M1+E2. 7170.2^{n} 11(19 ⁻)DJ ^{\pi} : γ to (18 ⁻) is M1+E2. 7207.5° 318 ⁻ DFJ ^{\pi} : γ to 17 ⁻ is M1+E2 in (18 O,4n γ) and (48 Ca,4n γ). 7397.93 (18 ⁺)DFJ ^{\pi} : assigned by 2006Pe25 (18 O,4n γ) by selection from possible J^{π} values 19° , 18 ⁻ , 19 ⁺ , 18 ⁺ based on internal conversion of 37 γ and $T_{1/2}$ (7435) arguments. 7435.14 (20 ⁺)1.23 μ s 7DF J^{π} : γ from 21 ⁻ is (E1) and γ' s to 17 ⁻ , 18 ⁻ and (18 ⁺). 2006Pe25	6/45./** 11	(18)		D _	J^{π} : γ to (1/) is M1+E2 in (*Ca,4n γ).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6/63./ 5	1.64		F	J ^{π} : 16 from γ to 15 in (¹⁰ 0,4n γ) not adopted.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6770.4 3	16'		D	J^{\star} : γ from 18' is E2 in (*°Ca,4n γ).
6861.2 3 16 ⁺ D $J^*: \gamma \text{ from } 18^+ \text{ is } E2.$ 6891.9 ^r 3 (16 ⁺) D $J^{\pi}: \gamma \text{ to } (15^+) \text{ is } M1+E2 \text{ in } (^{48}\text{Ca,}4n\gamma).$ 6966.7 3 17 ⁻ D F $J^{\pi}: \gamma \text{ to } (15^+) \text{ is } M1+E2.$ 7057.0 ^o 4 17 ⁻ D F $J^{\pi}: \gamma \text{ to } 15^- \text{ is } E2.$ 7132.7 ^r 3 (17 ⁺) D F $J^{\pi}: \gamma \text{ to } (16^+) \text{ is } M1+E2.$ 7170.2 ⁿ 11 (19 ⁻) D $J^{\pi}: \gamma \text{ to } (18^-) \text{ is } M1+E2.$ 7207.5 ^o 3 18 ⁻ D F $J^{\pi}: \gamma \text{ to } 17^- \text{ is } M1+E2.$ 7397.9 3 (18 ⁺) D F $J^{\pi}: \alpha \text{ signed by } 2006Pe25 (^{18}O,4n\gamma) \text{ and } (^{48}Ca,4n\gamma).$ 7435.1 4 (20 ⁺) 1.23 µs 7 D F $J^{\pi}: \gamma \text{ from } 21^- \text{ is } (E1) \text{ and } \gamma' \text{ s to } 17^-, 18^- \text{ and } (18+). 2006Pe25 $	6807.4 3	16 ⁺		D	J^{π} : γ to 15^+ is M1+E2 in (*°Ca,4n γ).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6861.2 <i>3</i>	16'		D	J^{Λ} : γ from 18' is E2.
6966.7 3 17^{-} D F J^{n} : γ to 15^{-} is E2 in $({}^{16}O,4n\gamma)$. 7057.0° 4 17^{-} D F J^{π} : γ to 15^{-} is E2. 7132.7 ^r 3 (17^{+}) D J J γ to 15^{-} is E2. 7170.2 ⁿ 11 (19^{-}) D J J γ to (16^{+}) is M1+E2. 7207.5° 3 18^{-} D F J J γ to 17^{-} is M1+E2 in $({}^{18}O,4n\gamma)$ and $({}^{48}Ca,4n\gamma)$. 7397.9 3 (18^{+}) D F J J γ to 17^{-} is M1+E2 in $({}^{18}O,4n\gamma)$ by selection from possible J^{π} values 19^{-} , 18^{-} , 19^{+} , 18^{+} based on internal conversion of 37γ and $T_{1/2}(7435)$ arguments. 7435.1 4 (20^{+}) 1.23 μ s 7 D F J J γ from 21^{-} is (E1) and γ' s to 17^{-} , 18^{-} and (18^{+}) . 2006Pe25 136000000000000000000000000000000000000	6891.9' 3	(16 ⁺)		D	J^{n} : γ to (15 ⁺) is M1+E2 in (⁴⁶ Ca,4n γ).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6966.7 <i>3</i>	17-		DF	J^{n} : γ to 15 ⁻¹ is E2 in (¹⁰ O,4n γ).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1057.0^{\circ} 4$	$\Gamma/$		DF	J ^{γ} : γ to 15 is E2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/132./ 3	(1/')		D D	J [*] : γ to (10 ⁺) is M1+E2.
1207.5° 5 18 D F J° : γ to 17° Is M1+E2 in (10 O,4n γ) and (10 Ca,4n γ). 7397.9 3 (18 ⁺) D F J^{π} : assigned by 2006Pe25 (18 O,4n γ) by selection from possible J^{π} values 19 ⁻ , 18 ⁻ , 19 ⁺ , 18 ⁺ based on internal conversion of 37 γ and $T_{1/2}$ (7435) arguments. 7435.1 4 (20 ⁺) 1.23 μ s 7 D F J^{π} : γ from 21 ⁻ is (E1) and γ 's to 17 ⁻ , 18 ⁻ and (18 ⁺). 2006Pe25	71/0.2" 11	(19)		л Г	J ^{**} : γ to (10) 18 M1+E2.
$\begin{array}{cccc} 1397.9 & 3 & (18^{\circ}) & & D & F \\ 7435.1 & & (20^{\circ}) & 1.23 \ \mu \text{s} & 7 & D & F \end{array} \qquad \begin{array}{c} J^{\alpha}: \text{ assigned by } 2006\text{Pe25} & (^{10}\text{O},4n\gamma) \text{ by selection from possible } J^{\alpha} \text{ values} \\ 19^{-}, 18^{-}, 19^{+}, 18^{+} \text{ based on internal conversion of } 37\gamma \text{ and } T_{1/2}(7435) \\ \text{arguments.} \\ J^{\pi}: \gamma \text{ from } 21^{-} \text{ is } (E1) \text{ and } \gamma' \text{ s to } 17^{-}, 18^{-} \text{ and } (18^{+}). 2006\text{Pe25} \end{array}$	1201.5° 3	18		DF	$J^{(1)} \gamma$ to 1/ 1S M1+E2 in (100,4ny) and (10Ca,4ny).
7435.1 4 (20 ⁺) 1.23 μ s 7 D F J ^{π} : γ from 21 ⁻ is (E1) and γ 's to 17 ⁻ , 18 ⁻ and (18 ⁺). 2006Pe25	1397.9 3	(18")		DF	J [*] : assigned by 2006Pe25 (¹⁰ O,4n γ) by selection from possible J [*] values 19 ⁻ , 18 ⁻ , 19 ⁺ , 18 ⁺ based on internal conversion of 37 γ and T _{1/2} (7435) arguments
	7435.1 4	(20^{+})	1.23 µs 7	DF	J^{π} : γ from 21 ⁻ is (E1) and γ 's to 17 ⁻ , 18 ⁻ and (18 ⁺). 2006Pe25

¹⁴⁰Nd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
			$(^{18}\text{O},4n\gamma)$ argue that based on single-particle Weisskopf estimates for lifetime the best
			match is (20^+) .
			$T_{1/2}$: from $\gamma(t)$, sum of time spectra of 120 γ , 182 γ , 188 γ and 258 γ in 2008Fe02
			$({}^{18}\text{O},4n\gamma)$. Same result, 1.2 μ s <i>I</i> , is reported by 2013Va10 from γ (t), 229, 258, 343,
			433, 991, 1352, 1442, 1497 γ rays studied for half-life measurement (⁴⁸ Ca,4n γ). Other:
			>400 ns (from time spectrum of 227.5γ (2006Pe25)).
c			Configuration= $\pi[d_{5/2}g_{7/2}^{-4}(10^+)] \otimes \nu[h_{11/2}^{-2}(10^+)].$
7469.7 ^J 4	16-	D	J^{π} : γ from 18 ⁻ in E2 band.
7488.4° 3	19-	D F	J^{π} : γ to 18^{-} is M1+E2.
7525.2' 3	18+	D	J^{n} : γ to 16 ⁺ is E2.
1195.54 S	18	D	J^{*} : γ from 19 is M1+E2.
7813.3° <i>3</i>	18+	D	J^{Λ} : γ to 17^{-1} is E1.
7825.8 4	(18')	D	$J^{\prime\prime}$: γ 's to 16' and 1/; γ from 20'.
7950.14 4	(20^{-})	U D	$J^{(1)}$; γ to 1/18 E2.
$8040.3^{\circ} 4$	(20)	ע	$J : \gamma$ in dipole band. $I^{\pi_1} \sim t_0 \ 18^+$ is $M1 \pm F2$
8168.9^{t}	19	ע	J^{π} , y from 10 ⁺ is M1+E2.
8100.6 ⁹ 4	20-	D	J^{π} : γ to 19^{-1} is M1+E2.
$8322.9^{t}3$	19 ⁺	D	J^{π} : γ to 18 ⁺ is M1+E2.
8338 7 J	19-	D	$I^{\pi_{1}}$ of from 20 ⁻ is E2
8338.75 + 2	10^{-10}	D	$J : \gamma = 10^{+1} = 12^{-1}$
8438.5° 3	20°	U D	$J^{"}$: γ to 18" is E2. I^{π} : γ to 20 [±] is M1 + E2.
8540 1 ^{\$} A	$21^{-20^{+}}$	D D	$J : \gamma = 0.20$ is M1+E2. $I^{\pi_1} \sim t_0 = 10^+$ is M1+E2
$8605 0^{t} 4$	20^{+}	D	J^{π} , γ to 10 ⁺ is M1+E2.
$8632.7^{P}_{P}4$	$20^{-21^{-}}$	D	J^{π} : γ to 20 ⁻ is M1+E2.
8777.2 ^p 4	21^{-}	D	J^{π} : γ to 21^{-1} is M1+E2.
8906.1 ^s 4	21^{+}	D	J^{π} : γ to 20 ⁺ is M1+E2.
8981.5 <i>f</i> 3	20-	D	J^{π} : J=20 from Λ J=1. (E1) γ to 19 ⁺ : π =- from (presumably Λ J=0) E1 γ to 20 ⁺ .
9010.6 ^{<i>p</i>} 5	23-	D	J^{π} : γ to 22^{-} is M1+E2.
9011.2 ⁹ 5	22-	D	J^{π} : γ to 21 ⁻ is M1+E2.
9034.9 ^t 4	21^{+}	D	J^{π} : γ to 20 ⁺ is M1+E2.
9173.2 ^d 4	21-	D	J^{π} : γ to 20 ⁺ is E1.
9266.7 <mark>b</mark> 4	22^{+}	D	J^{π} : γ to 20 ⁺ is E2.
9323.3 5	23-	D	J^{π} : γ to 22 ⁻ is M1+E2.
9347.2 ^{<i>s</i>} 4	22^{+}	D	J^{π} : γ to 21 ⁺ is M1+E2.
9524.0 <mark>9</mark> 5	23-	D	J^{π} : γ to 22^{-} is M1+E2.
9566.5 [‡] 4	22^{+}	D	J^{π} : γ to 21 ⁺ is M1+E2.
9569.3 ^f 4	22^{-}	D	J^{π} : γ to 20^{-} is E2.
9646.7 ^C 4	22^{+}	D	J^{π} : γ to 20 ⁺ is E2.
9671.1 ^{u} 4	$22^{(-)}$	D	J^{π} : γ to 21^+ is $\Delta J=1$, (E1).
9771.0 6	24-	D	J^{π} : γ to 23 ⁻ is M1+E2.
9794.3 ^d 4	23-	D	J^{π} : γ to 21^{-} is E2.
9871.7 ^{\$} 4	23+	D	J^{π} : γ to 22 ⁺ is M1+E2.
9892.4 ^u 4	23(-)	D	J^{π} : γ to $22^{(-)}$ is M1+E2.
10001.8 ⁹ 6	24-	D	J^{π} : γ to 23 ⁻ is M1+E2.
10126.5 ^b 4	24+	D	J^{π} : γ to 22^+ is E2.
10128.7 10		D	
10255.1 11		D	
10263.2 ^{<i>u</i>} 4	24(-)	D	J^{n} : γ to $23^{(-)}$ is M1+E2.
10307.6 ^J 4	24-	D	J^{π} : γ to 22^{-} is E2.

¹⁴⁰Nd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
10437.5 9		D	
10471.3 ^{\$} 5	24+	D	J^{π} : γ to 23 ⁺ is M1+E2.
10576.2 ^d 4	25^{-}	D	J^{π} : γ to 23 ⁻ is E2.
10587.9 [°] 5	24+	D	J^{π} : γ to 22 ⁺ is E2.
10595.1 ⁸ 4	24^{-}	D	J^{π} : γ to 22 ⁻ is E2.
10614.4 11		D	
10679.3 15		D	
10740.9 ^{<i>u</i>} 5	$25^{(-)}$	D	J^{π} : γ to 24 ⁽⁻⁾ is M1+E2.
10949.6 ^e 6	(25 ⁻)	D	J^{π} : member in E2 band.
11072.6 ^{<i>J</i>} 4	26-	D	J^{π} : γ to 24^{-} is E2.
11173.9 ⁶ 6	26^{+}	D	J^{π} : γ to 24 ⁺ is E2.
11213.2 9	(27^{-})	D	J^{π} : (E1) γ from 26 ⁺ and consistent with fully aligned state of
			configuration= $\pi h_{11/2}^1 \otimes \nu h_{11/2}^{-2}$ according with shell model calculations (2015Pe10 in (⁴⁸ Ca,4n γ); however cranked Nilsson-Strutinsky (CNS) model calculations suggest that this is the configuration of band D3).
11222.7 7	$25^{(-)}$	D	J^{π} : (E1) γ from 26 ⁺ .
11312.5 ^{<i>u</i>} 5	26(-)	D	J^{π} : γ to $25^{(-)}$ is M1+E2.
11365.6 ^d 5	27^{-}	D	J^{π} : γ from 28 ⁺ is E1.
11398.0 <mark>8</mark> 5	$26^{(-)}$	D	J^{π} : γ to 26 ⁽⁻⁾ is $\Delta J=0$, M1+E2.
11565.1 [°] 6	26^{+}	D	J^{π} : γ to 24 ⁺ is E2.
11589.08	26+	D	J^{π} : E2 γ from 28 ⁺ .
11601.0 ^j 6	26^{+}	D	J^{π} : γ to 24 ⁺ is E2.
11846.0 ^h 6	27^{-}	D	J^{π} : γ to 26 ⁻ is M1+E2.
11944.9 <mark>°</mark> 6	(27^{-})	D	J^{π} : γ to (25 ⁻) is E2.
11949.3 ^x 17	(25 ⁻)	D	J^{π} : γ from (26 ⁻) is M1+E2.
11966.2 ^{<i>u</i>} 6	$27^{(-)}$	D	J^{π} : γ to $26^{(-)}$ is M1+E2.
12124.5 ⁵ 6	28^{-}	D	J^{π} : γ to 26^{-} is E2.
12194.5 ^w 17	(26 ⁻)	D	J^{π} : γ from (27 ⁻) is (M1+E2).
12236.8 17	(26 ⁻)	D	J^{π} : γ from (27 ⁻) is M1+E2.
12241.4 ^J 5	28+	D	J^{π} : γ to 26 ⁺ (11565 level) is E2.
12422.3 ^{<i>a</i>} 7	29-	D	J^{π} : γ to 27^{-} is E2.
12426.1 7	(28^{+})	D	J^{π} : γ to 26 ⁺ is assumed E2.
$12446.0^{\circ} 0$	(28^{+})	D	J [*] : γ to 26 ⁺ is assumed E2.
12480.0^{-9}	(29)	D	$J : \gamma$ to 27 is assumed Q and $\Delta \pi = yes$ based on asigned configurations.
$12525.5^{\circ}0$ $12548.0^{X}17$	(27^{-})	D	J^{n} : γ to $2/1$ is E2. I^{π} : γ from (20^{-}) is E2.
12348.9 17 12898 4 ^V 6	(27) (29^+)	D	$J : \gamma \text{ from } (27) \text{ is } \text{E2.}$ $I^{\pi_1} \sim t_0 (28^+) \text{ is } \text{M1} + \text{F2}$
12000.4° 0 12918 0 ^W 17	(29^{-})	D	J^{π} : γ from (29 ⁻) is M1+E2.
12997.5 ^e 7	(20^{-})	D	J^{π} : γ to (27^{-}) and member in E2 band.
$13051 1^{j} 6$	30+	D	I^{π} , γ to 28^+ is E2
$13323.5^{v} 6$	(30^{+})	D	J^{π} : γ to (28 ⁺) is E2.
13336.0 ^x 17	(29 ⁻)	D	J^{π} : γ from (31 ⁻) is E2.
13394.7 ^m 9	(31+)	D	J^{π} : γ to (29 ⁺) is assumed E2.
13406.8 <i>f</i> 12	30-	D	J^{π} : γ to 28^- is E2.
13479.2 ⁱ 6	(30^{+})	D	J^{π} : γ to 29 ⁻ is assumed E1.
13583.6 ^h 6	31-	D	J^{π} : γ to 29 ⁻ is E2.
13704.0 ^d 12	31-	D	J^{π} : γ to 29 ⁻ is E2.
13769.3 ^w 17	(30 ⁻)	D	J^{π} : γ to (28 ⁻) is E2.
13915.8 ^v 7	(31^{+})	D	J^{π} : γ to (30 ⁺) is M1+E2.
13960.2 ^j 6	32+	D	J^{π} : γ to 30^+ is E2.

