¹⁴⁰Tb ε decay **1991Fi03,2000Xu08**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018

Parent: ¹⁴⁰Tb: E=0.0; $J^{\pi}=(7^+)$; $T_{1/2}=2.29$ s 15; $Q(\varepsilon)=11.3\times10^3$ 8; $\%\varepsilon+\%\beta^+$ decay=100.0

¹⁴⁰Tb-E,J^{π},T_{1/2}: from ¹⁴⁰Tb Adopted Levels.

¹⁴⁰Tb-Q(ε): from 2017Wa10.

¹⁴⁰Tb- $\%\epsilon$ + $\%\beta^+$ decay: Observed proton emission with p/ ϵ =0.0026 *13* (1991Fi03); other value: p/ ϵ =0.007 2 (were observed coin p-K x ray(Gd)) (1988GiZV). E(p)=2.2-6.6 MeV, E(p)(av)=4.2 MeV (1986Wi15).

1991Fi03: 97% enriched ⁹²Mo(HI,xpyn), HI= 312 MeV ⁵⁴Fe and 244 MeV ⁵²Cr at LBL SuperHILAC with OASIS mass

separator and tape transport. Detector array: Si Δ E-E, HPGe, 2 n-type Ge, 1-mm plastic scintillator. Measured coin particle, γ , K X-ray, and β^+ in event-by-event mode with tagged time signal (T_{1/2}).

2000Xu08: 2.5 mg/cm² self-supported 75% enriched ¹⁰⁶Cd(³⁶Ar¹¹⁺,pn) at SCF accelerator, Lanzhou; 1 atm He reaction chamber; He jet plus tape transport. Detector array: 2 HPGe(GMX) for <2 MeV γ spectra, HPGe planar for X-rays. Measured $\gamma\gamma(t)$, $X\gamma(t)$. Level scheme is from 2000Xu08 and is incomplete.

140Gd Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0 [‡]	0+	15.8 s 4	$\% \varepsilon + \% \beta^+ = 100$ $\% \varepsilon + \% \beta^+$: from Adopted Levels. $T_{1/2}$: from 1991Fi03.
328.74 [‡] 16	2+		
713.76 [#] 16	(2^{+})		
836.5 [‡] 3	4+		
1068.75 [#] 20	(3 ⁺)		
1281.9 [#] 3	(4^{+})		
1464.5 [‡] 4	6+		
1694.2 [#] 3	(5^{+})		
1882.1 [#] 4	(6^{+})		
2140.4 [‡] 4	8+		

[†] Adopted values.

2412.2[#] 4

[‡] Band(A): yrast g.s. band.

 (7^{+})

[#] Band(B): $K=2^+ \gamma$ -vibrational band.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(8.9×10 ³ 8)	2412.2	13 5	0.6 3	5.4 3	14 5	av $E\beta$ =3.66×10 ³ 39; ε K=0.037 13; ε L=0.0054 19; ε M+=0.0016 6
(9.2×10 ³ 8)	2140.4	17 6	0.7 3	5.4 3	18 6	av $E\beta$ =3.80×10 ³ 39; ε K=0.034 12; ε L=0.0049 17; ε M+=0.0014 5
(9.4×10 ³ 8)	1882.1	19 9	0.7 4	5.4 3	20 9	av $E\beta$ =3.92×10 ³ 39; ε K=0.031 10; ε L=0.0045 15; ε M+=0.0013 5
(9.6×10 ^{3#} 8)	1694.2	≤2	≤0.07	≥6.4	≤2	av $E\beta = 4.01 \times 10^3$ 39; $\varepsilon K = 0.029$ 9; $\varepsilon L = 0.0043$ 14; $\varepsilon M + = 0.0012$ 4
(9.8×10 ³ 8)	1464.5	25 10	0.8 4	5.4 3	26 10	av $E\beta$ =4.12×10 ³ 39; ε K=0.027 9; ε L=0.0040 12; ε M+=0.0011 4

Continued on next page (footnotes at end of table)

$^{140}{\rm Tb}~\varepsilon$ decay 1991Fi03,2000Xu08 (continued)

ε, β^+ radiations (continued)

[†] Calculated by evaluator based on I(ε+β⁺) from GTOL. The level scheme is incomplete.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

$\gamma(^{140}\text{Gd})$

I γ normalization: From $\Sigma I \gamma (1+\alpha)$ (to g.s.)+ εp =100.

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [†]	α [#]	Comments
328.7 2	100	328.74	2+	0.0	0^{+}	E2	0.0456	%Iy=84 3
								$\alpha(K)=0.0354 5; \alpha(L)=0.00797 12; \alpha(M)=0.00180$
								$3; \alpha(N+)=0.000408 7$
								$\alpha(P)=2.0004070, \alpha(O)=3.85\times10^{-9}, \alpha(P)=2.25\times10^{-6}4$
355.0 2	16 6	1068.75	(3^{+})	713.76	(2^{+})	(M1+E2)	0.049 13	%Iy=13 5
			. /		()	· · ·		$\alpha(K)=0.040$ 12; $\alpha(L)=0.0067$ 6; $\alpha(M)=0.00148$ 11; $\alpha(N+)=0.00039$ 4
								$\alpha(N)=0.00034 \ 3; \ \alpha(O)=5.1\times10^{-5} \ 6;$
					- 1			$\alpha(P)=2.8\times10^{-6}\ 10$
385.0 2	22 5	713.76	(2^{+})	328.74	2+	(M1+E2)	0.039 11	$\%$ [γ =19.4 %(K)=0.022.10; $%$ (L)=0.0052.7; $%$ (M)=0.00116
								$\alpha(\mathbf{K})=0.052 \ 10; \ \alpha(\mathbf{L})=0.0055 \ 7; \ \alpha(\mathbf{M})=0.00116$ 12: $\alpha(\mathbf{N}+)=0.00031 \ 4$
								$\alpha(N)=0.00026 3: \alpha(\Omega)=4.0\times10^{-5} 6:$
								$\alpha(P)=2.3\times10^{-6} 8$
507.8 2	57 13	836.5	4+	328.74	2^{+}	(E2)	0.01340	%Iy=48 24
								$\alpha(K)=0.01091 \ 16; \ \alpha(L)=0.00194 \ 3;$
								$\alpha(M) = 0.0004316; \alpha(N+) = 0.000113416$
								$\alpha(\mathbf{N}) = 9.82 \times 10^{-7} \ 14; \ \alpha(\mathbf{O}) = 1.453 \times 10^{-7} \ 21; \ \alpha(\mathbf{P}) = 7.33 \times 10^{-7} \ 11$
568.1 2	18 7	1281.9	(4^{+})	713.76	(2^{+})	(E2)	0.01004	%Iv=15 5
								$\alpha(K)=0.00825 \ 12; \ \alpha(L)=0.001403 \ 20;$
								$\alpha(M)=0.000310\ 5;\ \alpha(N+)=8.18\times10^{-5}\ 12$
								$\alpha(N) = 7.07 \times 10^{-5} \ 10; \ \alpha(O) = 1.054 \times 10^{-5} \ 15;$
(00.2.2	24.10	1000 1	((+))	1201.0	(4+)	(E 2)	0.00076	$\alpha(P) = 5.59 \times 10^{-7} 8$
000.2 2	24 10	1002.1	(0)	1