¹⁴⁰Nd Levels (continued)

E(level) [†]	J ^{π‡}	XREF	Comments
14238.6 ^{<i>x</i>} 17	(31 ⁻)	D	J^{π} : γ to (29 ⁻) is E2.
14247.1 ^k 17	(31 ⁻)	D	J^{π} : γ from (33 ⁻) is E2.
14254.9 ^y 6	(30 ⁺)	D	J^{π} : γ from (31 ⁺) and member in M1+E2 band.
14410.6 ⁱ 6	(32 ⁺)	D	J^{π} : γ to (30 ⁺) and member in E2 band.
14474.2 ^{<i>m</i>} 11	(33+)	D	J^{π} : γ to (31 ⁺) is E2.
14540.64 6	(31^+)	D	J^{π} : γ from (32 ⁺) is M1+E2.
$14/08.3^{\circ} / 14761.7^{\circ} 17$	(32^{-})	D D	J^{n} : γ to (31 ⁻) and member in M1+E2 band.
14701.7 I7	(32)	D	\overline{J} , γ to (51°) and member E2 hand.
$14858 2^{y} 6$	(32^+)	D D	J^{π} : γ to 50° and member in M1+F2 hand
$14904 3^{h} 12$	33-	D	I^{π} : γ to 31^{-} is F2
$15027.3^{k}.17$	(33^{-})	D	J^{π} : γ to $S1^{-1}$ is E2.
15027.3 17	(35)	D	$J : \gamma$ from (55) is E2.
$15042.9^{\circ} 0$	(22^{-})	D	J. γ to 52 is E2.
15141.5° <i>15</i>	(33)	D	$J^{*}: \gamma$ from (35) is E2.
15146.9 ⁴⁴ 15	(33)	D D	J^{n} : γ to 31 ⁽¹⁾ and member in E2 band. I^{π} : α from 35 ⁺ is (E2)
$15315.5^{\circ}0$ 15339 9 ^{<i>x</i>} 17	(33^{-})	D D	J . γ from 55 is (E2). I^{π} : γ to (32 ⁻) is (M1+F2)
$15605.2^{i}.8$	(34^+)	D	I^{π} : γ to (32^+) is (F2)
15005.2^{-0} 15726.0 ^m 15	(35^+)	D	J^{π} : γ to (32 ⁺) is E2.
15774.1 ^y 6	(34 ⁺)	D	J^{π} : γ to (33 ⁺) is M1+E2.
15993.6 ^w 17	(34 ⁻)	D	J^{π} : γ to (33 ⁻) is M1+E2.
16036.4 ¹ 16	(35 ⁻)	D	J^{π} : γ to (33 ⁻) is assumed E2.
16087.6 ^k 17	(35-)	D	J^{π} : γ to (33 ⁻) is E2.
16278.5 12	36+	D	J^{π} : γ to 34^+ is E2.
16286.5 ² 6	35+	D	J^{π} : γ to 34 ⁺ is M1+E2.
16343.9 ⁿ 16	(35 ⁻)	D	J^{π} : γ to 33 ⁻ and member in E2 band.
16439.8 ^J 12	36+	D	J^{π} : γ to 34^+ is E2.
16894.7 ¹ 13	(36 ⁺)	D	J^{π} : γ to (34 ⁺) and member in E2 band.
16977.1 ^y 7	(36^{+})	D	J^{π} : γ to 35 ⁺ is (M1+E2).
17079.6 ¹ 19	(37^{-})	D	J^{π} : γ to (35 ⁻) is E2.
17153.8 18	(37+)	D	J^{π} : γ to (35 ⁺) and member in E2 band.
17407.3 ^K 20	(37^{-})	D	J^{π} : γ to (35 ⁻) is E2.
1/680.8° 6	$(3/^{+})$	D	J^{A} : γ to (36 ⁺) is M1+E2.
17882.07 16	(381)	D	J^{μ} : γ to 36 ⁺ and member in E2 band.
$18320.2^{t} 21$	(39^{-})	D	J^{μ} : γ to (3^{\prime}) is E2.
$187267^{m}21$	(30^+)	D D	J^{-1} : γ to (50) and member in E2 branch of M1+E2 band. I^{π} : γ to (37 ⁺) and member in E2 band
$18951 3^{k} 23$	(39^{-})	D	I^{π} : γ to (37^{-}) is (E2)
$10703 3^{l} 23$	(41^{-})	D	I^{π} : γ to (37^{-}) and member in F2 hand
$20432.3^m 23$	(41^+)	D	J^{π} : γ to (39 ⁺) and member in E2 band.
21218 ¹ 3	(43 ⁻)	D	J^{π} : γ to (41 ⁻) and member in E2 band.
22293.6 ^m 25	(43 ⁺)	D	J^{π} : γ to (41 ⁺) and member in E2 band.
22885 ¹ 3	(45 ⁻)	D	J^{π} : γ to (43 ⁻) and member in E2 band.
24306 ^m 3	(45 ⁺)	D	J^{π} : γ to (43 ⁺) and member in E2 band.
24716 ¹ 3	(47 ⁻)	D	J^{π} : γ to (45 ⁻) and member in E2 band.
26694 ¹ 3	(49 ⁻)	D	J^{π} : γ to (47 ⁻) and member in E2 band.
y ²	(29)	D	Additional information 1.
y+1023.9 ² 10	(31)	D	

¹⁴⁰Nd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
y+2167.5 ² 15	(33)	D	
y+3464.0 ² 18	(35)	D	
y+4936.0 ² 20	(37)	D	
$y + 6607.3^2 23$	(39)	D	
$y + 8455.9^2 25$	(41)	D	
z ³	(29)	D	Additional information 2.
z+838.7 ³ 10	(31)	D	
z+1811.2 ³ 15	(33)	D	
z+2907.7 ³ 18	(35)	D	
z+4190.5 ³ 20	(37)	D	
z+5669.5 ³ 23	(39)	D	
z+7294.0 ³ 25	(41)	D	
u ¹	(29)	D	Additional information 3.
u+955.3 ¹ 10	(31)	D	
u+2069.4 ¹ 15	(33)	D	
u+3383.5 ¹ 18	(35)	D	
u+4907.8 ¹ 20	(37)	D	
u+6614.4 ¹ 23	(39)	D	
v ⁴	(29)	D	Additional information 4.
v+1026.9 ⁴ 5	(31)	D	
v+1826.1 ⁴ 7	(33)	D	
v+2843.3 ⁴ 9	(35)	D	
v+4087.6 ⁴ 14	(37)	D	
v+5574.2 ⁴ 17	(39)	D	
v+7293.4 ⁴ 20	(41)	D	
v+9221.0 ⁴ 22	(43)	D	
v+11357.2 ⁴ 24	(45)	D	
w? ^{@5}	J≈(34)	Е	
w+1069 ⁵	J+2 [#]	Е	
w+2195 ⁵	J+4	Е	
w+3379 ⁵	J+6	Е	
w+4625 ⁵	J+8	Е	
w+5930 ⁵	J+10	Е	
w+7295 ⁵	J+12	Е	
w+8720 ⁵	J+14	Е	
w+10203 ⁵	J+16	Е	
w+11731 ⁵	J+18	Е	
w+11767	J+18	E	
w+13284 ⁵	J+20	E	
w+13529	J+20	E	
w+148875	J+22	E	
w+16548	J+24	E	
w+182725	J+26	E	
w+20060-5	J+28	E	
w+219145	J+30	E	
w+238335	J+32	E	
w+25818?	J+34	E	

¹⁴⁰Nd Levels (continued)

- [†] From least-squares fit to $E\gamma$ data. Reduced $\chi^2 = 1.8$ (critical $\chi^2 = 1.3$).
- [‡] See J^{π} comments in this table; spins for floating bands were proposed in (⁴⁸Ca,4n γ) (2004Pe24) and (⁴⁸Ca,4n γ):SD (2004Ne13) based on spin-fitting methods.
- [#] Proposed spin of this level is 36 ± 2 (($^{48}Ca,4n\gamma$):SD (2004Ne13)).
- [@] The level is questionable because the unique γ associated to it (by population from above level) is considered as tentative by 2004Ne13 in 96 Zr(48 Ca,4n γ):SD.
- & Band(a): g.s. band.
- ^{*a*} Band(b): γ cascade (from ¹²⁶Te(¹⁸O,4n γ)).
- ^{*b*} Band(C): Band Q1, α =0. Configuration= $\pi[(s_{1/2}d_{3/2})^{-2}(h_{11/2})^{-2}(h_{9/2}f_{7/2})^{2}] \otimes \nu[(d_{5/2}g_{7/2})^{8}(h_{11/2})^{2}].$
- ^{*c*} Band(D): Band Q2, α =0.
- ^d Band(E): Band Q3, $\alpha = 1$ Configuration= $\pi[(s_{1/2}d_{3/2})^{-2}(h_{11/2})^{-2}(h_{9/2}f_{7/2})^{1}(1/2)(i_{13/2})^{1}(1/2)] \otimes \nu[(d_{5/2}g_{7/2})^{8}(h_{11/2})^{2}].$
- ^{*e*} Band(F): Band Q4, α =1.
- ^{*f*} Band(G): Band Q5, $\alpha = 0$ Configuration= $\pi[(s_{1/2}d_{3/2})^{-2}(h_{11/2})^{-2}(h_{9/2}f_{7/2})^{1}(-1/2)(i_{13/2})^{1}(1/2)] \otimes \nu[(d_{5/2}g_{7/2})^{8}(h_{11/2})^{2}].$
- ^g Band(B): Band Q6, α =0.
- ^h Band(A): Band Q7, $\alpha = 1$ Configuration= $\pi [(s_{1/2}d_{3/2})^{-2}(h_{11/2})^{-2}(h_{9/2}f_{7/2})^{2}] \otimes \nu [(d_{5/2}g_{7/2})^{7}(-1/2)(h_{11/2})^{3}(-1/2)].$
- ^{*i*} Band(H): Band Q8, $\alpha = 1$ Configuration= $\pi[(s_{1/2}d_{3/2})^{-2}(h_{11/2})^{-2}(h_{9/2}f_{7/2})^{1}(-1/2)(i_{13/2})^{1}(1/2)] \otimes \nu[(d_{5/2}g_{7/2})^{7}(1/2)(h_{11/2})^{3}(-1/2))].$
- ^{*j*} Band(I): Band Q9, $\alpha = 0$ Configuration= $\pi[(s_{1/2}d_{3/2})^{-3}(-1/2)(h_{11/2})^{-2}(h_{9/2}f_{7/2})^{2}(i_{13/2})^{1}(1/2)] \otimes \nu[(d_{5/2}g_{7/2})^{8}(h_{11/2})^{2}].$
- ^{*k*} Band (J): Band Q10, $\alpha = (1)$ Configuration= $\pi[(s_{1/2}d_{3/2})^{-3}(1/2)(h_{11/2})^{-2} (h_{9/2}f_{7/2})^{2}(i_{13/2})^{1}(1/2)] \otimes \nu[(d_{5/2}g_{7/2})^{7}_{1/2}(h_{11/2})^{3}(-1/2)].$
- ^{*l*} Band(K): Band Q11, $\alpha = (1)$ Configuration= $\pi[(s_{1/2}d_{3/2})^{-3}(-1/2)(h_{11/2})^{-2}(h_{9/2}f_{7/2})^2(i_{13/2})^1(1/2)] \otimes \nu[(d_{5/2}g_{7/2})^7(-1/2)(h_{11/2})^3(-1/2)].$
- ^{*m*} Band(L): Band Q12, $\alpha = (0)$ Configuration= $\pi[(s_{1/2}d_{3/2})^{-2}(h_{11/2})^{-2}(h_{9/2}f_{7/2})^{1}(-1/2)(i_{13/2})^{1}(1/2)] \otimes \nu[(d_{5/2}g_{7/2})^{7}(-1/2)(h_{11/2})^{3}(-1/2))].$
- ^{*n*} Band(M): Band D1. Configuration= π (ABEF) $\otimes \nu(\alpha \alpha$ -barBG).
- ^{*o*} Band(N): Band D2. Configuration= $\pi(\alpha\alpha$ -barBE) $\otimes \nu(\alpha\alpha$ -barBC).
- ^{*p*} Band(O): Band D3. Configuration= π (ABEH) $\otimes \nu$ (ABCG).
- ^{*q*} Band(P): Band D4. Configuration= π (ABEF) $\otimes \nu$ (ABCH).
- ^{*r*} Band(Q): Band D5. Configuration= π (ABEF) $\otimes \nu$ (ABGH).
- ^{*s*} Band(R): Band D6. Configuration= π (ABEG) $\otimes \nu$ (ABGH).
- ^{*t*} Band(S): Band D7. Configuration= π (ABEH) $\otimes \nu$ (ABGH).
- ^{*u*} Band(T): Band D8. Configuration= π (ABCE) $\otimes \nu$ (ABGH).
- ^{*v*} Band(U): Band D9. Configuration= π (ABCE) $\otimes \nu$ (ABCG).
- ^{*w*} Band(V): Band D10, even spin. Configuration= π (ABEF) $\otimes \nu$ (ABCI).
- ^{*x*} Band(v): Band D10, odd spin. Configuration= π (ABEF) $\otimes \nu$ (ABCI).
- ^y Band(W): Band D11, even spin. Configuration= π (ABCE) $\otimes \nu$ (ABCI). Positive parity is taken from figure 1 in 2013Le22 (negative parity listed in authors' table I is a misprint, as confirmed by e-mail reply of August 19, 2013 from c.m. Petrache to B. Singh).
- ^{*z*} Band(w): Band D11, odd spin. Configuration= π (ABCE) $\otimes \nu$ (ABCI). Positive parity is taken from figure 1 in 2013Le22 (negative parity listed in authors' table I is a misprint, as confirmed by e-mail reply of August 19, 2013 from c.m. Petrache to B. Singh).
- ¹ Band(h): Rotational band based on (29). Population intensity=1% of ¹⁴⁰Nd channel (2005Pe24 only).
- ² Band(i): Rotational band based on (29). Population intensity=0.8% of ¹⁴⁰Nd channel (2005Pe24 only).
- ³ Band(j): Rotational band based on (29). Population intensity=0.5% of ¹⁴⁰Nd channel (2005Pe24 only).
- ⁴ Band(k): Rotational band based on (29). Population intensity=2% of ¹⁴⁰Nd channel (2005Pe24 only).
- ⁵ Band(X): SD band (2004Ne13). Population intensity=1% of the ¹⁴⁰Nd channel. Q(transition)=9.0 +37-20 (2004Ne13) from analysis of Doppler-shifts. The uncertainty does not include that from the stopping powers. Configuration= $v6^4(\pi 5^6 \text{ or } \pi 5^5 6^1)$; neutrons of $i_{13/2}$ origin and protons of $h_{11/2}/h_{9/2}$ and $i_{13/2}$ origin.

	Adopted Levels, Gammas (continued)													
						$\gamma(^{140})$	Nd)							
E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^C	δ^{dg}	α^f	Comments						
773.65	2+	773.74 [@] 6	100	0.0 0+	E2		0.00396	$\alpha(K)=0.00334 5; \alpha(L)=0.000483 7; \alpha(M)=0.0001028 15 \alpha(N)=2.29\times10^{-5} 4; \alpha(O)=3.42\times10^{-6} 5; \alpha(P)=2.01\times10^{-7} 3 B(E2)(W.u.)=33.6 27$						
1413.03	0+	639.4 [#] 1	100 [#] 14	773.65 2+	E2		0.00624	α (K)=0.00523 8; α (L)=0.000792 11; α (M)=0.0001694 24 α (N)=3.77×10 ⁻⁵ 6; α (O)=5.57×10 ⁻⁶ 8; α (P)=3.12×10 ⁻⁷ 5						
		1412.9 ^{#i}		$0.0 0^+$	E0			I _{γ} : \leq 50.17 limit from 1973VaYZ in ¹⁴⁰ Pm ε decay (9.2 s).						
1489.41	(2)+	716.1 ^{<i>b</i>#} <i>1</i>	100 [#] 16	773.65 2+	M1+E2	-1.22 [#] 14	0.00586 19	α (K)=0.00498 <i>17</i> ; α (L)=0.000693 <i>19</i> ; α (M)=0.000147 <i>4</i> α (N)=3.29×10 ⁻⁵ <i>9</i> ; α (O)=4.95×10 ⁻⁶ <i>14</i> ; α (P)=3.07×10 ⁻⁷ <i>11</i>						
		1489.2 [#] 1	77 [#] 7	0.0 0+	(E2)		1.07×10 ⁻³	$\alpha(K)=0.000860 \ 12; \ \alpha(L)=0.0001125 \ 16; \alpha(M)=2.37\times10^{-5} \ 4 \alpha(N)=5.30\times10^{-6} \ 8; \ \alpha(O)=8.05\times10^{-7} \ 12; \alpha(P)=5.22\times10^{-8} \ 8; \ \alpha(IPF)=7.26\times10^{-5} \ 11$						
1801.84	4+	1028.19 [@] 7	100	773.65 2+	E2		0.00211	α (K)=0.00180 3; α (L)=0.000247 4; α (M)=5.22×10 ⁻⁵ 8 α (N)=1.165×10 ⁻⁵ 17; α (O)=1.755×10 ⁻⁶ 25; α (P)=1.091×10 ⁻⁷ 16						
1935.16	3-	446		1489.41 (2) ⁺				γ ray observed only by 2010Gl05 (¹⁴⁰ Ce(³ He,3n γ) dataset).						
		1161.5 [#] 1	100 [#] 14	773.65 2+										
		1935 [#] 1	71 [#] 71	$0.0 0^+$										
2124.0?	3(-)	322.0 ^{<i>Q</i>}		1801.84 4+	_									
2139.84	2^{+}	1350.3^{ccl} $1366.2^{\text{\#}}$ 1	100 [#] 10	773.65 2^+ 773.65 2^+	D M1(+E2)	-0.08 ^a 8	0.00168 3	$\alpha(K)=0.001410\ 21;\ \alpha(L)=0.000182\ 3;\ \alpha(M)=3.84\times10^{-5}$						
								$\alpha(N)=8.60\times10^{-6} \ 13; \ \alpha(O)=1.315\times10^{-6} \ 20; \\ \alpha(P)=8.82\times10^{-8} \ 14; \ \alpha(IPF)=3.72\times10^{-5} \ 6 \\ B(M1)(W.u.)=0.045 \ +50-20$						
		2139.2 [#] 4	<48 [#]	$0.0 0^+$										
2221.65	7-	419.81 [@] 1	100	1801.84 4+	E3		0.0598	$\alpha(\mathbf{K})=0.0437 \ 7; \ \alpha(\mathbf{L})=0.01256 \ 18; \ \alpha(\mathbf{M})=0.00282 \ 4$ $\alpha(\mathbf{N})=0.000619 \ 9; \ \alpha(\mathbf{O})=8.54\times10^{-5} \ 12;$ $\alpha(\mathbf{P})=2.64\times10^{-6} \ 4$ $\mathbf{B}(\mathbf{E3})(\mathbf{Wu})=0.71 \ 6$						
2275.96	5-	474.01 ^{&} 7	100	1801.84 4+	E1		0.00445	$\alpha(K)=0.00382\ 6;\ \alpha(L)=0.000499\ 7;\ \alpha(M)=0.0001049\ 15$						
2275.96	5-	4/4.01 [∞] 7	100	1801.84 4+	EI		0.00445	$\alpha(\mathbf{K})=0.00382$ 6; $\alpha(\mathbf{L})=0.000499$ 7; $\alpha(\mathbf{M})=0.0001049$ 1						

9

L

	Adopted Levels, Gammas (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^C	δ^{dg}	α^f	Comments					
								$\alpha(N)=2.34\times10^{-5}$ 4; $\alpha(O)=3.52\times10^{-6}$ 5; $\alpha(P)=2.21\times10^{-7}$ 3 Mult.: from (¹⁸ O.4ny).					
2332.28	2^{+}	1558.6 [#] 1	100 [#] 10	773.65 2+	M1+E2	-0.19 ^a 9	1.31×10 ⁻³ 2	$\alpha(K)=0.001041$ 18; $\alpha(L)=0.0001340$ 23; $\alpha(M)=2.82\times10^{-5}$					
								5 $\alpha(N)=6.32\times10^{-6} \ II; \ \alpha(O)=9.67\times10^{-7} \ I7;$ $\alpha(P)=6.49\times10^{-8} \ I2; \ \alpha(IPF)=0.0001027 \ I5$					
		2333.2 [#] 6	81 [#] 81	$0.0 0^+$									
2358.76	0^+	1585.1 ^{#} 1	100 [#]	773.65 2+	E2		9.97×10^{-4}	$\alpha(K)=0.000764 \ II; \ \alpha(L)=9.94\times10^{-5} \ I4; \ \alpha(M)=2.09\times10^{-5}$					
								α (N)=4.68×10 ⁻⁶ 7; α (O)=7.11×10 ⁻⁷ 10; α (P)=4.64×10 ⁻⁸ 7; α (IPF)=0.0001072 15					
2366.55	6+	90.1 [@] 2	54 [@] 9	2275.96 5-	E1		0.345 6	α (K)=0.291 5; α (L)=0.0422 7; α (M)=0.00891 14 α (N)=0.00196 3; α (O)=0.000281 5; α (P)=1.430×10 ⁻⁵ 22					
		144.9 [@] 1	100 [@] 11	2221.65 7-	E1		0.0940	$\alpha(K)=0.0800 \ 12; \ \alpha(L)=0.01107 \ 16; \ \alpha(M)=0.00233 \ 4$ $\alpha(N)=0.000516 \ 8; \ \alpha(\Omega)=7.56\times10^{-5} \ 11; \ \alpha(P)=4.18\times10^{-6} \ 6$					
		564.5 ^{&} 2	57 [@] 29	1801.84 4+	E2		0.00855	$\alpha(K) = 0.00713 \ log(L) = 0.001119 \ log(M) = 0.000240 \ 4$ $\alpha(K) = 5.33 \times 10^{-5} \ 8; \ \alpha(O) = 7.83 \times 10^{-6} \ 11; \ \alpha(P) = 4.22 \times 10^{-7}$					
2400.0	4+	911		$1489.41(2)^+$				E_{ac} : from ¹⁴⁰ Ce(³ He 3n γ).					
2.0010	·	1626		773.65 2+				E_{ν} : from ¹⁴⁰ Ce(³ He,3n γ).					
2466.97	2^{+}	977.5 [#] 1	14 [#] 3	$1489.41 (2)^+$									
		1693.5 [#] 2	30 [#] 5	773.65 2+	M1+E2	$-0.9^{\#} + 6 - 4$	0.00107 9	α (K)=0.00078 8; α (L)=0.000101 10; α (M)=2.12×10 ⁻⁵ 20 α (N)=4.8×10 ⁻⁶ 5; α (O)=7.3×10 ⁻⁷ 7; α (P)=4.8×10 ⁻⁸ 5; α (IPF)=0.000157 5					
		2467.1 [#] 6	<100 [#]	0.0 0+									
2546.89	0^{+}	1057.6 [#] 1	100 [#] 11	1489.41 (2)+									
		1773.1 ^{#} 1	64 [#] 8	773.65 2+	E2		9.06×10 ⁻⁴	$\alpha(K)=0.000619 \; 9; \; \alpha(L)=7.98 \times 10^{-5} \; 12; \; \alpha(M)=1.679 \times 10^{-5}$					
								α (N)=3.76×10 ⁻⁶ 6; α (O)=5.72×10 ⁻⁷ 8; α (P)=3.76×10 ⁻⁸ 6; α (IPF)=0.000186 3					
2585.16	0^+	1811.5 [#] 1	100 [#]	773.65 2+	E2		8.95×10 ⁻⁴	$\alpha(K)=0.000595 9; \alpha(L)=7.66\times 10^{-5} 11; \alpha(M)=1.611\times 10^{-5}$ 23					
								α (N)=3.60×10 ⁻⁶ 5; α (O)=5.49×10 ⁻⁷ 8; α (P)=3.61×10 ⁻⁸ 5; α (IPF)=0.000203 3					
2611.07	(2^{+})	1121.7 [#] 1	32 [#] 4	1489.41 (2) ⁺									
		1837.4 [#] 1	100 [#] 12	773.65 2+	(E2)		8.89×10^{-4}	$\alpha(K)=0.000579$ 9; $\alpha(L)=7.45\times10^{-5}$ 11; $\alpha(M)=1.567\times10^{-5}$					

 $^{140}_{60}\mathrm{Nd}_{80}$ -10

From ENSDF

						Adopted	Levels, Gammas (o	continued)	
						Í	$\gamma(^{140}\text{Nd})$ (continued	<u>l)</u>	
E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^C	δ^{dg}	α^f	Comments
2(11.07	(2+)	2610.0# 5	-eo#	0.0	0+				22 $\alpha(N)=3.51\times10^{-6} 5; \alpha(O)=5.34\times10^{-7} 8;$ $\alpha(P)=3.52\times10^{-8} 5; \alpha(IPF)=0.000215 3$
2713.96	(2) 2 ⁺	1940.3 <i>I</i>	100	773.65	0 2 ⁺	M1+E2	-0.96 [#] +35-26	0.00096 4	$\alpha(K)=0.00059 \ 3; \ \alpha(L)=7.5\times10^{-5} \ 4; \\ \alpha(M)=1.58\times10^{-5} \ 8 \\ \alpha(N)=3.54\times10^{-6} \ 17; \ \alpha(O)=5.4\times10^{-7} \ 3; \\ \alpha(P)=3.62\times10^{-8} \ 19; \ \alpha(IPF)=0.000274 \ 6 \\ \end{array}$
2832.97	(2 ⁺)	2059.3 [#] 1	100	773.65	2^{+}				
2842.26	$7^{(-)}$	566.30 [@] 3	100	2275.96	5-				
2908.77	0+	2135.1 [#] I	100	773.65	2+	E2		8.67×10 ⁻⁴	$\alpha(\mathbf{K})=0.000440 \ 7; \ \alpha(\mathbf{L})=5.61\times10^{-5} \ 8; \alpha(\mathbf{M})=1.179\times10^{-5} \ 17 \alpha(\mathbf{N})=2.64\times10^{-6} \ 4; \ \alpha(\mathbf{O})=4.02\times10^{-7} \ 6; $
2042.21	$(c + \pi -)$	$((7,2)^{\textcircled{0}})$	100@ 50	2275.00	<u>-</u>				$\alpha(P)=2.67\times10^{-6} 4; \alpha(IPF)=0.000356 5$
2943.31	(6',/)	$\frac{66}{.3} \frac{1}{.3}$	$100^{\circ} 50$	22/5.96	Э 7-				
2026.04	(1,2)	721.7 = 1	100 - 50 16 + 12	2221.03	7 2+				
3030.04	(1,2)	$1623.1^{\#}2$	10^{10}	2139.04	2 0+				
3062.24	7-	695.51 ^{&} 9	52 ^{&} 2	2366.55	6 ⁺	(E1)		0.00192	$\alpha(K)=0.001650 \ 24; \ \alpha(L)=0.000212 \ 3; \\ \alpha(M)=4.45\times10^{-5} \ 7 \\ \alpha(N)=9.94\times10^{-6} \ 14; \ \alpha(O)=1.504\times10^{-6} \ 21; \\ \alpha(P)=9.69\times10^{-8} \ 14$
		840.4 ^{&} 2	100 ^{&} 8	2221.65	7-	M1(+E2)	-0.25 +25-20	0.00501 22	$\alpha(K) = 0.00429 \ 19; \ \alpha(L) = 0.000565 \ 22; \alpha(M) = 0.000119 \ 5 \alpha(N) = 2.67 \times 10^{-5} \ 10; \ \alpha(O) = 4.08 \times 10^{-6} \ 16; \alpha(P) = 2 \ 70 \times 10^{-7} \ 13$
3140.07	0+	2366.4 1	100	773.65	2+	E2		8.91×10 ⁻⁴	$\alpha(K) = 0.000366 \ 6; \ \alpha(L) = 4.64 \times 10^{-5} \ 7; \alpha(M) = 9.74 \times 10^{-6} \ 14 \alpha(N) = 2.18 \times 10^{-6} \ 3; \ \alpha(O) = 3.33 \times 10^{-7} \ 5;$
3185.3	8+	818.6		2366.55	6+	E2		0.00348	$\alpha(P)=2.22\times10^{-8} 4; \alpha(IPF)=0.000466 7$ $\alpha(K)=0.00295 5; \alpha(L)=0.000420 6;$ $\alpha(M)=8.94\times10^{-5} 13$ (N) = 1.00×10^{-5} 3 (Q) = 2.00×10^{-6} 5
		963.8		2221.65	7-	(E1)		1.00×10 ⁻³	$\alpha(N)=1.99\times10^{-5} 3; \ \alpha(O)=2.98\times10^{-5} 3; \alpha(P)=1.775\times10^{-7} 25 \alpha(K)=0.000864 \ 12; \ \alpha(L)=0.0001095 \ 16; \alpha(M)=2.30\times10^{-5} \ 4$

11

From ENSDF

 $^{140}_{60}\mathrm{Nd}_{80}\text{--}11$

L

						$\gamma(^{140}\text{Nd})$ (continue	ed)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^C	δ^{dg}	$_{lpha}f$	Comments
								$\alpha(N)=5.14\times10^{-6} 8; \alpha(O)=7.80\times10^{-7} 11; \alpha(P)=5.11\times10^{-8} 8$
3239.65	8-	177.38 ^{&} 4	33 ^{&} 1	3062.24 7-	M1(+E2)	-0.4 +4-3	0.284 5	$\alpha(K)=0.236\ 7;\ \alpha(L)=0.037\ 6;\ \alpha(M)=0.0081\ 15$ $\alpha(N)=0.0018\ 3;\ \alpha(O)=0.00026\ 4;\ \alpha(P)=1.48\times10^{-5}$ 10
		1018.2 ^{&} 1	100 ^{&} 3	2221.65 7-	M1+E2		0.0027 6	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0023 \ 5; \ \alpha(\mathbf{L}) = 0.00031 \ 6; \ \alpha(\mathbf{M}) = 6.5 \times 10^{-5} \ 12 \\ &\alpha(\mathbf{N}) = 1.5 \times 10^{-5} \ 3; \ \alpha(\mathbf{O}) = 2.2 \times 10^{-6} \ 5; \\ &\alpha(\mathbf{P}) = 1.4 \times 10^{-7} \ 4 \end{aligned}$
3419.16	7,8,9 ⁽⁻⁾	1197.5 ^{&} 2	100	2221.65 7-				
3454.94	9-	215.28 3	100 2	3239.65 8-	M1+E2	-0.25 +25-10	0.1654 25	α (K)=0.140 3; α (L)=0.0200 7; α (M)=0.00426 16 α (N)=0.00095 4; α (O)=0.000144 4; α (P)=8.94×10 ⁻⁶ 23
		1233.5 ^{&} 2	14.3 ^{&} 7	2221.65 7-	E2		1.46×10 ⁻³	$\alpha(K) = 0.001242 \ 18; \ \alpha(L) = 0.0001658 \ 24; \\ \alpha(M) = 3.50 \times 10^{-5} \ 5 \\ \alpha(N) = 7.83 \times 10^{-6} \ 11; \ \alpha(O) = 1.184 \times 10^{-6} \ 17; \\ \alpha(D) = 7.54 \times 10^{-8} \ 11; \ \alpha(D) = 1.014 \times 10^{-5} \ 15$
2506 00	0^{+} 1.2	2722 o# 2	100	772 65 2+				$\alpha(P) = 7.54 \times 10^{-6}$ 11; $\alpha(IPF) = 1.014 \times 10^{-6}$ 15
3621.52	0, 1, 2 10^+	2755.2 - 2 166 57 $\frac{\&}{4}$	100	775.05 Z 3454.04 0 ⁻	F 1		0.0643	$\alpha(\mathbf{K}) = 0.0548.8; \alpha(\mathbf{L}) = 0.00751.11; \alpha(\mathbf{M}) = 0.001584$
5021.52	10	100.57-4	100	5454.94 9	EI		0.0043	$a(\mathbf{R})=0.0548 \ 8; \ a(\mathbf{L})=0.00751 \ 11; \ a(\mathbf{M})=0.001384 \ 23 \ a(\mathbf{R})=0.000351 \ 5; \ a(\mathbf{O})=5.16\times10^{-5} \ 8; \ a(\mathbf{P})=2.92\times10^{-6} \ 4$
		0	0					$B(E1)(W.u.) = 1.89 \times 10^{-6} + 43 - 30$
3672.82	$7^{(-)}$	1306.4 ^w 2	46 ^w 13	2366.55 6+				
		1396.8 ^w 1	54 ^w 13	2275.96 5-				
		1451.6 ^w 5	100 21	2221.65 7-				
3958.9	(9 ⁻)	719.1 5	100	3239.65 8-				
1001.15	10-	896.3°° 5	24 [°]	3062.24 7			0.0004.10	
4031.15	10-	5/6.1/ 8	1000	3454.94 9-	M1+E2	-1.9 +11-21	0.0091 19	$\begin{aligned} \alpha(\mathbf{K}) &= 0.0077777; \ \alpha(\mathbf{L}) &= 0.0011476; \ \alpha(\mathbf{M}) &= 0.0002447\\ \alpha(\mathbf{N}) &= 5.4 \times 10^{-5}8; \ \alpha(\mathbf{O}) &= 8.1 \times 10^{-6}73;\\ \alpha(\mathbf{P}) &= 4.7 \times 10^{-7}722 \end{aligned}$
		791.8 🔆 2	85 <mark>&</mark>	3239.65 8-				
4157.1	10+	971.8 ^{&} 5	100	3185.3 8+	E2		0.00238	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00203 \ 3; \ \alpha(\mathbf{L}) = 0.000280 \ 4; \\ &\alpha(\mathbf{M}) = 5.94 \times 10^{-5} \ 9 \\ &\alpha(\mathbf{N}) = 1.325 \times 10^{-5} \ 19; \ \alpha(\mathbf{O}) = 1.99 \times 10^{-6} \ 3; \\ &\alpha(\mathbf{P}) = 1.227 \times 10^{-7} \ 18 \end{aligned}$

12

 $^{140}_{60}\mathrm{Nd}_{80}$ -12

					Ado	opted Levels	, Gammas	(continued)	
						γ (¹⁴⁰ N	d) (continue	ed)	
E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^C	δ^{dg}	α^{f}	Comments
4175.62	10-	216.3 ^{&} 5 554.6 [@] 5	8 ^{&} 15 ^{&}	3958.9 3621.52	(9 ⁻) 10 ⁺				
		720.8 ^{&} 2	100 ^{&}	3454.94	9-	M1+E2		0.0060 14	α (K)=0.0051 <i>12</i> ; α (L)=0.00071 <i>13</i> ; α (M)=0.00015 <i>3</i> α (N)=3.4×10 ⁻⁵ <i>7</i> ; α (O)=5.1×10 ⁻⁶ <i>10</i> ; α (P)=3.19×10 ⁻⁷ <i>83</i> δ : δ =-4 +1- ∞ (¹²⁶ Te(¹⁸ O,4n γ , 1989Gu22).
4323.34	11-	292.0 5	14.3 ^{&} 7	4031.15	10-	M1+E2		0.065 9	$\begin{array}{l} \alpha(\mathrm{K}) = 0.054 \; 9; \; \alpha(\mathrm{L}) = 0.0090 \; 5; \; \alpha(\mathrm{M}) = 0.00194 \; 14 \\ \alpha(\mathrm{N}) = 0.00043 \; 3; \; \alpha(\mathrm{O}) = 6.27 \times 10^{-5} \; 16; \; \alpha(\mathrm{P}) = 3.2 \times 10^{-6} \; 8 \\ \mathrm{E}_{\gamma}: \; \mathrm{from} \; (^{48}\mathrm{Ca}, 4n\gamma); \; \mathrm{the \; more \; precise \; value \; in} \\ \; (^{18}\mathrm{O}, 4n\gamma) \; \mathrm{is \; discrepant} \; (\mathrm{GTOL}). \\ \delta: \; \delta = -0.8 \; + 5 - \infty \; (^{126}\mathrm{Te}(^{18}\mathrm{O}, 4n\gamma, \; 1989\mathrm{Gu}22). \end{array}$
		701.5 5		3621.52	10^{+}				
		868.4 ^{&} 1	100 ^{&} 3	3454.94	9-	E2		0.00305	α (K)=0.00258 4; α (L)=0.000364 6; α (M)=7.74×10 ⁻⁵ 11 α (N)=1.725×10 ⁻⁵ 25; α (O)=2.58×10 ⁻⁶ 4; α (P)=1.560×10 ⁻⁷ 22
4350.0	7,8,9	930.8 [@] 2	100	3419.16	7,8,9(-)				
4367.1	7.8.9 ⁽⁻⁾	2145.4 [@] 8	100	2221.65	7-				
4514.31	12-	190.9 2	100 & 3	4323.34	11-	M1+E2		0.230	$\alpha(K)=0.182 \ 15; \ \alpha(L)=0.038 \ 11; \ \alpha(M)=0.0082 \ 25$ $\alpha(N)=0.00181 \ 53; \ \alpha(O)=0.00026 \ 6; \ \alpha(P)=1.06\times10^{-5} \ 22$ $B(M1)(W.u.)=0.0046; \ B(E2)(W.u.)=7\times10^{1}$ $E_{\gamma}: \ from \ (^{48}Ca,4n\gamma); \ the \ more \ precise \ value \ in \ (^{18}O,4n\gamma) \ is \ discrepant \ (GTOL).$
		483.3 2	15.7 ^{&} 11	4031.15	10-	E2		0.01291	B(E2)(W.u.)=0.225 α (K)=0.01066 <i>15</i> ; α (L)=0.001766 <i>25</i> ; α (M)=0.000381 <i>6</i> α (N)=8.43×10 ⁻⁵ <i>12</i> ; α (O)=1.227×10 ⁻⁵ <i>18</i> ; α (P)=6.23×10 ⁻⁷ <i>9</i> E _{γ} : from (⁴⁸ Ca,4n γ); the more precise value in (¹⁸ O,4n γ) is discrepant (GTOL).
4703.27	13-	188.95 ^{&} 4	100	4514.31	12-	(M1+E2)	-5.0 15	0.237	α (K)=0.174 3; α (L)=0.0492 11; α (M)=0.01096 25 α (N)=0.00239 6; α (O)=0.000325 7; α (P)=8.87×10 ⁻⁶ 21
4878.5	11-	702.7 ^{&} 5	100 ^{&} 12	4175.62	10-	M1+E2		0.0064 15	α (K)=0.0055 <i>13</i> ; α (L)=0.00075 <i>14</i> ; α (M)=0.00016 <i>3</i> α (N)=3.6×10 ⁻⁵ <i>7</i> ; α (O)=5.4×10 ⁻⁶ <i>11</i> ; α (P)=3.39×10 ⁻⁷ <i>89</i>
		1257.1 ^{&} 10	100 <mark>&</mark> 8	3621.52	10^{+}				
4915.34	11+	1293.6 ^{&} 2	100	3621.52	10+	M1(+E2)	-0.4 4	0.00181 14	α (K)=0.00154 <i>12</i> ; α (L)=0.000199 <i>15</i> ; α (M)=4.2×10 ⁻⁵ <i>3</i> α (N)=9.4×10 ⁻⁶ <i>7</i> ; α (O)=1.44×10 ⁻⁶ <i>11</i> ; α (P)=9.6×10 ⁻⁸ <i>8</i> ; α (IPF)=2.03×10 ⁻⁵ <i>4</i>

From ENSDF

 $^{140}_{60}\mathrm{Nd}_{80}$ -13

L

Adopted Levels, Gammas (continued) γ ⁽¹⁴⁰Nd) (continued) δ^{dg} α^{f} Mult.^C Comments E_i (level) 183.4[&] 5 15<mark>&</mark> 12^{-} 4915.34 11+ [E1] 5098.94 0.0495 8 $\alpha(K)=0.0422$ 7; $\alpha(L)=0.00576$ 10; $\alpha(M)=0.001215$ 20 $\alpha(N)=0.000269 5; \alpha(O)=3.97\times10^{-5} 7; \alpha(P)=2.27\times10^{-6} 4$ Mult.: contradictory arguments in ($^{48}Ca, 4n\gamma$): M1+E2 in 2006PeZZ (based on DCO), while 12⁻ to 11⁺ transition in 2005Pe24 (Fig. 1). 220.2[&] 5 23<mark>&</mark> 4878.5 11-M1+E20.149 8 $\alpha(K)=0.120$ 13; $\alpha(L)=0.023$ 5; $\alpha(M)=0.0050$ 11 α (N)=0.00109 23; α (O)=0.000157 25; α (P)=7.1×10⁻⁶ 16 923.2 & 2 100[&] $\alpha(K)=0.00226 4; \alpha(L)=0.000315 5; \alpha(M)=6.69\times10^{-5} 10$ 4175.62 10⁻ E2 0.00266 $\alpha(N)=1.492\times10^{-5}\ 21;\ \alpha(O)=2.24\times10^{-6}\ 4;\ \alpha(P)=1.368\times10^{-7}\ 20$ γ measured in (¹⁸O,4n γ) (1987Gu22) and (⁴⁸Ca,4n γ) (2005Pe24) from different parent levels; this placement is from $({}^{48}Ca, 4n\gamma)$. 222.4[&] 5 20& 4915.34 11+ 12^{-} 5138.84 436.2[&] 5 20**&** 4703.27 13-963.5[&] 2 100 4175.62 10-0.00243 $\alpha(K)=0.00207 \ 3; \ \alpha(L)=0.000286 \ 4; \ \alpha(M)=6.06\times 10^{-5} \ 9$ E2 $\alpha(N)=1.351\times10^{-5}$ 19; $\alpha(O)=2.03\times10^{-6}$ 3; $\alpha(P)=1.249\times10^{-7}$ 18 13-173.4 & 2 4**&** $\alpha(K)=0.228$ 4: $\alpha(L)=0.0697$ 11: $\alpha(M)=0.01556$ 23 5312.03 5138.84 12-M1+E2 0.317 -5 $\alpha(N)=0.00339$ 5; $\alpha(O)=0.000457$ 7; $\alpha(P)=1.139\times10^{-5}$ 17 γ measured in (¹⁸O,4n γ) (1987Gu22) and (⁴⁸Ca,4n γ) (2005Pe24) from different parent levels; this placement is from $({}^{48}Ca.4n\gamma)$. 212.9 & 2 <u>⊿&</u> γ measured in (¹⁸O.4n γ) (1987Gu22) and (⁴⁸Ca.4n γ) (2005Pe24) 5098.94 12from different parent levels; this placement is from $({}^{48}Ca,4n\gamma)$. 608.6[&] 5 1.5 4703.27 13⁻ M1+E2 0.0091 21 $\alpha(K)=0.0078$ 19; $\alpha(L)=0.00109$ 19; $\alpha(M)=0.00023$ 4 $\alpha(N)=5.2\times10^{-5}$ 9; $\alpha(O)=7.8\times10^{-6}$ 15; $\alpha(P)=4.8\times10^{-7}$ 13 Mult.: $\Delta J=0$ transition. 797.8 & 1 48[&] 2 4514.31 12-M1(+E2) -0.3 +3-5 0.0056 7 $\alpha(K)=0.0048$ 6; $\alpha(L)=0.00064$ 7; $\alpha(M)=0.000134$ 14 $\alpha(N)=3.0\times10^{-5}$ 3; $\alpha(O)=4.6\times10^{-6}$ 5; $\alpha(P)=3.0\times10^{-7}$ 4 923.3[&] 12 100[&] 3 4388.7 11⁻ $\alpha(K)=0.00226$ 4: $\alpha(L)=0.000315$ 5: $\alpha(M)=6.69\times10^{-5}$ 10 E2 0.00266 $\alpha(N)=1.492\times10^{-5}$ 22; $\alpha(O)=2.24\times10^{-6}$ 4; $\alpha(P)=1.368\times10^{-7}$ 20 119.95<mark>&</mark> 4 50[&] 3 5312.03 13⁻ 5431.96 14^{-} 728.60[&] 8 100[&] 3 4703.27 13⁻ M1+E2 0.0059 14 $\alpha(K)=0.0050$ 12; $\alpha(L)=0.00069$ 13; $\alpha(M)=0.00015$ 3 $\alpha(N)=3.3\times10^{-5}$ 6; $\alpha(O)=4.9\times10^{-6}$ 10; $\alpha(P)=3.11\times10^{-7}$ 81 δ : δ=−3.0 +16−∞ in (¹⁸O,4nγ). $181.91^{\&} 4$ 100 5613.88 15^{-} 0.267 5 $\alpha(K)=0.210$ 15: $\alpha(L)=0.045$ 14: $\alpha(M)=0.0098$ 33 5431.96 14-M1+E2

14

 $^{140}_{60}\mathrm{Nd}_{80}$ -14

 $\alpha(N)=0.00215\ 69;\ \alpha(O)=3.03\times10^{-4}\ 81;\ \alpha(P)=1.21\times10^{-5}\ 24$

γ (¹⁴⁰Nd) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} [‡]	E_f	\mathbf{J}_{f}^{π}	Mult. ^C	α^{f}	Comments
5644.04	15-	29.8 ^{&}		5613.88	15-			
		212.3 ^{&} 5	100	5431.96	14-	M1+E2	0.167 7	α (K)=0.134 <i>14</i> ; α (L)=0.026 <i>6</i> ; α (M)=0.0056 <i>14</i> α (N)=0.0012 <i>3</i> ; α (O)=0.00018 <i>4</i> ; α (P)=7.8×10 ⁻⁶ <i>17</i>
5902.57	16-	258.53 ^{&} 4	100 ^{&} 4	5644.04	15-	M1+E2	0.093 9	α (K)=0.076 <i>11</i> ; α (L)=0.0133 <i>15</i> ; α (M)=0.0029 <i>4</i> α (N)=0.00064 <i>8</i> ; α (O)=9.2×10 ⁻⁵ <i>7</i> ; α (P)=4.5×10 ⁻⁶ <i>11</i>
		287.7 <mark>&</mark> 5	21 ^{&}	5613.88	15^{-}			
5966.8	(14-)	867.9 <i>5</i>	100	5098.94	12-	[E2]	0.00305	α (K)=0.00259 4; α (L)=0.000365 6; α (M)=7.75×10 ⁻⁵ 11 α (N)=1.728×10 ⁻⁵ 25; α (O)=2.59×10 ⁻⁶ 4; α (P)=1.562×10 ⁻⁷ 22 Mult.: assumed by 2013Le22 (⁴⁸ Ca,4n γ).
5970.58	15-	1267.5 ^{&} 2	100	4703.27	13-	E2	1.39×10 ⁻³	α (K)=0.001177 <i>17</i> ; α (L)=0.0001566 <i>22</i> ; α (M)=3.31×10 ⁻⁵ <i>5</i> α (N)=7.39×10 ⁻⁶ <i>11</i> ; α (O)=1.118×10 ⁻⁶ <i>16</i> ; α (P)=7.14×10 ⁻⁸ <i>10</i> ; α (IPF)=1.527×10 ⁻⁵ <i>22</i>
5987.6	(15 ⁻)	1284.3 10	100	4703.27	13-	[E2]	1.36×10 ⁻³	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.001147 \ 17; \ \alpha(\mathrm{L}) = 0.0001523 \ 22; \ \alpha(\mathrm{M}) = 3.22 \times 10^{-5} \ 5 \\ \alpha(\mathrm{N}) = 7.19 \times 10^{-6} \ 11; \ \alpha(\mathrm{O}) = 1.088 \times 10^{-6} \ 16; \ \alpha(\mathrm{P}) = 6.96 \times 10^{-8} \ 10; \\ \alpha(\mathrm{IPF}) = 1.81 \times 10^{-5} \ 3 \end{array} $
(150.25	1.6+	514.0.0		5644.04	1.5-			Mult.: assumed by 2013Le22 (48 Ca,4n γ).
6158.35	16'	514.3 2 544.44 ^{&} 9	100 ^{&}	5644.04 5613.88	15 15 ⁻	[E1]	0.00325	α (K)=0.00279 4; α (L)=0.000362 5; α (M)=7.62×10 ⁻⁵ 11 α (N)=1.700×10 ⁻⁵ 24; α (O)=2.56×10 ⁻⁶ 4; α (P)=1.627×10 ⁻⁷ 23 Mult.: M1+E2 based on DCO (2005Pe24) also compatible with E1 – the latter better supported by theory (2006Pe25, 2013Le22). δ : -0.2 +2-14 if M1+E2.
6183.4	(16 ⁻)	195.8 2	100	5987.6	(15 ⁻)	M1+E2	0.213 4	$\alpha(K)=0.169 \ 15; \ \alpha(L)=0.0343 \ 91; \ \alpha(M)=0.0075 \ 22$
6351.8	15+	385.4 2	100	5966.8	(14-)	(E1)	0.00727	α (N)=0.00165 46; α (O)=0.00023 6; α (P)=9.8×10 ⁻⁶ 20 α (K)=0.00623 9; α (L)=0.000820 12; α (M)=0.0001728 25 α (N)=3.85×10 ⁻⁵ 6; α (O)=5.77×10 ⁻⁶ 9; α (P)=3.57×10 ⁻⁷ 5
6407.89	17-	437.5 ^{&} 2 505.27 ^{&} 8	82 ^{&} 100 ^{&} 8	5970.58 5902.57	15 ⁻ 16 ⁻	M1+E2	0.015 4	$\alpha(K) = 0.012 \ 3; \ \alpha(L) = 0.00179 \ 25; \ \alpha(M) = 0.00038 \ 5$
								$\alpha(N)=8.5\times10^{-5}$ 12; $\alpha(O)=1.27\times10^{-5}$ 20; $\alpha(P)=7.6\times10^{-7}$ 21
6410.43 6432.4	16 (17 ⁻)	439.85 ^{&} 6 249.0 2	100 100	5970.58 6183.4	15 ⁻ (16 ⁻)	D+Q		
6515.5	(14 ⁺)	548.3 2	100	5966.8	(14 ⁻)	(E1)	0.00320	$\begin{aligned} &\alpha(\text{K}) = 0.00275 \ 4; \ \alpha(\text{L}) = 0.000356 \ 5; \ \alpha(\text{M}) = 7.50 \times 10^{-5} \ 11 \\ &\alpha(\text{N}) = 1.673 \times 10^{-5} \ 24; \ \alpha(\text{O}) = 2.52 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.602 \times 10^{-7} \ 23 \\ &\text{Mult.: (M1+E2) adopted 2013Le22 in ($^{48}\text{Ca},4n\gamma$) should be (E1) \\ &\text{according to their level scheme (2013Le22, Fig. 1).} \end{aligned}$

15

From ENSDF

γ (¹⁴⁰Nd) (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult. ^C	α^{f}	Comments
6731.1	(15^{+})	215.3 2		6515.5	(14^{+})			
		379.3 2		6351.8	15+	M1+E2	0.031 6	α (K)=0.026 6; α (L)=0.00404 24; α (M)=0.00087 4 α (N)=0.000192 10; α (O)=2.85×10 ⁻⁵ 24; α (P)=1.60×10 ⁻⁶ 42
6745.7	(18 ⁻)	313.3 2	100	6432.4	(17 ⁻)	M1+E2	0.053 8	$\alpha(K) = 0.044 \ 8; \ \alpha(L) = 0.00720 \ 18; \ \alpha(M) = 0.00155 \ 6 \\ \alpha(N) = 0.000344 \ 11; \ \alpha(O) = 5.04 \times 10^{-5} \ 9; \ \alpha(P) = 2.7 \times 10^{-6} \ 7$
6763.7		1149.2 <mark>&</mark> 10	100	5613.88	15^{-}			
6770.4	16+	418.4 2		6351.8	15+	M1+E2	0.024 5	α (K)=0.020 5; α (L)=0.0030 3; α (M)=0.00065 5 α (N)=0.000144 13; α (O)=2.15×10 ⁻⁵ 24; α (P)=1.24×10 ⁻⁶ 33
		1156.6 5		5613.88	15-			
		1339.4 10		5431.96	14^{-}			
6807.4	16+	455.7 2	100	6351.8	15+	M1+E2	0.019 4	α (K)=0.016 4; α (L)=0.0024 3; α (M)=0.00051 6 α (N)=0.000113 13; α (O)=1.69×10 ⁻⁵ 23; α (P)=9.9×10 ⁻⁷ 27
6861.2	16+	509.7 2		6351.8	15+	M1+E2	0.014 4	$\alpha(K)=0.012 \ 3; \ \alpha(L)=0.00175 \ 25; \ \alpha(M)=0.00037 \ 5 \ \alpha(N)=8 \ 3\times 10^{-5} \ 12; \ \alpha(Q)=1 \ 24\times 10^{-5} \ 20; \ \alpha(P)=7 \ 5\times 10^{-7} \ 21$
		1218.2.10		5644.04	15-			$u(1) = 0.5 \times 10^{-12}$, $u(0) = 1.24 \times 10^{-2}$, $u(1) = 7.5 \times 10^{-21}$
		1247.4 10		5613.88	15-			
6891.9	(16 ⁺)	160.4 2		6731.1	(15 ⁺)	M1+E2	0.394 22	$\alpha(K)=0.304$ 15; $\alpha(L)=0.071$ 28; $\alpha(M)=0.0156$ 64 $\alpha(N)=0.0034$ 14; $\alpha(Q)=4.8\times10^{-4}$ 17; $\alpha(P)=1.7\times10^{-5}$ 4
		540.3 2		6351.8	15+	M1+E2	0.012 3	$\alpha(K) = 0.0104 \ 25; \ \alpha(L) = 0.00149 \ 23; \ \alpha(M) = 0.00032 \ 5 \\ \alpha(N) = 7.1 \times 10^{-5} \ 11; \ \alpha(O) = 1.06 \times 10^{-5} \ 18; \ \alpha(P) = 6.4 \times 10^{-7} \ 18$
6966.7	17^{-}	202.9 <mark>&</mark> 5	9 <mark>&</mark>	6763.7				
	- /	807.6 5	0 <mark>&</mark> 0	6158 35	16+			
		1064 0 10	~0 <mark>&</mark>	5002 57	16-			
		1004.9 10	108	5644.04	10	E2	1.20×10^{-3}	$\alpha(K) = 0.001082$ 16. $\alpha(I) = 0.0001424.24$ $\alpha(M) = 2.02 \times 10^{-5}$ 5
		1322.24 10	18-1	3044.04	15	E2	1.29×10	$\begin{aligned} \alpha(\text{N}) &= 0.001085 \ 10; \ \alpha(\text{L}) = 0.0001434 \ 21; \ \alpha(\text{M}) = 5.05 \times 10^{-5} \ 5 \\ \alpha(\text{N}) &= 6.76 \times 10^{-6} \ 10; \ \alpha(\text{O}) = 1.024 \times 10^{-6} \ 15; \ \alpha(\text{P}) = 6.57 \times 10^{-8} \ 10; \\ \alpha(\text{IPF}) = 2.53 \times 10^{-5} \ 5 \end{aligned}$
		1353.4 ^{&} 10	100 ^{&}	5613.88	15-	E2	1.24×10 ⁻³	$ \begin{aligned} &\alpha(\text{K}) = 0.001034 \ 15; \ \alpha(\text{L}) = 0.0001366 \ 20; \ \alpha(\text{M}) = 2.88 \times 10^{-5} \ 4 \\ &\alpha(\text{N}) = 6.44 \times 10^{-6} \ 9; \ \alpha(\text{O}) = 9.76 \times 10^{-7} \ 14; \ \alpha(\text{P}) = 6.28 \times 10^{-8} \ 9; \\ &\alpha(\text{IPF}) = 3.25 \times 10^{-5} \ 6 \end{aligned} $
7057.0	17^{-}	1413.3 <mark>&</mark> 10	<11 &	5644.04	15-			
		1443.5 ^{&} 10	100 ^{&}	5613.88	15-	E2	1.12×10 ⁻³	$\alpha(K)=0.000913 \ 13; \ \alpha(L)=0.0001198 \ 17; \ \alpha(M)=2.53\times10^{-5} \ 4$ $\alpha(N)=5.65\times10^{-6} \ 8; \ \alpha(O)=8.57\times10^{-7} \ 12; \ \alpha(P)=5.54\times10^{-8} \ 8; \ \alpha(PE)=5.70\times10^{-5} \ 0$
7132.7	(17 ⁺)	240.6 2		6891.9	(16 ⁺)	M1+E2	0.115 9	$\alpha(\mathbf{M}) = 5.75 \times 10^{-5}$ $\alpha(\mathbf{K}) = 0.093 \ 12; \ \alpha(\mathbf{L}) = 0.017 \ 3; \ \alpha(\mathbf{M}) = 0.0037 \ 7$ $\alpha(\mathbf{N}) = 0.00081 \ 13; \ \alpha(\mathbf{O}) = 0.000117 \ 14; \ \alpha(\mathbf{P}) = 5.5 \times 10^{-6} \ 13$

						Ado	pted <mark>Levels, Ga</mark>	mmas (continued)
							γ ⁽¹⁴⁰ Nd) (c	continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. ^C	α^f	Comments
7132.7	(17+)	271.6 2 325.4 2		6861.2 6807.4	16 ⁺ 16 ⁺	M1+E2	0.048 8	$\alpha(K)=0.040 \ 8; \ \alpha(L)=0.00640 \ 10; \ \alpha(M)=0.00138 \ 4$
		362.2 2		6770.4	16+	M1+E2	0.036 7	$\alpha(N)=0.000306\ 6;\ \alpha(O)=4.49\times10^{-5}\ 14;\ \alpha(P)=2.41\times10^{-6}\ 61$ $\alpha(K)=0.030\ 6;\ \alpha(L)=0.00463\ 20;\ \alpha(M)=0.00099\ 3$ $\alpha(N)=0.000221\ 8;\ \alpha(O)=3.26\times10^{-5}\ 22;\ \alpha(P)=1.81\times10^{-6}\ 47$
7170.2	(19 ⁻)	424.5 2	100	6745.7	(18 ⁻)	M1+E2	0.023 5	$\alpha(K) = 0.0195; \alpha(L) = 0.00293; \alpha(M) = 0.000626$ $\alpha(N) = 0.00013913; \alpha(O) = 2.06 \times 10^{-5}24; \alpha(P) = 1.19 \times 10^{-6}32$
7207.5	18-	149.6 ^{&} 5	25 ^{&}	7057.0	17-	M1+E2	0.49 4	α (K)=0.373 <i>15</i> ; α (L)=0.092 <i>39</i> ; α (M)=0.0204 <i>92</i> α (N)=0.0045 <i>20</i> ; α (O)=6.2×10 ⁻⁴ <i>24</i> ; α (P)=2.1×10 ⁻⁵ <i>4</i>
		240.6 ^{&} 5	100 ^{&}	6966.7	17-	M1+E2	0.115 9	α (K)=0.093 <i>12</i> ; α (L)=0.017 <i>3</i> ; α (M)=0.0037 7 α (N)=0.00081 <i>13</i> ; α (O)=0.000117 <i>14</i> ; α (P)=5.5×10 ⁻⁶ <i>13</i>
		798.6 ^{&} 5 1048.9 ^{&} 5	75 ^{&} 51 ^{&}	6407.89 6158.35	17 ⁻ 16 ⁺			
7397.9	(18^{+})	341.1 ^{&} 5	20 ^{&}	7057.0	17^{-}			
		431.2 ^{&} 2	100 <mark>&</mark>	6966.7	17-			
		989.8 ^{&} 2	80 <mark>&</mark>	6407.89	17-			
		1496.4 <mark>&</mark> 10	70 <mark>&</mark>	5902.57	16-			
7435.1	(20 ⁺)	36.8 ^{&}		7397.9	(18+)	[E2]	113.5	α (L)=88.4 <i>13</i> ; α (M)=20.2 <i>3</i> α (N)=4.34 <i>6</i> ; α (O)=0.541 <i>8</i> ; α (P)=0.000422 <i>6</i>
		227.5 ^{&} 2	77 ^{&}	7207.5	18-	[M2]	0.735	$\alpha(K)=0.599 \ 9; \ \alpha(L)=0.1068 \ 16; \ \alpha(M)=0.0234 \ 4 \\ \alpha(N)=0.00524 \ 8; \ \alpha(O)=0.000784 \ 12; \ \alpha(P)=4.72\times10^{-5} \ 7 \\ B(M2)(W.u.)=0.50 \ 8 \\ B(M2)(W.u.): \ calculated \ value \ is \ 0.505 \ +35-31 \ but \ significatly \ converted \ 37\gamma \ would make this a limit even for a relatively small intensity.$
		1028.0 ^{&} 5	100 <mark>&</mark>	6407.89	17-	[E3]	0.00446	$\alpha(K)=0.00372\ 6;\ \alpha(L)=0.000583\ 9;\ \alpha(M)=0.0001252\ 18$ $\alpha(N)=2.79\times10^{-5}\ 4;\ \alpha(O)=4.14\times10^{-6}\ 6;\ \alpha(P)=2.34\times10^{-7}\ 4$ B(E3)(Wu)=0.299 38
7469.7	16-	1567.9 10	100	5902.57	16-			
7488.4	19-	280.6 2	100	7207.5	18-	M1+E2	0.073 9	α (K)=0.060 <i>10</i> ; α (L)=0.0102 <i>8</i> ; α (M)=0.00220 <i>20</i> α (N)=0.00049 <i>4</i> ; α (O)=7.1×10 ⁻⁵ <i>3</i> ; α (P)=3.6×10 ⁻⁶ <i>9</i>
7525.2	18+	392.3 2		7132.7	(17 ⁺)	M1+E2	0.029 6	α (K)=0.024 5; α (L)=0.0037 3; α (M)=0.00078 5 α (N)=0.000174 11; α (O)=2.58×10 ⁻⁵ 24; α (P)=1.47×10 ⁻⁶ 39
		558.4 2		6966.7	17-			
		1118.1 5		6407.89	17/	EO	1.22×10^{-3}	$a(W) = 0.001014$ 15. $a(U) = 0.0001227$ 10. $a(W) = 2.92 \times 10^{-5}$ 4
		1307.3 10		0138.33	10.	$\mathbf{E} \mathbf{Z}$	1.22×10 5	$\alpha(\mathbf{K}) = 0.001014 \ IJ; \ \alpha(\mathbf{L}) = 0.0001557 \ I9; \ \alpha(\mathbf{M}) = 2.82 \times 10^{-5} \ 4$

17

 $^{140}_{60}\mathrm{Nd}_{80}$ -17

н

						A	dopted Levels	s, Gammas (continued)
							γ (¹⁴⁰ N	(continued)
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult. ^C	α^f	Comments
								$\alpha(N)=6.31\times10^{-6}$ 9; $\alpha(O)=9.56\times10^{-7}$ 14; $\alpha(P)=6.15\times10^{-8}$ 9;
7705 5	10-	1207 0 10	100	6407.90	17-			α (IPF)=3.60×10 ⁻⁵ 6
7813 3	18 18 ⁺	324.7.2	100	0407.89 7488.4	17 19 ⁻	F1	0.01110	$\alpha(K) = 0.00950.14$; $\alpha(I) = 0.001260.18$; $\alpha(M) = 0.000266.4$
7015.5	10	521.7 2		/ 100.1	17	D 1	0.01110	$\alpha(N)=5.91\times10^{-5}$ 9; $\alpha(O)=8.84\times10^{-6}$ 13; $\alpha(P)=5.38\times10^{-7}$ 8
		606.0 10	5	7207.5	18-	E1	0.00257	$\alpha(K)=0.00221 4; \alpha(L)=0.000285 5; \alpha(M)=6.00\times10^{-5} 9$
								$\alpha(N)=1.338\times10^{-5}\ 20;\ \alpha(O)=2.02\times10^{-6}\ 3;\ \alpha(P)=1.292\times10^{-7}\ 19$
		756.4 5	28	7057.0	17^{-}	(E1)	1.61×10^{-3}	α (K)=0.001389 20; α (L)=0.0001777 25; α (M)=3.73×10 ⁻⁵ 6
							2	α (N)=8.34×10 ⁻⁶ 12; α (O)=1.263×10 ⁻⁶ 18; α (P)=8.18×10 ⁻⁸ 12
		846.5 2	63	6966.7	17-	E1	1.29×10^{-5}	$\alpha(K) = 0.001110 \ 16; \ \alpha(L) = 0.0001413 \ 20; \ \alpha(M) = 2.97 \times 10^{-5} \ 5$
		05242		6961 2	16+	ED	0.00240	$\alpha(N) = 6.63 \times 10^{\circ} I0; \ \alpha(O) = 1.006 \times 10^{\circ} I4; \ \alpha(P) = 6.55 \times 10^{\circ} I0$
		932.4 2		0801.2	10	E2	0.00249	$\alpha(\mathbf{K}) = 0.00212 \ 5; \ \alpha(\mathbf{L}) = 0.000295 \ 5; \ \alpha(\mathbf{M}) = 0.22 \times 10^{-5} \ 9$ $\alpha(\mathbf{N}) = 1.388 \times 10^{-5} \ 20; \ \alpha(\mathbf{O}) = 2.00 \times 10^{-6} \ 3; \ \alpha(\mathbf{P}) = 1.280 \times 10^{-7} \ 18$
		1042.8.5		67704	16 ⁺	E2	0.00205	$\alpha(K) = 1.588 \times 10^{-20}, \alpha(G) = 2.09 \times 10^{-5}, \alpha(G) = 1.280 \times 10^{-5} \text{ s}$ $\alpha(K) = 0.001749, 25; \alpha(L) = 0.000239, 4; \alpha(M) = 5.06 \times 10^{-5} \text{ s}$
		10.210 0		077011	10		0.00202	$\alpha(N) = 1.129 \times 10^{-5} \ I6; \ \alpha(O) = 1.701 \times 10^{-6} \ 24; \ \alpha(P) = 1.059 \times 10^{-7} \ I5$
		1405.4 10	20	6407.89	17^{-}	(E1)	6.51×10^{-4}	$\alpha(K)=0.000438$ 7; $\alpha(L)=5.48\times10^{-5}$ 8; $\alpha(M)=1.148\times10^{-5}$ 17
								$\alpha(N)=2.57\times10^{-6}$ 4; $\alpha(O)=3.91\times10^{-7}$ 6; $\alpha(P)=2.60\times10^{-8}$ 4; $\alpha(IPF)=0.0001438$ 22
		1655.3 10	100	6158.35	16+	E2	9.54×10^{-4}	$\alpha(\text{K})=0.000704 \ 10; \ \alpha(\text{L})=9.12\times10^{-5} \ 13; \ \alpha(\text{M})=1.92\times10^{-5} \ 3$
								$\alpha(N)=4.30\times10^{\circ}$ 0; $\alpha(O)=0.55\times10^{\circ}$ 10; $\alpha(P)=4.27\times10^{\circ}$ 0; $\alpha(PP)=0.0001552$
7825.8	(18^{+})	769.0 2		7057.0	17^{-}			20
	. ,	1417.1 10		6407.89	17^{-}			
		1666.6 10		6158.35	16+			
7950.1	19-	154.6 2		7795.5	18-	M1+E2	0.44 3	$\alpha(\mathbf{K}) = 0.338 \ I5; \ \alpha(\mathbf{L}) = 0.082 \ 33; \ \alpha(\mathbf{M}) = 0.0180 \ 77$
		15426 10		6407.90	17-	E2	1.02×10^{-3}	$\alpha(N)=0.0039 I/; \alpha(O)=5.5\times10^{-1} 20; \alpha(P)=1.9\times10^{-5} 4$
		1342.0 10		0407.89	17	E2	1.05×10	$\alpha(\mathbf{N}) = 0.000804 \ 12; \ \alpha(\mathbf{L}) = 0.0001049 \ 13; \ \alpha(\mathbf{M}) = 2.21 \times 10^{-6} \ 4$ $\alpha(\mathbf{N}) = 4.94 \times 10^{-6} \ 7; \ \alpha(\mathbf{\Omega}) = 7.50 \times 10^{-7} \ 11; \ \alpha(\mathbf{P}) = 4.88 \times 10^{-8} \ 7;$
								$\alpha(\text{IPF}) = 9.13 \times 10^{-5} 14$
8040.5	(20 ⁻)	552.1 2	100	7488.4	19-			
8048.5	19+	523.3 2	100	7525.2	18^{+}	M1+E2	0.013 3	$\alpha(K)=0.011$ 3; $\alpha(L)=0.00163$ 24; $\alpha(M)=0.00035$ 5
01/02/0	10±	10262 -	100	5100 5	/ 1 = ± \			$\alpha(N)=7.7\times10^{-5}$ 11; $\alpha(O)=1.16\times10^{-5}$ 19; $\alpha(P)=7.0\times10^{-7}$ 19
8168.8	18+	1036.2 5	100	7132.7	(17^{+})	M1 + E2	0.115.0	$\alpha(K) = 0.002$ 12: $\alpha(L) = 0.017$ 2: $\alpha(M) = 0.0027$ 7
0190.0	20	240.0 2		/930.1	17	W11+E2	0.113 9	$\alpha(\mathbf{N}) = 0.075 \ 12, \ \alpha(\mathbf{L}) = 0.017 \ 3, \ \alpha(\mathbf{M}) = 0.0057 \ 7$ $\alpha(\mathbf{N}) = 0.00081 \ 13, \ \alpha(\mathbf{O}) = 0.000117 \ 14, \ \alpha(\mathbf{D}) = 5.5 \times 10^{-6} \ 13$
		755.7.2		7435.1	(20^{+})	(E1)	1.62×10^{-3}	$\alpha(K) = 0.001392, 20; \alpha(L) = 0.0001780, 25; \alpha(M) = 3.74 \times 10^{-5} 6$
					(= 5)	(=-)		$\alpha(N) = 8.35 \times 10^{-6} \ 12; \ \alpha(O) = 1.265 \times 10^{-6} \ 18; \ \alpha(P) = 8.19 \times 10^{-8} \ 12$

18

From ENSDF

$\gamma(^{140}\text{Nd})$ (continued)

	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^C	α^f	Comments
	8322.9	19+	154.1 2		8168.8 18+	M1+E2	0.45 3	$\alpha(K)=0.342$ 15; $\alpha(L)=0.083$ 34; $\alpha(M)=0.0182$ 79
								$\alpha(N)=0.0040 \ 17; \ \alpha(O)=5.5\times10^{-4} \ 20; \ \alpha(P)=1.9\times10^{-5} \ 4$
			797.7 2		7525.2 18+	M1+E2	0.0047 11	α (K)=0.0040 <i>10</i> ; α (L)=0.00055 <i>11</i> ; α (M)=0.000117 <i>22</i>
								$\alpha(N)=2.6\times10^{-5} 5; \ \alpha(O)=3.9\times10^{-6} 8; \ \alpha(P)=2.51\times10^{-7} 63$
	8338.7	18-	869.1 2	100	7469.7 16-			
	8438.5	201	613.1 5	13	7825.8 (18')	E2	0.00660	(II) = 0.00552, 9, -(I) = 0.000942, 12, -(NI) = 0.000190, 2
L			625.0 2	100	/813.3 18	E2	0.00000	$\alpha(\mathbf{K}) = 0.00555 \ \delta; \ \alpha(\mathbf{L}) = 0.000845 \ 12; \ \alpha(\mathbf{M}) = 0.000180 \ 5$
	8525 0	21-	224 4 2	100	8100 6 20-	M1 + E2	0.044.7	$\alpha(N) = 4.01 \times 10^{\circ} 0; \ \alpha(O) = 5.92 \times 10^{\circ} 9; \ \alpha(P) = 5.30 \times 10^{\circ} 5$
	8323.0	21	554.4 2	100	8190.0 20	MIT+E2	0.044 /	$a(\mathbf{K}) = 0.00777, a(\mathbf{L}) = 0.0038970, a(\mathbf{M}) = 0.00120027$
	8549-1	20^{+}	500 7 2		8048 5 19+	$M1\pm F2$	0.015 4	$\alpha(\mathbf{N})=0.0002814; \alpha(\mathbf{O})=4.15\times10^{-17}; \alpha(\mathbf{P})=2.24\times10^{-57}$ $\alpha(\mathbf{K})=0.013.3; \alpha(\mathbf{L})=0.00184.25; \alpha(\mathbf{M})=0.00039.5$
	0547.1	20	500.72		00+0.5 17	1411 1.2	0.015 4	$\alpha(\mathbf{N}) = 8.7 \times 10^{-5}$ 12: $\alpha(\mathbf{O}) = 1.30 \times 10^{-5}$ 20: $\alpha(\mathbf{P}) = 7.8 \times 10^{-7}$ 22
			1024.4.5		7525.2 18+			$u(1)=0.7\times10$ 12, $u(0)=1.50\times10$ 20, $u(1)=7.5\times10$ 22
	8605.0	20^{+}	282.0 2		8322.9 19+	M1+E2	0.072 9	$\alpha(K)=0.059 \ 10; \ \alpha(L)=0.0100 \ 7; \ \alpha(M)=0.00217 \ 19$
								$\alpha(N)=0.00048$ 4; $\alpha(O)=7.0\times10^{-5}$ 3; $\alpha(P)=3.6\times10^{-6}$ 9
			556.2 2		8048.5 19+	M1+E2	0.011 3	$\alpha(K)=0.0097\ 23;\ \alpha(L)=0.00138\ 22;\ \alpha(M)=0.00029\ 5$
								$\alpha(N)=6.6\times10^{-5}$ 10; $\alpha(O)=9.8\times10^{-6}$ 17; $\alpha(P)=6.0\times10^{-7}$ 17
	8632.7	21^{-}	442.2 2		8190.6 20-	M1+E2	0.021 5	$\alpha(K)=0.017$ 4; $\alpha(L)=0.0026$ 3; $\alpha(M)=0.00055$ 6
								α (N)=0.000123 <i>13</i> ; α (O)=1.84×10 ⁻⁵ 24; α (P)=1.07×10 ⁻⁶ 29
			1196.8 5		7435.1 (20 ⁺)	(E1)	6.98×10^{-4}	$\alpha(K)=0.000580 \ 9; \ \alpha(L)=7.29\times10^{-5} \ 11; \ \alpha(M)=1.530\times10^{-5} \ 22$
								$\alpha(N)=3.42\times10^{-6} 5; \ \alpha(O)=5.20\times10^{-7} 8; \ \alpha(P)=3.44\times10^{-8} 5; \ \alpha(IPF)=2.59\times10^{-5} 5$
	8777.2	22^{-}	144.6 2		8632.7 21-	M1+E2	0.55 5	$\alpha(K)=0.412$ 14; $\alpha(L)=0.105$ 47; $\alpha(M)=0.023$ 11
								α (N)=0.0051 24; α (O)=7.0×10 ⁻⁴ 28; α (P)=2.3×10 ⁻⁵ 5
			252.2.2		8525.0 21-	M1+E2	0.100 9	$\alpha(\mathbf{K}) = 0.081 \ 11; \ \alpha(\mathbf{L}) = 0.0144 \ 19; \ \alpha(\mathbf{M}) = 0.0031 \ 5$
	2006 1	21+	25672	100	8540 1 20 [±]	M1 + E2	0.027.7	$\alpha(N)=0.00069 \ I0; \ \alpha(O)=0.000100 \ 9; \ \alpha(P)=4.8\times10^{-6} \ I1$
	8906.1	21	330.72	100	8549.1 20	MI+E2	0.0377	$\alpha(\mathbf{K}) = 0.0017$; $\alpha(\mathbf{L}) = 0.0048578$; $\alpha(\mathbf{M}) = 0.00104023$
	0001 5	20-	54202		9429 5 20+	F 1	0.00227	$\alpha(\mathbf{N}) = 0.000251 \ /; \ \alpha(\mathbf{O}) = 3.41 \times 10^{-5} \ 21; \ \alpha(\mathbf{P}) = 1.89 \times 10^{-5} \ 49$
	8981.5	20	545.0 2		8438.5 20	EI	0.00327	$\alpha(\mathbf{K}) = 0.002814; \alpha(\mathbf{L}) = 0.0003040; \alpha(\mathbf{M}) = 7.0 \times 10^{-7} 11$
								$u(N)=1.710\times10^{-2}24; u(O)=2.58\times10^{-4}4; u(P)=1.057\times10^{-2}25$ Mult : presumably AI=0 transition
			642.8.2		8338 7 18-	E2	0.00616	$\alpha(K) = 0.00517.8$; $\alpha(L) = 0.000781.11$; $\alpha(M) = 0.0001670.24$
			012.02		0000.7 10		0.00010	$\alpha(N) = 3.71 \times 10^{-5} \text{ G}; \ \alpha(O) = 5.49 \times 10^{-6} \text{ B}; \ \alpha(P) = 3.08 \times 10^{-7} \text{ 5}$
			933 0 2		8048 5 19+	(E1)	1.07×10^{-3}	$\alpha(K) = 0.000919 \ J^3; \ \alpha(L) = 0.0001166 \ J^7; \ \alpha(M) = 2.45 \times 10^{-5} \ 4$
			155.0 2		0010.0 17	(11)	1.07/10	$\alpha(N) = 5.47 \times 10^{-6} 8$; $\alpha(D) = 8.30 \times 10^{-7} 12$; $\alpha(P) = 5.43 \times 10^{-8} 8$
I.								

$\gamma(^{140}\text{Nd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	$E_f = J_f^{\pi}$	Mult. ^C	α^f	Comments
9010.6	23-	233.4 2	100	8777.2 22-	M1+E2	0.125 9	$\alpha(K)=0.102 \ 13; \ \alpha(L)=0.019 \ 4; \ \alpha(M)=0.0041 \ 8$
9011.2	22-	486.2 2	100	8525.0 21-	M1+E2	0.016 4	α (N)=0.00090 <i>16</i> ; α (O)=0.000129 <i>17</i> ; α (P)=6.0×10 ⁻⁶ <i>14</i> α (K)=0.014 <i>4</i> ; α (L)=0.0020 <i>3</i> ; α (M)=0.00042 <i>5</i> α (N)=0.5×10 ⁻⁵ <i>12</i> ; α (O)=1.41×10 ⁻⁵ <i>21</i> ; α (D)=8.4×10 ⁻⁷ <i>23</i>
9034.9	21+	429.7 2		8605.0 20+	M1+E2	0.022 5	$a(K)=9.5\times10^{-12}, a(G)=1.41\times10^{-21}, a(F)=8.4\times10^{-25}$ a(K)=0.0195; a(L)=0.00283; a(M)=0.000606
		486.2 2		8549.1 20+	M1+E2	0.016 4	$\alpha(N)=0.000134 \ 13; \ \alpha(O)=1.99\times10^{-5} \ 24; \ \alpha(P)=1.16\times10^{-6} \ 31$ $\alpha(K)=0.014 \ 4; \ \alpha(L)=0.0020 \ 3; \ \alpha(M)=0.00042 \ 5$ $\alpha(N)=9 \ 5\times10^{-5} \ 12; \ \alpha(O)=1 \ 41\times10^{-5} \ 21; \ \alpha(P)=8 \ 4\times10^{-7} \ 23$
9173.2	21-	734.7 2	100	8438.5 20+	E1	1.71×10^{-3}	$\alpha(K) = 0.001474 \ 21; \ \alpha(L) = 0.000189 \ 3; \ \alpha(M) = 3.97 \times 10^{-5} \ 6 \ \alpha(N) = 8.6 \times 10^{-6} \ 13 \ \alpha(D) = 1.41 \times 10^{-6} \ 10; \ \alpha(D) = 8.6 \times 10^{-8} \ 13 \ \alpha(D) = 1.61 \ \alpha(D) = $
9266.7	22^{+}	828.2 2	100	8438.5 20+	E2	0.00339	$\alpha(N) = 6.80 \times 10^{-5} I_3, \alpha(O) = 1.541 \times 10^{-1} I_2, \alpha(I) = 6.80 \times 10^{-5} I_3$ $\alpha(K) = 0.00287 I_3, \alpha(L) = 0.000408 6; \alpha(M) = 8.68 \times 10^{-5} I_3$ $\alpha(N) = 0.00287 I_3, \alpha(L) = 0.000408 6; \alpha(M) = 8.68 \times 10^{-5} I_3$
9323.3	23-	312.1 2	100	9011.2 22-	M1+E2	0.054 8	$\alpha(N) = 1.94 \times 10^{-5}; \ \alpha(O) = 2.89 \times 10^{-4}; \ \alpha(F) = 1.750 \times 10^{-2} 2.5^{-2} \times 10^{-6}; \ \alpha(K) = 0.045 \; 8; \; \alpha(L) = 0.00729 \; 19; \; \alpha(M) = 0.0157 \; 7^{-6}; \ \alpha(K) = 0.002349 \; 12 \times 10^{-5}; \; 10^{-5} 10^{-5}; \; \alpha(L) = 0.0157 \; 7^{-5}; \ \alpha(K) = 0.002349 \; 12 \times 10^{-5}; \; 10^{-5}; \; \alpha(K) = 0.0157 \; 7^{-5}; \ \alpha(K) = 0.002349 \; 12 \times 10^{-5}; \; 10$
9347.2	22+	441.0 2	100	8906.1 21+	M1+E2	0.021 5	$\begin{array}{l} \alpha(N)=0.00548\ 12;\ \alpha(O)=5.10\times10^{-5}\ 9;\ \alpha(F)=2.7\times10^{-7}\ 7\\ \alpha(K)=0.018\ 4;\ \alpha(L)=0.0026\ 3;\ \alpha(M)=0.00056\ 6\\ \alpha(N)=0.000124\ 12\ (O)=1.05\times10^{-5}\ 24\ (D)=1.05\times10^{-6}\ 20\\ \alpha(K)=0.000124\ 12\ (O)=1.05\times10^{-5}\ 24\ (D)=1.05\times10^{-6}\ 20\\ \alpha(K)=0.000124\ 12\ (O)=1.05\times10^{-5}\ 24\ (D)=1.05\times10^{-6}\ 20\\ \alpha(K)=0.000124\ 12\ (D)=1.05\times10^{-5}\ 24\ (D)=1.05\times10^{-6}\ 20\\ \alpha(K)=0.000124\ 12\ (D)=1.05\times10^{-5}\ 12\ (D)=1.05\times10^{-6}\ 12\ (D)=1$
9524.0	23-	512.8 2	100	9011.2 22-	M1+E2	0.014 3	$\alpha(N)=0.00124 Is; \alpha(O)=1.85\times10^{\circ} 24; \alpha(P)=1.08\times10^{\circ} 29 \\ \alpha(K)=0.012 3; \alpha(L)=0.0017 25; \alpha(M)=0.00037 5 \\ \alpha(L)=0.0123 + 0.0012 25; \alpha(L)=0.0013 + 0.0013 +$
9566.5	22^{+}	531.6 2		9034.9 21+	M1+E2	0.013 3	$\alpha(N) = 8.2 \times 10^{-5} I2; \ \alpha(O) = 1.22 \times 10^{-5} 20; \ \alpha(P) = 7.3 \times 10^{-5} 20$ $\alpha(K) = 0.011 3; \ \alpha(L) = 0.00156 23; \ \alpha(M) = 0.00033 5$ $\alpha(N) = 7.4 \times 10^{-5} L1 = (0)^{-1} 11 \times 10^{-5} L0$
		660.4 2		8906.1 21+			$\alpha(N) = 7.4 \times 10^{\circ} 11; \ \alpha(O) = 1.11 \times 10^{\circ} 19; \ \alpha(P) = 6.7 \times 10^{\circ} 19$
9569.3	22-	533.9 5	100	9034.9 21+	E1	0.00340	α (K)=0.00292 5; α (L)=0.000379 6; α (M)=7.97×10 ⁻⁵ 12
		588.0 <i>5</i>	54	8981.5 20-	E2	0.00770	$\alpha(N)=1.78\times10^{-5} \ 3; \ \alpha(O)=2.68\times10^{-6} \ 4; \ \alpha(P)=1.698\times10^{-7} \ 24$ $\alpha(K)=0.00643 \ 10; \ \alpha(L)=0.000998 \ 15; \ \alpha(M)=0.000214 \ 3$
9646.7	22 ⁺	380.0 2		9266.7 22+	M1+E2	0.031 6	α (N)=4.75×10 ⁻⁵ 7; α (O)=6.99×10 ⁻⁶ 10; α (P)=3.82×10 ⁻⁷ 6 α (K)=0.026 6; α (L)=0.00402 24; α (M)=0.00086 4
		1208 2 10		8438 5 20+	F2	1.52×10^{-3}	$\alpha(N)=0.000191 \ 10; \ \alpha(O)=2.83\times10^{-5} \ 24; \ \alpha(P)=1.59\times10^{-6} \ 42$ $\alpha(K)=0.001295 \ 19; \ \alpha(L)=0.0001733 \ 25; \ \alpha(M)=3.66\times10^{-5} \ 6$
		1200.2 10		0100.0 20	22	1.52/10	$\alpha(N) = 8.18 \times 10^{-6} \ 12; \ \alpha(O) = 1.237 \times 10^{-6} \ 18; \ \alpha(P) = 7.86 \times 10^{-8} \ 11; \\ \alpha(IPF) = 6.85 \times 10^{-6} \ 16$
9671.1	22 ⁽⁻⁾	636.4 2	100	9034.9 21+	(E1)	0.00231	$\alpha(K) = 0.00199 \ 3; \ \alpha(L) = 0.000256 \ 4; \ \alpha(M) = 5.39 \times 10^{-5} \ 8$
9771.0	24-	447.7 2	100	9323.3 23-	M1+E2	0.020 5	$\alpha(N)=1.203\times10^{-5} I/; \ \alpha(O)=1.82\times10^{-5} 3; \ \alpha(P)=1.165\times10^{-5} I/; \ \alpha(L)=0.0025 3; \ \alpha(M)=0.00053 6 \alpha(N)=0.000119 I3; \ \alpha(O)=1.77\times10^{-5} 23; \ \alpha(P)=1.04\times10^{-6} 28$

20

γ (¹⁴⁰Nd) (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^C	α^f	Comments
9794.3	23-	527.6 2	100	9266.7 22+	E1	0.00349	$\alpha(K)=0.00300\ 5;\ \alpha(L)=0.000389\ 6;\ \alpha(M)=8.18\times10^{-5}\ 12$ $\alpha(N)=1\ 83\times10^{-5}\ 3;\ \alpha(O)=2\ 75\times10^{-6}\ 4;\ \alpha(P)=1\ 743\times10^{-7}\ 25$
		621.1 2	67	9173.2 21-	E2	0.00671	$\alpha(K) = 1.05 \times 10^{-5} \alpha(C) = 2.75 \times 10^{-7} $
9871.7	23+	524.4 2	100	9347.2 22+	M1+E2	0.013 3	$\alpha(K) = 0.011 \ 3; \ \alpha(L) = 0.00162 \ 24; \ \alpha(M) = 0.00034 \ 5 \ \alpha(N) = 7.7 \times 10^{-5} \ 11; \ \alpha(Q) = 1.15 \times 10^{-5} \ 19; \ \alpha(P) = 6.9 \times 10^{-7} \ 19$
9892.4	23 ⁽⁻⁾	221.6 2		9671.1 22 ⁽⁻⁾	M1+E2	0.146 8	$\alpha(K)=0.118 \ 13; \ \alpha(L)=0.022 \ 5; \ \alpha(M)=0.0049 \ 11 \ \alpha(N)=0.00107 \ 22; \ \alpha(O)=0.000153 \ 24; \ \alpha(P)=6.9\times10^{-6} \ 15$
		325.8 2		9566.5 22+	(E1)	0.01100	$\alpha(K) = 0.00942 \ 14; \ \alpha(L) = 0.001250 \ 18; \ \alpha(M) = 0.000263 \ 4$ $\alpha(N) = 5.86 \times 10^{-5} \ 9; \ \alpha(O) = 8.76 \times 10^{-6} \ 13; \ \alpha(P) = 5.34 \times 10^{-7} \ 8$
		545.0 2		9347.2 22+	(E1)	0.00324	α (K)=0.00279 4; α (L)=0.000361 5; α (M)=7.60×10 ⁻⁵ 11 α (N)=1.696×10 ⁻⁵ 24; α (O)=2.56×10 ⁻⁶ 4; α (P)=1.623×10 ⁻⁷ 23
10001.8	24-	477.8 2	100	9524.0 23-	M1+E2	0.017 4	$\alpha(K)=0.014 \ 4; \ \alpha(L)=0.0021 \ 3; \ \alpha(M)=0.00045 \ 6 \\ \alpha(N)=9.9\times10^{-5} \ 12; \ \alpha(O)=1.48\times10^{-5} \ 22; \ \alpha(P)=8.8\times10^{-7} \ 24$
10126.5	24+	859.8 2	100	9266.7 22+	E2	0.00311	$\alpha(K)=0.00264 4; \alpha(L)=0.000373 6; \alpha(M)=7.93\times10^{-5} 12$ $\alpha(N)=1.767\times10^{-5} 25; \alpha(O)=2.65\times10^{-6} 4; \alpha(P)=1.595\times10^{-7} 23$
10128.7 10255.1		605.4 931.8	100 100	9524.0 23 ⁻ 9323.3 23 ⁻			
10263.2	24 ⁽⁻⁾	370.8 2	100	9892.4 23 ⁽⁻⁾	M1+E2	0.033 6	α (K)=0.028 6; α (L)=0.00432 22; α (M)=0.00093 4 α (N)=0.000206 9; α (O)=3.04×10 ⁻⁵ 23; α (P)=1.70×10 ⁻⁶ 45
10307.6	24-	415.3 2		9892.4 23 ⁽⁻⁾	(M1+E2)	0.025 5	$\alpha(K)=0.021\ 5;\ \alpha(L)=0.0031\ 3;\ \alpha(M)=0.00066\ 5$ $\alpha(N)=0.000148\ 13;\ \alpha(O)=2.19\times10^{-5}\ 24;\ \alpha(P)=1.26\times10^{-6}\ 34$
		738.0 2	100	9569.3 22-	E2	0.00442	$\alpha(K)=0.00373 \ 6; \ \alpha(L)=0.000544 \ 8; \ \alpha(M)=0.0001159 \ 17$ $\alpha(N)=2.58\times10^{-5} \ 4; \ \alpha(O)=3.84\times10^{-6} \ 6; \ \alpha(P)=2.24\times10^{-7} \ 4$
10437.5		1427.3	100	9010.6 23-			
10471.3	24+	599.6 2	100	9871.7 23+	M1+E2	0.0095 22	α (K)=0.0080 20; α (L)=0.00113 19; α (M)=0.00024 4 α (N)=5.4×10 ⁻⁵ 9; α (O)=8.1×10 ⁻⁶ 15; α (P)=5.0×10 ⁻⁷ 14
10576.2	25-	449.7 5	23	10126.5 24+	E1	0.00503	$\alpha(K)=0.00432$ 7; $\alpha(L)=0.000565$ 8; $\alpha(M)=0.0001189$ 17 $\alpha(N)=2.65\times10^{-5}$ 4; $\alpha(O)=3.99\times10^{-6}$ 6; $\alpha(P)=2.49\times10^{-7}$ 4
		781.9 2	100	9794.3 23-	E2	0.00386	$\alpha(K) = 0.00327 5; \ \alpha(L) = 0.000470 7; \ \alpha(M) = 0.0001001 14 \\ \alpha(N) = 2.23 \times 10^{-5} 4; \ \alpha(O) = 3.33 \times 10^{-6} 5; \ \alpha(P) = 1.97 \times 10^{-7} 3$
10587.9	24+	941.2 2		9646.7 22+	E2	0.00255	$\alpha(K)=0.00217 \ 3; \ \alpha(L)=0.000302 \ 5; \ \alpha(M)=6.40\times10^{-5} \ 9 \ \alpha(N)=1.427\times10^{-5} \ 20; \ \alpha(Q)=2.14\times10^{-6} \ 3; \ \alpha(P)=1.313\times10^{-7} \ 19$
		1321.1 10		9266.7 22+	E2	1.29×10^{-3}	$\alpha(K) = 0.001084 \ 16; \ \alpha(L) = 0.0001436 \ 21; \ \alpha(M) = 3.03 \times 10^{-5} \ 5$

From ENSDF

						Ac	dopted Level	s, Gammas (continued)
							$\gamma(^{140}N)$	Id) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult. ^C	α^{f}	Comments
10505 1	2.1-	207.1.2		10207 (2.4-			α (N)=6.77×10 ⁻⁶ 10; α (O)=1.026×10 ⁻⁶ 15; α (P)=6.58×10 ⁻⁸ 10; α (IPF)=2.51×10 ⁻⁵ 5
10595.1	24	287.12		10307.6	24			5
		1027.4° 5		9569.3	22-	E2	0.00212	$\alpha(K)=0.00180 \ 3; \ \alpha(L)=0.000247 \ 4; \ \alpha(M)=5.23\times10^{-5} \ 8 \\ \alpha(N)=1.167\times10^{-5} \ 17; \ \alpha(O)=1.758\times10^{-6} \ 25; \ \alpha(P)=1.092\times10^{-7} \ 16$
10614.4		486.3	100	10128.7				
10679.3		424.2	100	10255.1				
10740.9	25(-)	477.7 2	100	10263.2	24(-)	M1+E2	0.017 4	$\alpha(K)=0.014 4; \alpha(L)=0.0021 3; \alpha(M)=0.00045 6$ $\alpha(N)=9.9\times10^{-5} 12; \alpha(O)=1.48\times10^{-5} 22; \alpha(P)=8.8\times10^{-7} 24$
10949.6	(25 ⁻)	1155.5 5	100	9794.3	23-			
11072.6	26^{-}	765.0 2	100	10307.6	24-	E2	0.00406	α (K)=0.00343 5; α (L)=0.000497 7; α (M)=0.0001058 15
								$\alpha(N)=2.36\times10^{-5} 4; \ \alpha(O)=3.51\times10^{-6} 5; \ \alpha(P)=2.06\times10^{-7} 3$
11173.9	26^{+}	1047.6 5	100	10126.5	24+	E2	0.00203	$\alpha(K)=0.001732\ 25;\ \alpha(L)=0.000236\ 4;\ \alpha(M)=5.01\times10^{-5}\ 7$
	(25-)	500.4	100	10(11)				$\alpha(N)=1.117\times10^{-5}$ 16; $\alpha(O)=1.684\times10^{-6}$ 24; $\alpha(P)=1.049\times10^{-7}$ 15
11213.2	(27^{-})	599.4	100	10614.4				
11222.7	25()	/85.0	100	10437.5	22+			
11312.5	26(-)	571.6.2	100	10740.9	25(-)	M1+F2	0.0107.25	$\alpha(K) = 0.0091.22$; $\alpha(I) = 0.00129.21$; $\alpha(M) = 0.00027.5$
11012.0	20	571.0 2	100	10710.9	23	1011 112	0.0107 25	$\alpha(R) = 6.1 \times 10^{-5} \ l_{0}; \ \alpha(Q) = 9.2 \times 10^{-6} \ l_{0}; \ \alpha(P) = 5.6 \times 10^{-7} \ l_{0}$
11365.6	27^{-}	789.3 2	100	10576.2	25-	E2	0.00378	$\alpha(K) = 0.003205; \alpha(L) = 0.0004607; \alpha(M) = 9.78 \times 10^{-5} 14$
								$\alpha(N)=2.18\times10^{-5}$ 3; $\alpha(O)=3.25\times10^{-6}$ 5; $\alpha(P)=1.92\times10^{-7}$ 3
11398.0	$26^{(-)}$	325.5 2		11072.6	26-	M1+E2	0.048 8	$\alpha(K)=0.040 \ 8; \ \alpha(L)=0.00640 \ 10; \ \alpha(M)=0.00138 \ 4$
								α (N)=0.000305 6; α (O)=4.49×10 ⁻⁵ 14; α (P)=2.41×10 ⁻⁶ 61
		802.8 2		10595.1	24-			5
11565.1	26+	977.3 5	100	10587.9	24+	E2	0.00235	$\alpha(K)=0.00200 \ 3; \ \alpha(L)=0.000277 \ 4; \ \alpha(M)=5.86\times10^{-5} \ 9$
11500.0	2(+	266.1		11000 7	27(-)	$(\mathbf{D}_{1})^{\boldsymbol{\rho}}$	0.00024	$\alpha(N) = 1.308 \times 10^{-5} \ 19; \ \alpha(O) = 1.97 \times 10^{-6} \ 3; \ \alpha(P) = 1.213 \times 10^{-7} \ 17$
11589.0	261	366.1		11222.7	25()	(E1) ^e	0.00824	$\alpha(\mathbf{K})=0.0070670; \alpha(\mathbf{L})=0.00093273; \alpha(\mathbf{M})=0.0001963$
		376 1		11213.2	(27^{-})	(F1) ^e	0.00771	$\alpha(\mathbf{N}) = 4.5 / \times 10^{-5} /; \ \alpha(\mathbf{O}) = 0.55 \times 10^{-5} I0; \ \alpha(\mathbf{P}) = 4.05 \times 10^{-5} 0$ $\alpha(\mathbf{K}) = 0.00661 I0; \ \alpha(\mathbf{I}) = 0.000871 I3; \ \alpha(\mathbf{M}) = 0.000184 I3$
		570.1		11213.2	(27)	(L1)	0.00771	$\alpha(\mathbf{N}) = 0.0000110$, $\alpha(\mathbf{E}) = 0.00007115$, $\alpha(\mathbf{N}) = 0.0001045$ $\alpha(\mathbf{N}) = 4.09 \times 10^{-5} 6$; $\alpha(\mathbf{O}) = 6.13 \times 10^{-6} 9$; $\alpha(\mathbf{P}) = 3.78 \times 10^{-7} 6$
11601.0	26^{+}	378.1		11222.7	$25^{(-)}$	(E1) ^e	0.00761	$\alpha(K) = 0.00653 \ 10^{\circ} \ \alpha(L) = 0.000860 \ 12^{\circ} \ \alpha(M) = 0.000181 \ 3$
1100110	20	0,011		1122217	20	(21)	0.00701	$\alpha(N) = 4.03 \times 10^{-5} 6; \ \alpha(O) = 6.05 \times 10^{-6} 9; \ \alpha(P) = 3.73 \times 10^{-7} 6$
		388.2		11213.2	(27 ⁻)	(E1) ^e	0.00714	$\alpha(K)=0.00612 9; \alpha(L)=0.000806 12; \alpha(M)=0.0001697 24$
								$\alpha(N)=3.78\times10^{-5}$ 6; $\alpha(O)=5.67\times10^{-6}$ 8; $\alpha(P)=3.51\times10^{-7}$ 5
		1012.9		10587.9	24+	E2	0.00218	$\alpha(K)=0.00186 \ 3; \ \alpha(L)=0.000255 \ 4; \ \alpha(M)=5.40\times10^{-5} \ 8$
								$\alpha(N)=1.205\times10^{-5}$ 17; $\alpha(O)=1.81\times10^{-6}$ 3; $\alpha(P)=1.125\times10^{-7}$ 16

22

γ (¹⁴⁰Nd) (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^C	α^f	Comments
11601.0	26+	1024.9		10576.2 25-	(E1) ^e	8.93×10 ⁻⁴	$\alpha(K)=0.000770 \ 11; \ \alpha(L)=9.73\times10^{-5} \ 14; \ \alpha(M)=2.04\times10^{-5} \ 3$ $\alpha(N)=4.56\times10^{-6} \ 7; \ \alpha(Q)=6.04\times10^{-7} \ 10; \ \alpha(R)=4.56\times10^{-8} \ 7$
11846.0	27-	447.4 10	11	11398.0 26 ⁽⁻⁾	M1+E2	0.020 5	$\alpha(N) = 4.50 \times 10^{-7}$, $\alpha(O) = 0.54 \times 10^{-7}$ 10, $\alpha(T) = 4.50 \times 10^{-7}$ $\alpha(K) = 0.017 4$; $\alpha(L) = 0.0025 3$; $\alpha(M) = 0.00054 6$ $\alpha(N) = 0.000110 13$; $\alpha(O) = 1.78 \times 10^{-5} 23$; $\alpha(D) = 1.04 \times 10^{-6} 28$
		773.5 5	100	11072.6 26-	M1+E2	0.0051 12	$\alpha(N)=0.000119$ 15, $\alpha(O)=1.78\times10^{-2.5}$, $\alpha(P)=1.04\times10^{-2.5}$ $\alpha(K)=0.0044$ 10; $\alpha(L)=0.00059$ 11; $\alpha(M)=0.000126$ 23 $\alpha(N)=2.8\times10^{-5}$ 6; $\alpha(O)=4.3\times10^{-6}$ 9; $\alpha(P)=2.70\times10^{-7}$ 69
11944.9	(27 ⁻)	995.3 2		10949.6 (25 ⁻)	E2	0.00226	$\alpha(K) = 2.5 \times 10^{-5} \ 0, \ \alpha(G) = 4.5 \times 10^{-5} \ 2, \ \alpha(K) = 2.70 \times 10^{-5} \ 8$ $\alpha(K) = 0.00193 \ 3; \ \alpha(L) = 0.000265 \ 4; \ \alpha(M) = 5.62 \times 10^{-5} \ 8$ $\alpha(N) = 1.254 \times 10^{-5} \ 18; \ \alpha(O) = 1.89 \times 10^{-6} \ 3; \ \alpha(P) = 1.167 \times 10^{-7} \ 17$
		1368.9 10		10576.2 25-			$u(n) = 1.254 \times 10^{-10}, u(0) = 1.09 \times 10^{-5}, u(1) = 1.107 \times 10^{-17}$
11966.2	$27^{(-)}$	653.7 2	100	11312.5 26 ⁽⁻⁾	M1+E2	0.0077 18	$\alpha(K)=0.0065 \ 16; \ \alpha(L)=0.00091 \ 16; \ \alpha(M)=0.00019 \ 4$
							$\alpha(N)=4.3\times10^{-5} 8$; $\alpha(O)=6.5\times10^{-6} 13$; $\alpha(P)=4.0\times10^{-7} 11$
12124.5	28^{-}	1051.9 5	100	11072.6 26-	E2	0.00201	α (K)=0.001717 25; α (L)=0.000234 4; α (M)=4.96×10 ⁻⁵ 7
							$\alpha(N)=1.107\times10^{-5}$ 16; $\alpha(O)=1.668\times10^{-6}$ 24; $\alpha(P)=1.040\times10^{-7}$ 15
12194.5	(26 ⁻)	245.4 2	100	11949.3 (25 ⁻)	M1+E2	0.108 9	$\alpha(K)=0.088\ 12;\ \alpha(L)=0.0158\ 22;\ \alpha(M)=0.0034\ 6$
12226.0	$(\mathbf{Q}(\mathbf{z}))$	207.4.2	100	11040 0 (05-)			$\alpha(N)=0.00076 \ 12; \ \alpha(O)=0.000109 \ 12; \ \alpha(P)=5.2\times10^{-6} \ 12$
12236.8	(26)	287.4 2	100	11949.3 (25)	E2	0.00622	$\alpha(K) = 0.00521.8; \alpha(L) = 0.000780.11; \alpha(M) = 0.0001687.24$
12241.4	28	040.4		11001.0 20	E2	0.00022	$\alpha(\mathbf{K}) = 0.00321$ 6, $\alpha(\mathbf{L}) = 0.000789$ 11; $\alpha(\mathbf{M}) = 0.0001087$ 24 $\alpha(\mathbf{K}) = 2.75 \times 10^{-5}$ 6, $\alpha(\mathbf{O}) = 5.55 \times 10^{-6}$ 9, $\alpha(\mathbf{D}) = 2.11 \times 10^{-7}$ 5
		652.5		11589.0 26+	F2	0.00594	$\alpha(N)=5.75\times10^{-6}$ 0, $\alpha(O)=5.55\times10^{-6}$ 8, $\alpha(P)=5.11\times10^{-6}$ 5 $\alpha(K)=0.00498$ 7: $\alpha(L)=0.000750$ 11: $\alpha(M)=0.0001604$ 23
		052.5		11509.0 20	112	0.00571	$\alpha(\mathbf{N}) = 3.57 \times 10^{-5} 5$; $\alpha(\mathbf{O}) = 5.28 \times 10^{-6} 8$; $\alpha(\mathbf{P}) = 2.98 \times 10^{-7} 5$
		676.3 5	46	11565.1 26+	E2	0.00544	$\alpha(K) = 0.00457 \ 7; \ \alpha(L) = 0.000682 \ 10; \ \alpha(M) = 0.0001457 \ 21$
							$\alpha(N)=3.24\times10^{-5}$ 5; $\alpha(O)=4.81\times10^{-6}$ 7; $\alpha(P)=2.74\times10^{-7}$ 4
		875.7 5	100	11365.6 27-	E1	1.21×10^{-3}	$\alpha(K)=0.001038\ 15;\ \alpha(L)=0.0001320\ 19;\ \alpha(M)=2.77\times10^{-5}\ 4$
							$\alpha(N) = 6.20 \times 10^{-6} 9; \ \alpha(O) = 9.40 \times 10^{-7} 14; \ \alpha(P) = 6.13 \times 10^{-8} 9$
12422.3	29-	1056.7 5	100	11365.6 27-	E2	0.00200	$\alpha(K)=0.001701\ 24;\ \alpha(L)=0.000232\ 4;\ \alpha(M)=4.91\times10^{-5}\ 7$
							$\alpha(N)=1.096\times10^{-5}$ 16; $\alpha(O)=1.652\times10^{-6}$ 24; $\alpha(P)=1.031\times10^{-7}$ 15
12426.1	(28^{+})	1252.8 10	100	11173.9 26+	[E2]	1.42×10^{-3}	$\alpha(K)=0.001204 \ 17; \ \alpha(L)=0.0001605 \ 23; \ \alpha(M)=3.39\times10^{-5} \ 5$
							$\alpha(N)=7.57 \times 10^{-6} 11; \alpha(O)=1.146 \times 10^{-6} 17; \alpha(P)=7.31 \times 10^{-8} 11; \alpha(P)=1.206 \times 10^{-5} 24$
12446.0	(28^{+})	1271 0 10	100	11173 0 26+	[E2]	1.38×10^{-3}	$\alpha(\text{IPP}) = 1.290 \times 10^{-5} 24$ $\alpha(\text{K}) = 0.001160 \ 17; \ \alpha(\text{L}) = 0.0001555 \ 22; \ \alpha(\text{M}) = 3.28 \times 10^{-5} 5$
12440.0	(20)	12/1.9 10	100	11175.9 20	[122]	1.36×10	$\alpha(\mathbf{N}) = 0.001109 \ 17, \ \alpha(\mathbf{L}) = 0.0001353 \ 22, \ \alpha(\mathbf{M}) = 5.26 \times 10^{-5} \ 5$ $\alpha(\mathbf{N}) = 7.33 \times 10^{-6} \ 11; \ \alpha(\mathbf{O}) = 1.110 \times 10^{-6} \ 16; \ \alpha(\mathbf{D}) = 7.00 \times 10^{-8} \ 10;$
							$\alpha(\text{IPF})=1.60\times10^{-5} 3$
12480.6	(29^{+})	1115.4 10	100	11365.6 27-	[M2]	0.00634	α (K)=0.00540 8; α (L)=0.000742 11; α (M)=0.0001574 23
							$\alpha(N)=3.53\times10^{-5} 5; \ \alpha(O)=5.38\times10^{-6} 8; \ \alpha(P)=3.53\times10^{-7} 5; \ \alpha(IPF)=9.7\times10^{-8} 5$

23

Adopted	Levels,	Gammas	(continued)
---------	---------	--------	-------------

γ (¹⁴⁰Nd) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^C	α^{f}	Comments
12525.5	29-	401.1 <i>10</i> 679.5 5	8 100	12124.5 11846.0	28 ⁻ 27 ⁻	E2	0.00538	α(K)=0.00452 7; α(L)=0.000674 10; α(M)=0.0001439 21
12548.9	(27 ⁻)	312.3 2		12236.8	(26 ⁻)	M1+E2	0.054 8	$\alpha(N)=3.20\times10^{-5} 5; \ \alpha(O)=4.75\times10^{-6} 7; \ \alpha(P)=2.71\times10^{-7} 4$ $\alpha(K)=0.045 8; \ \alpha(L)=0.00727 19; \ \alpha(M)=0.00157 7$ $\alpha(D)=0.002247 12; \ \alpha(D)=5.00\times10^{-5} 0; \ \alpha(D)=2.71\times10^{-6} 7; \ \alpha(D)=2.71\times10^{-6} $
		354.4 2		12194.5	(26 ⁻)	(M1+E2)	0.038 7	$\alpha(N)=0.00034/12; \ \alpha(O)=5.09\times10^{-5}9; \ \alpha(P)=2.7\times10^{-6}7$ $\alpha(K)=0.0327; \ \alpha(L)=0.0049417; \ \alpha(M)=0.00106024$ $\alpha(N)=0.002367; \ \alpha(O)=348\times10^{-5}21; \ \alpha(P)=192\times10^{-6}50$
		599.5 2		11949.3	(25^{-})			u(1) = 0.0002507, u(0) = 5.10110 - 21, u(1) = 1.92110 - 50
12898.4	(29^{+})	452.1 2		12446.0	(28+)	M1+E2	0.020 4	$\alpha(K)=0.016$ 4; $\alpha(L)=0.0024$ 3; $\alpha(M)=0.00052$ 6
								α (N)=0.000116 <i>13</i> ; α (O)=1.73×10 ⁻⁵ <i>23</i> ; α (P)=1.01×10 ⁻⁶ <i>28</i>
		472.3 2		12426.1	(28^{+})	M1+E2	0.017 4	$\alpha(K)=0.015 4; \ \alpha(L)=0.0022 3; \ \alpha(M)=0.00046 6$
12010.0	(20-)	260.0.2		10540.0	(07-)	N/1 - E2	0.024.6	α (N)=0.000102 <i>13</i> ; α (O)=1.53×10 ⁻⁵ 22; α (P)=9.1×10 ⁻⁷ 25
12918.0	(28)	369.0 2		12548.9	(27)	M1+E2	0.034 6	$\alpha(\mathbf{K})=0.028\ 6;\ \alpha(\mathbf{L})=0.00438\ 21;\ \alpha(\mathbf{M})=0.00094\ 4$
		680 8 2		12226.9	(26^{-})			$\alpha(N)=0.000209 9; \alpha(O)=3.09\times10^{-5} 23; \alpha(P)=1.72\times10^{-6} 43$
		723.8.2		12230.8	(20^{-})			
12997.5	(29^{-})	1052.8 5		11944.9	(20^{-})			
		1631.2 10		11365.6	27-			
13051.1	30^{+}	809.7 2	100	12241.4	28+	E2	0.00357	$\alpha(K)=0.00302$ 5; $\alpha(L)=0.000432$ 6; $\alpha(M)=9.18\times10^{-5}$ 13
								$\alpha(N)=2.05\times10^{-5}$ 3; $\alpha(O)=3.06\times10^{-6}$ 5; $\alpha(P)=1.82\times10^{-7}$ 3
13323.5	(30^{+})	424.9 2		12898.4	(29 ⁺)	M1+E2	0.023 5	$\alpha(K)=0.019$ 5; $\alpha(L)=0.0029$ 3; $\alpha(M)=0.00062$ 6
								α (N)=0.000138 <i>13</i> ; α (O)=2.06×10 ⁻⁵ 24; α (P)=1.19×10 ⁻⁶ 32
		877.7 2		12446.0	(28^{+})	E2	0.00298	$\alpha(K)=0.00253 4; \alpha(L)=0.000355 5; \alpha(M)=7.54\times10^{-5} 11$
								α (N)=1.682×10 ⁻⁵ 24; α (O)=2.52×10 ⁻⁶ 4; α (P)=1.525×10 ⁻⁷ 22
13336.0	(29 ⁻)	417.7 2		12918.0	(28 ⁻)	M1+E2	0.024 5	$\alpha(K)=0.0205; \alpha(L)=0.00313; \alpha(M)=0.000655$
				10540.0	(07-)	50	0.00000	$\alpha(N)=0.000145 \ I3; \ \alpha(O)=2.16\times10^{-5} \ 24; \ \alpha(P)=1.24\times10^{-6} \ 34$
		787.4 2		12548.9	(27^{-})	E2	0.00380	$\alpha(\mathbf{K})=0.003215; \ \alpha(\mathbf{L})=0.0004627; \ \alpha(\mathbf{M})=9.84\times10^{-5}14$
10004 7	(21+)	014.1.5	100	10,400 ($(20\pm)$	(50)	0.00070	$\alpha(N)=2.19\times10^{-5}$ 3; $\alpha(O)=3.27\times10^{-6}$ 5; $\alpha(P)=1.94\times10^{-7}$ 3
13394.7	(31')	914.1 5	100	12480.6	(291)	[E2]	0.00272	$\alpha(\mathbf{K}) = 0.002314; \ \alpha(\mathbf{L}) = 0.0003235; \ \alpha(\mathbf{M}) = 6.85 \times 10^{-5}10$
		072 0 10	80	12/22 3	20-			$\alpha(N)=1.528\times10^{-5}22; \ \alpha(O)=2.29\times10^{-5}4; \ \alpha(P)=1.597\times10^{-7}20$
13406.8	30-	1282 3 10	100	12422.5	29	F2	1.36×10^{-3}	$\alpha(K) = 0.001150.17$; $\alpha(L) = 0.0001528.22$; $\alpha(M) = 3.23 \times 10^{-5}.5$
13400.8	50	1202.3 10	100	12124.3	20	L2	1.50×10	$\alpha(\text{N})=7.21\times10^{-6} \ 11; \ \alpha(\text{O})=1.091\times10^{-6} \ 16; \ \alpha(\text{P})=6.98\times10^{-8} \ 10; \\ \alpha(\text{IPF})=1.77\times10^{-5} \ 3$
13479.2	(30+)	953.7 2	100	12525.5	29-	[E1]	1.02×10^{-3}	$\alpha(K)=0.000881 \ 13; \ \alpha(L)=0.0001117 \ 16; \ \alpha(M)=2.34\times10^{-5} \ 4$ $\alpha(N)=5.24\times10^{-6} \ 8; \ \alpha(O)=7.96\times10^{-7} \ 12; \ \alpha(P)=5.21\times10^{-8} \ 8$

	γ ⁽¹⁴⁰ Nd) (continued)								
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_f J_f^{\pi}$	Mult. ^C	α^f	Comments		
13583.6	31-	1058.1 5	100	12525.5 29-	E2	0.00199	$\alpha(K)=0.001697\ 24;\ \alpha(L)=0.000231\ 4;\ \alpha(M)=4.89\times10^{-5}\ 7$ $\alpha(N)=1.093\times10^{-5}\ 16;\ \alpha(O)=1.647\times10^{-6}\ 24;\ \alpha(P)=1.028\times10^{-7}\ 15$		
13704.0	31-	1281.6 <i>10</i>	100	12422.3 29-	E2	1.36×10 ⁻³	$\alpha(K)=0.001151 \ 17; \ \alpha(L)=0.0001530 \ 22; \ \alpha(M)=3.23\times10^{-5} \ 5 \\ \alpha(N)=7.22\times10^{-6} \ 11; \ \alpha(O)=1.093\times10^{-6} \ 16; \ \alpha(P)=6.99\times10^{-8} \ 10; \\ \alpha(IPF)=1.76\times10^{-5} \ 3 $		
13769.3	(30 ⁻)	433.5 2		13336.0 (29 ⁻)	M1+E2	0.022 5	$\alpha(K)=0.018 \ 4; \ \alpha(L)=0.0027 \ 3; \ \alpha(M)=0.00059 \ 6$ $\alpha(N)=0.000131 \ 13; \ \alpha(O)=1.94\times10^{-5} \ 24; \ \alpha(P)=1.13\times10^{-6} \ 31$		
		851.2 2		12918.0 (28 ⁻)	E2	0.00319	$\alpha(K)=0.00270 \ 4; \ \alpha(L)=0.000382 \ 6; \ \alpha(M)=8.12\times10^{-5} \ 12 \ \alpha(N)=1.81\times10^{-5} \ 3; \ \alpha(O)=2.71\times10^{-6} \ 4; \ \alpha(P)=1.630\times10^{-7} \ 23$		
13915.8	(31 ⁺)	592.3 2	100	13323.5 (30 ⁺)	M1+E2	0.0098 23	$\alpha(K) = 0.0083 \ 20; \ \alpha(L) = 0.00117 \ 20; \ \alpha(M) = 0.00025 \ 4 \\ \alpha(N) = 5.6 \times 10^{-5} \ 9; \ \alpha(O) = 8.3 \times 10^{-6} \ 15; \ \alpha(P) = 5.1 \times 10^{-7} \ 14$		
13960.2	32+	909.1 2	100	13051.1 30+	E2	0.00275	$\alpha(K)=0.00234 4; \alpha(L)=0.000327 5; \alpha(M)=6.94\times10^{-5} 10$ $\alpha(N)=1.547\times10^{-5} 22; \alpha(O)=2.32\times10^{-6} 4; \alpha(P)=1.414\times10^{-7} 20$		
14238.6	(31-)	469.1 2		13769.3 (30 ⁻)	M1+E2	0.018 4	$\alpha(K) = 0.015 4; \alpha(L) = 0.0022 3; \alpha(M) = 0.00047 6$ $\alpha(K) = 0.000104 J3; \alpha(Q) = 1.56 \times 10^{-5} 22; \alpha(P) = 9.2 \times 10^{-7} 25$		
		902.6 2		13336.0 (29 ⁻)	E2	0.00280	$\alpha(K) = 0.00238 \ 4; \ \alpha(L) = 0.000333 \ 5; \ \alpha(M) = 7.06 \times 10^{-5} \ 10 \ \alpha(N) = 1.574 \times 10^{-5} \ 22; \ \alpha(O) = 2.36 \times 10^{-6} \ 4; \ \alpha(P) = 1.436 \times 10^{-7} \ 21$		
14247.1	(31^{-})	477.2 2		13769.3 (30-)					
		911.2 2		13336.0 (29-)	E2	0.00274	α (K)=0.00233 4; α (L)=0.000325 5; α (M)=6.90×10 ⁻⁵ 10 α (N)=1.539×10 ⁻⁵ 22; α (O)=2.31×10 ⁻⁶ 4; α (P)=1.407×10 ⁻⁷ 20		
14254.9	(30^{+})	1204.2 10	100	13051.1 30+					
14410.6	(32^{+})	827.0 2		13583.6 31-					
		931.3 2		13479.2 (30 ⁺)					
		1087.1 2		$13323.5 (30^+)$					
14474.2	(33+)	1079.5 5	100	13394.7 (31+)	E2	0.00191	$\alpha(\mathbf{K})=0.001628\ 23;\ \alpha(\mathbf{L})=0.000221\ 4;\ \alpha(\mathbf{M})=4.68\times10^{-5}\ 7$ $\alpha(\mathbf{N})=1.045\times10^{-5}\ 15;\ \alpha(\mathbf{O})=1.576\times10^{-6}\ 23;\ \alpha(\mathbf{P})=9.87\times10^{-8}\ 14$		
14540.6	(31^{+})	285.5 2		$14254.9 (30^+)$					
		1489.4 ¹ 1		13051.1 30+					
14708.3	(32^{+})	792.5 2	100	13915.8 (31 ⁺)					
14761.7	(32 ⁻)	514.4 2		14247.1 (31 ⁻)					
		522.6 2		14238.6 (31 ⁻)					
		993.1 ^b 2		13769.3 (30 ⁻)					
14844.4	(32-)	1437.6 10	100	13406.8 30-					
14858.2	(32+)	317.3 2		14540.6 (31 ⁺)	M1+E2	0.051 8	$\alpha(K)=0.043 \ 8; \ \alpha(L)=0.00692 \ 14; \ \alpha(M)=0.00149 \ 5 \ \alpha(N)=0.000331 \ 9; \ \alpha(O)=4.85\times10^{-5} \ 11; \ \alpha(P)=2.6\times10^{-6} \ 7$		
		603.4 2		14254.9 (30 ⁺)					
		898.0 2		13960.2 32+					
		1274.9 10		13583.6 31-					

25

$^{140}_{60}\mathrm{Nd}_{80}$ -25

From ENSDF

 $^{140}_{60}\mathrm{Nd}_{80}$ -25

γ (¹⁴⁰Nd) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^C	α^f	Comments
14904.3	33-	1320.7 10	100	13583.6 31-	E2	1.29×10 ⁻³	$\alpha(K)=0.001085 \ 16; \ \alpha(L)=0.0001437 \ 21; \ \alpha(M)=3.03\times10^{-5} \ 5 \\ \alpha(N)=6.78\times10^{-6} \ 10; \ \alpha(O)=1.027\times10^{-6} \ 15; \ \alpha(P)=6.59\times10^{-8} \ 10; \\ \alpha(IPE)=2 \ 50\times10^{-5} \ 4$
15027.3	(33-)	779.7 2		14247.1 (31-)	E2	0.00389	$\alpha(\text{M}^{-1})=2.30\times10^{-7}$ $\alpha(\text{K})=0.00329$ 5; $\alpha(\text{L})=0.000474$ 7; $\alpha(\text{M})=0.0001008$ 15 $\alpha(\text{N})=2.25\times10^{-5}$ 4; $\alpha(\text{O})=3.35\times10^{-6}$ 5; $\alpha(\text{P})=1.98\times10^{-7}$ 3
		789.1 2		14238.6 (31-)	E2	0.00378	$\alpha(K) = 0.00320 5; \ \alpha(L) = 0.000460 7; \ \alpha(M) = 9.79 \times 10^{-5} 14$ $\alpha(N) = 2.18 \times 10^{-5} 3; \ \alpha(Q) = 3.25 \times 10^{-6} 5; \ \alpha(P) = 1.93 \times 10^{-7} 3$
15042.9	34+	1082.0 5	100	13960.2 32+	E2	0.00190	α (K)=0.001620 23; α (L)=0.000220 3; α (M)=4.66×10 ⁻⁵ 7 α (N)=1.040×10 ⁻⁵ 15; α (O)=1.568×10 ⁻⁶ 22; α (P)=9.82×10 ⁻⁸ 14
15141.5	(33^{-})	1437.5 10	100	13704.0 31-			
15146.9	(33-)	1442.9 10	100	13704.0 31-			
15315.5	(33^{+})	457.4 2		14858.2 (32 ⁺)			
	. ,	775.0 2		14540.6 (31+)			
		1355.2 10		13960.2 32+			
15339.9	(33 ⁻)	578.1 2		14761.7 (32 ⁻)	(M1+E2)	0.0104 24	$\alpha(K)=0.0088\ 21;\ \alpha(L)=0.00125\ 21;\ \alpha(M)=0.00027\ 4$ $\alpha(N)=5.9\times10^{-5}\ 10;\ \alpha(O)=8.9\times10^{-6}\ 16;\ \alpha(P)=5.4\times10^{-7}\ 15$
		1101.3 5		14238.6 (31-)			
15605.2	(34+)	1194.6 5	100	14410.6 (32+)	(E2)	1.55×10 ⁻³	$\begin{aligned} &\alpha(\mathrm{K}) = 0.001325 \ 19; \ \alpha(\mathrm{L}) = 0.0001775 \ 25; \ \alpha(\mathrm{M}) = 3.75 \times 10^{-5} \ 6 \\ &\alpha(\mathrm{N}) = 8.38 \times 10^{-6} \ 12; \ \alpha(\mathrm{O}) = 1.267 \times 10^{-6} \ 18; \ \alpha(\mathrm{P}) = 8.04 \times 10^{-8} \ 12; \\ &\alpha(\mathrm{IPF}) = 5.33 \times 10^{-6} \ 10 \end{aligned}$
15726.0	(35 ⁺)	1251.8 <i>10</i>	100	14474.2 (33 ⁺)	E2	1.42×10 ⁻³	$\alpha(K)=0.001206 \ 17; \ \alpha(L)=0.0001608 \ 23; \ \alpha(M)=3.39\times10^{-5} \ 5 \\ \alpha(N)=7.59\times10^{-6} \ 11; \ \alpha(O)=1.148\times10^{-6} \ 17; \ \alpha(P)=7.32\times10^{-8} \ 11; \\ \alpha(IPF)=1.281\times10^{-5} \ 24$
15774.1	(34^{+})	458.4 2		15315.5 (33 ⁺)	M1+E2	0.019 4	$\alpha(K)=0.016 4; \alpha(L)=0.0023 3; \alpha(M)=0.00050 6$
	. /						$\alpha(N)=0.000111$ 13; $\alpha(O)=1.66\times 10^{-5}$ 23; $\alpha(P)=9.8\times 10^{-7}$ 27
		731.1 2		15042.9 34+			
		915.9 2		$14858.2 (32^+)$			
15993.6	(34 ⁻)	653.7 2		15339.9 (33 ⁻)	M1+E2	0.0077 18	$\alpha(K)=0.0065 \ 16; \ \alpha(L)=0.00091 \ 16; \ \alpha(M)=0.00019 \ 4$
		1222 8 10		$147617(22^{-})$			$u(\mathbf{N}) = 4.5 \times 10^{-5}$, $u(\mathbf{O}) = 0.5 \times 10^{-15}$, $u(\mathbf{P}) = 4.0 \times 10^{-11}$
16026 4	(25-)	1232.0 10	00	14/01.7 (32)	[[2]]	0.00280	$(W) = 0.00245 (4 + (U)) = 0.000244 (5 + (W)) = 7.21 \times 10^{-5} U$
16036.4	(35)	889.5 10	88	15140.9 (33)	[E2]	0.00289	$\alpha(\mathbf{K}) = 0.00245 \ 4; \ \alpha(\mathbf{L}) = 0.000544 \ 5; \ \alpha(\mathbf{M}) = 7.51 \times 10^{-5} \ 11$ $\alpha(\mathbf{N}) = 1.629 \times 10^{-5} \ 24; \ \alpha(\mathbf{O}) = 2.44 \times 10^{-6} \ 4; \ \alpha(\mathbf{P}) = 1.482 \times 10^{-7} \ 21$
		894.9 10	100	15141.5 (33 ⁻)	E2	0.00285	$\alpha(K)=0.00242 \ 4; \ \alpha(L)=0.000339 \ 5; \ \alpha(M)=7.20\times10^{-5} \ 11 \\ \alpha(N)=1.606\times10^{-5} \ 23; \ \alpha(O)=2.41\times10^{-6} \ 4; \ \alpha(P)=1.462\times10^{-7} \ 21$
		1009.1 5		15027.3 (33 ⁻)	E2	0.00220	α (K)=0.00187 3; α (L)=0.000257 4; α (M)=5.45×10 ⁻⁵ 8 α (N)=1.216×10 ⁻⁵ 17; α (O)=1.83×10 ⁻⁶ 3; α (P)=1.134×10 ⁻⁷ 16

From ENSDF

26

					Ad	opted Levels,	Gammas (continued)			
	γ ⁽¹⁴⁰ Nd) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f J	f Mult. ^C	α^{f}	Comments			
16087.6	(35 ⁻)	1060.3 5	100	15027.3 (33	5 ⁻) E2	0.00198	$\alpha(K)=0.001689\ 24;\ \alpha(L)=0.000230\ 4;\ \alpha(M)=4.87\times10^{-5}\ 7$ $\alpha(N)=1.088\times10^{-5}\ 16;\ \alpha(O)=1.639\times10^{-6}\ 23;\ \alpha(P)=1.024\times10^{-7}\ 15$			
16278.5	36+	1235.6 10	100	15042.9 34	⊦ E2	1.46×10^{-3}	α (K)=0.001238 <i>I8</i> ; α (L)=0.0001652 <i>24</i> ; α (M)=3.49×10 ⁻⁵ <i>5</i> α (N)=7.80×10 ⁻⁶ <i>I1</i> ; α (O)=1.180×10 ⁻⁶ <i>I7</i> ; α (P)=7.51×10 ⁻⁸ <i>I1</i> ; α (IPF)=1.044×10 ⁻⁵ <i>21</i>			
16286.5	35+	512.0 2		15774.1 (34	+) M1+E2	0.014 4	α (K)=0.012 3; α (L)=0.00173 25; α (M)=0.00037 5 α (N)=8.2×10 ⁻⁵ 12; α (O)=1.23×10 ⁻⁵ 20; α (P)=7.4×10 ⁻⁷ 20			
		971.4 2		15315.5 (33	(E2)	0.00239	α (K)=0.00203 3; α (L)=0.000280 4; α (M)=5.94×10 ⁻⁵ 9 α (N)=1.326×10 ⁻⁵ 19; α (O)=1.99×10 ⁻⁶ 3; α (P)=1.228×10 ⁻⁷ 18			
		1244.6 10	100	15042.9 34	+ M1+E2	0.0017 3	$\begin{aligned} &\alpha(\mathrm{K}) = 0.0015 \ 3; \ \alpha(\mathrm{L}) = 0.00019 \ 4; \ \alpha(\mathrm{M}) = 4.1 \times 10^{-5} \ 7 \\ &\alpha(\mathrm{N}) = 9.2 \times 10^{-6} \ 16; \ \alpha(\mathrm{O}) = 1.40 \times 10^{-6} \ 24; \ \alpha(\mathrm{P}) = 9.2 \times 10^{-8} \ 18; \\ &\alpha(\mathrm{IPF}) = 1.19 \times 10^{-5} \ 3 \end{aligned}$			
16343.9	(35 ⁻)	1439.6 10	100	14904.3 33	-					
16439.8	36+	1396.9 <i>10</i>	100	15042.9 34	⊦ E2	1.18×10^{-3}	$\alpha(K)=0.000972 \ 14; \ \alpha(L)=0.0001280 \ 18; \ \alpha(M)=2.70\times10^{-5} \ 4 \\ \alpha(N)=6.04\times10^{-6} \ 9; \ \alpha(O)=9.15\times10^{-7} \ 13; \ \alpha(P)=5.90\times10^{-8} \ 9; \\ \alpha(IPF)=4.40\times10^{-5} \ 7 $			
16894.7	(36+)	1289.5 10	100	15605.2 (34	+)					
16977.1	(36^{+})	536.3 ⁱ 1		16439.8 36	F					
	. ,	690.6 2		16286.5 35	+ (M1+E2)	0.0067 16	α (K)=0.0057 <i>14</i> ; α (L)=0.00079 <i>15</i> ; α (M)=0.00017 <i>3</i> α (N)=3.7×10 ⁻⁵ <i>7</i> ; α (O)=5.6×10 ⁻⁶ <i>11</i> ; α (P)=3.53×10 ⁻⁷ <i>93</i>			
		1202.4 10		15774.1 (34	+)					
17079.6	(37-)	1043.2 10	100	16036.4 (35	5 ⁻) E2	0.00205	$\alpha(K)=0.001747\ 25;\ \alpha(L)=0.000239\ 4;\ \alpha(M)=5.05\times10^{-5}\ 8\\ \alpha(N)=1.128\times10^{-5}\ 16;\ \alpha(O)=1.699\times10^{-6}\ 24;\ \alpha(P)=1.058\times10^{-7}\ 15$			
17153.8	(37+)	1427.8 10	100	15726.0 (35	5 ⁺)					
17407.3	(37 ⁻)	1319.7 10	100	16087.6 (35	i ⁻) E2	1.29×10^{-3}	$\alpha(K)=0.001087 \ 16; \ \alpha(L)=0.0001439 \ 21; \ \alpha(M)=3.04\times10^{-5} \ 5 \\ \alpha(N)=6.79\times10^{-6} \ 10; \ \alpha(O)=1.028\times10^{-6} \ 15; \ \alpha(P)=6.60\times10^{-8} \ 10; \\ \alpha(IPF)=2.48\times10^{-5} \ 4$			
17680.8	(37 ⁺)	703.3 10	43	16977.1 (36	6 ⁺) M1+E2	0.0064 15	$\alpha(K) = 0.0055 \ 13; \ \alpha(L) = 0.00075 \ 14; \ \alpha(M) = 0.00016 \ 3 \\ \alpha(N) = 3.6 \times 10^{-5} \ 7; \ \alpha(O) = 5.4 \times 10^{-6} \ 11; \ \alpha(P) = 3.38 \times 10^{-7} \ 89$			
		1239.1 ⁱ 1		16439.8 36 ⁻	F					
		1394.3 <i>1</i>	100	16286.5 35	⁺ E2	1.18×10^{-3}	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000976 \ 14; \ \alpha(\mathrm{L}) = 0.0001285 \ 18; \ \alpha(\mathrm{M}) = 2.71 \times 10^{-5} \ 4 \\ \alpha(\mathrm{N}) = 6.06 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 9.19 \times 10^{-7} \ 13; \ \alpha(\mathrm{P}) = 5.92 \times 10^{-8} \ 9; \\ \alpha(\mathrm{IPF}) = 4.33 \times 10^{-5} \ 6 \end{array} $			
17882.0	(38 ⁺)	1442.2 10	100	16439.8 36	F					
18320.2	(39-)	1240.6 10	100	17079.6 (37	⁻) E2	1.45×10^{-3}	$\alpha(K)=0.001228 \ 18; \ \alpha(L)=0.0001638 \ 24; \ \alpha(M)=3.46\times10^{-5} \ 5$			

27

From ENSDF

L

Adopted Levels, Gammas (continued)										
	γ ⁽¹⁴⁰ Nd) (continued)									
$E_i(\text{level}) = J_i^{\pi} = E_{\gamma}^{\dagger} = I_{\gamma}^{\dagger} = E_f = J_f^{\pi} = \text{Mult.}^c = \alpha^f$ Comments										
								$\alpha(N)=7.73\times10^{-6}$ 11; $\alpha(O)=1.170\times10^{-6}$ 17; $\alpha(P)=7.45\times10^{-8}$ 11; $\alpha(IPF)=1.115\times10^{-5}$ 22		
18474.5	(38+)	793.6 ⁱ 1 1497.4 1		17680.8 16977.1	(37 ⁺) (36 ⁺)					
18726.7	(39 ⁺)	1572.9 <i>10</i>	100	17153.8	(37 ⁺)					
18951.3	(39-)	1544.0 <i>10</i>	100	17407.3	(37 ⁻)	(E2)	1.03×10 ⁻³	$\alpha(\text{K})=0.000803 \ 12; \ \alpha(\text{L})=0.0001047 \ 15; \ \alpha(\text{M})=2.21\times10^{-5} \ 4$ $\alpha(\text{N})=4.93\times10^{-6} \ 7; \ \alpha(\text{O})=7.49\times10^{-7} \ 11; \ \alpha(\text{P})=4.87\times10^{-8} \ 7; \ \alpha(\text{IPF})=9.18\times10^{-5} \ 14$		
19703.3	(41^{-})	1383.1 10	100	18320.2	(39 ⁻)					
20432.3	(41+)	1705.6 10	100	18726.7	(39+)					
21218	(43 ⁻)	1514.8 <i>10</i>	100	19703.3	(41 ⁻)					
22293.6	(43 ⁺)	1861.3 <i>10</i>	100	20432.3	(41^+)					
22885	(45 ⁻)	1667.2 10	100	21218	(43 ⁻)					
24306	(45^+)	2012.2 10	100	22293.6	(43 ⁺)					
24716	$(4'/^{-})$	1831.1 10	100	22885	(45 ⁻)					
26694	(49)	1977.3 10	100	24/16	(47)					
y+1023.9	(31)	1023.9 10	100	y	(29)					
y+2107.5	(33)	1145.0 10	100	y+1023.9	(31)					
y + 3404.0	(33)	1290.3 10	100	y + 2107.3	(35)					
y + 4930.0 y + 6607.3	(37)	1472.0 10	100	$y \pm 3404.0$ $y \pm 4036.0$	(33)					
y + 8455.9	(39) (41)	1848 6 10	100	y + 4950.0 y + 6607.3	(37)					
z+838.7	(31)	838 7 10	100	y 1 0 0 0 7.5	(29)					
z+1811.2	(33)	972.5 10	100	z+838.7	(31)					
z+2907.7	(35)	1096.5 10	100	z+1811.2	(33)					
z+4190.5	(37)	1282.8 10	100	z+2907.7	(35)					
z+5669.5	(39)	1479.0 10	100	z+4190.5	(37)					
z+7294.0	(41)	1624.5 10	100	z+5669.5	(39)					
u+955.3	(31)	955.3 10	100	u	(29)					
u+2069.4	(33)	1114.1 <mark>h</mark> 10	100 ^h	u+955.3	(31)					
u+3383.5	(35)	1314.1 10	100	u+2069.4	(33)					
u+4907.8	(37)	1524.3 10	100	u+3383.5	(35)					
u+6614.4	(39)	1706.6 10	100	u+4907.8	(37)					
v+1026.9	(31)	1026.9 5	100	v	(29)					
v+1826.1	(33)	799.2 5	100	v+1026.9	(31)					
v+2843.3	(35)	1017.2 5	100	v+1826.1	(33)					
v+4087.6	(37)	1244.3 10	100	v+2843.3	(35)					
v+5574.2	(39)	1486.6 10	100	v+4087.6	(37)					
v+7293.4	(41)	1719.2 10	100	v+5574.2	(39)					
v+9221.0	(43)	1927.5 10	100	v+7293.4	(41)					
v+11357.2	(45)	2136.2 10	100	v+9221.0	(43)					

 $^{140}_{60}\mathrm{Nd}_{80}$ -28

 $^{140}_{60}\mathrm{Nd}_{80}$ -28

From ENSDF

γ ⁽¹⁴⁰Nd) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}
w+1069	J+2	1069 ⁱ	100	w?	J≈(34)	w+13284	J+20	1517 ⁱ		w+11767	J+18
w+2195	J+4	1126	100	w+1069	J+2			1553	100	w+11731	J+18
w+3379	J+6	1184	100	w+2195	J+4	w+13529	J+20	1762	100	w+11767	J+18
w+4625	J+8	1246	100	w+3379	J+6	w+14887	J+22	1603	100	w+13284	J+20
w+5930	J+10	1305	100	w+4625	J+8	w+16548	J+24	1661	100	w+14887	J+22
w+7295	J+12	1365	100	w+5930	J+10	w+18272	J+26	1724	100	w+16548	J+24
w+8720	J+14	1425	100	w+7295	J+12	w+20060	J+28	1788	100	w+18272	J+26
w+10203	J+16	1483	100	w+8720	J+14	w+21914	J+30	1854	100	w+20060	J+28
w+11731	J+18	1528	100	w+10203	J+16	w+23833	J+32	1919	100	w+21914	J+30
w+11767	J+18	1564	100	w+10203	J+16	w+25818?	J+34	1985 <mark>i</mark>	100	w+23833	J+32

[†] From (48 Ca, $4n\gamma$) (normal deformation) and (48 Ca, $4n\gamma$):SD (superdeformation), except where noted.

[‡] From (⁴⁸Ca,4n γ), except where noted; no I γ 's were reported for (⁴⁸Ca,4n γ):SD.

[#] From ¹⁴⁰Pm ε (9.2 s).

[@] From ¹⁴⁰Pm ε (5.95 min).

^{*a*} From ¹²⁶Te(¹⁸O,4n γ).

29

^b Differ by 3σ or more from calculated value.

^c From α (K)exp (¹⁴⁰Pm ε (9.2 s), also K/L ratios, and ¹⁴⁰Pm ε (5.95 min)), angular distributions and linear pol (¹²⁶Te(¹⁸O,4n γ)), anisotropy ratios and DCO $(({}^{48}Ca,4n\gamma))$ and $({}^{48}Ca,4n\gamma)$:SD). Above 6407 keV, 17⁻ data are only from $({}^{48}Ca,4n\gamma)$ and $({}^{48}Ca,4n\gamma)$:SD, which considered pure Q as $\Delta J=2$, E2, and mixed D+Q as $\Delta J=1$, M1+E2, consistent with rotational character.

^{*d*} From ¹²⁶Te(¹⁸O,4n γ) by angular distributions.

^e Pure D adopted as E1 by 2015Pe10 ((⁴⁸Ca,4ny) dataset) based on anisotropy measurement plus rather weak (or implicit) level scheme and theoretical arguments is tentatively adopted by evaluator.

^{*f*} Additional information 5.

^g If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^h Multiply placed with intensity suitably divided.

^{*i*} Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $\gamma = - - - \rightarrow \gamma$ Decay (Uncertain)

3.37 d 2

 $^{140}_{60}\text{Nd}_{80}$

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided γ Decay (Uncertain) - ► _ 007 ^{E:}
(67) (49⁻) 26694 † 1_{831,1}00 *6*7 (47-) 24716 2012 (45⁺) 24306 + 16672 100 (45⁻) 22885 6 1861.3 (43+) 22293.6 007 8-700 (43^{-}) 21218 + 1705.6 100 | <u>(4</u>1⁺) 20432.3 1 ^{1383,1} 100 1.5440 (E3) |00 (41⁻) 19703.3 + 15¹,2,9 100 001 E2 <u>(39</u>⁻) 18951.3 (39+) 18726.7 1240.6 13.3 Mr 12.43 ş 18474.5 18320.2 (38+) 4.3 E 8 (39-) 142 CHA 001 E (38+) <u>e</u>. 17882.0 (and the $\frac{(37^+)}{(37^-)}$ 17680.8 17407.3 ŝ (37+) 17153.8 (37⁻) 17079.6 (36^{+}) 16977.1 36+ 16439.8 $\frac{\frac{35^+}{35^-}}{(35^-)}$ 16286.5 16087.6 16036.4 (34+) 15774.1 (35+) 15726.0 0.0 3.37 d 2 0^+

¹⁴⁰₆₀Nd₈₀

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Coincidence 0 Coincidence (Uncertain)

^{1/2}²³^{1/2}^{1/2}^{1/2}^{1/2}^{1/2} + ^{1368,9} (27⁻) 11944.9 11846.0 27-+ 1024,9 (E1) + 388.2 (E1) + 10129 ES + 378,1 (E1) 1 ³66, (E1) 1 2 2 2 2 2 2 2 2 100 $\frac{26^+}{26^+}$ $\frac{26^+}{26^+}$ 11601.0 + 325,3 MILE 11589.0 1.503 25 100 | *A* 5¹/₅ *M*_{14€2} *I*00 | 11565.1 °.505 $\frac{\frac{26^{(-)}}{27^{-}}}{\frac{26^{(-)}}{26^{(-)}}}$ 11398.0 11365.6 's E 6 11350 8 11312.5 $\frac{25^{(-)}}{(27^{-})}$ 11222.7 -8. 11213.2 + 205.0 + 26^{+} 11173.9 26-11072.6 -6 1155.5 , + 47_{2,2}M14E2 14 (25^{-}) 10949.6 001 c2.2. 8 10740.9 10679.3 25(-) 10614.4 $\frac{24^{-}}{24^{+}}$ 10595.1 10587.9 10576.2 10437.5 $\frac{24^{-}}{24^{(-)}}$ 10307.6 10263.2 ¥ 10255.1 10128.7 24^{+} 10126.5 23^{+} 9871.7 9794.3 23-9569.3 22 0.0 3.37 d 2 0^+

 $^{140}_{60}$ Nd₈₀

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued) Intensities: Relative photon branching from each level

@ Multiply placed: intensity suitably divided

0.0 3.37 d 2

 $^{140}_{60}\text{Nd}_{80}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued) Intensities: Relative photon branching from each level

@ Multiply placed: intensity suitably divided

 $--- \rightarrow \gamma$ Decay (Uncertain)

Band(a): g.s. band

16-

15

14

13-

12 11 10

9-8 7

868

 $^{140}_{60}\rm{Nd}_{80}$

 $^{140}_{60}\rm{Nd}_{80}$

Band(P): Band D4

	Band(O): Band D3	24- 10001.8
		23- 478 9524.0
	23- 9010.6	22- 9011.2
Band(N): Band D2	<u>22</u> <u>8777.2</u>	21^{-} 513 8525.0
	21^{-} 233 8632.7	
<u>20⁻)</u> <u>8040.5</u>		19- 334 7950.1
9 7488.4		18- 241 7795.5

Band(M): Band D1								
(19-)	7170.2							
(18 ⁻)	6745.7							
(17) 424 /	6432.4							
(16 ⁻) 313	6183.4							
$(15^{-})^{-249}$	5987.6							

 (20^{-})

19

18

 $^{140}_{60}\mathrm{Nd}_{80}$

 $^{140}_{60}\rm{Nd}_{80}$

 $^{140}_{60}\mathrm{Nd}_{80}$

16286.5

15315.5

14540.6

	Ban (d(X): S 2004No	D band e13)
	<u>J+34</u>		<u>w+25818</u>
	J+32	1985	w+23833
	J+30	1919	w+21914
	J+28	1854	w+20060
	J+26	1788	w+18272
	J+24	1724	w+16548
	J+22	1661	w+14887
	J+20	1603	w+13284
	J+18	1553	w+11731
	J+16	1528	w+10203
	J+14	1483	w+8720
	J+12	1425	w+7295
	J+10	1365	w+5930
	J+8	1305	w+4625
	J+6	1246	w+3379
Band(k): Rotational band based on (29)	J+4	1184	w+2195
	J+2	1126	w+1069
(45) v+11357.2	$\underline{J}\approx(34)$		<u>w</u> _
(43) 2136 v+9221.0			
(41) 1928 v+7293.4			
(39) ¹⁷¹⁹ v+5574.2			
(37) ¹⁴⁸⁷ v+4087.6			
(35) ¹²⁴⁴ v+2843.3			
(33) 1017 v+1826.1			
(31) 799 v+1026.9 (29) 1027			
(2)) 1027 V			

 $^{140}_{60}\mathrm{Nd}_{80}$

Band(j): Rotational band based on (29)

z+7294.0 ¹⁶²⁴ ★_____z+5669.5

¹⁴⁷⁹ z+4190.5

¹²⁸³ z+2907.7

¹⁰⁹⁶ z+1811.2

972 z+838.7 839

z

(41)

(39)

(37)

(35)

(33) (31) (29)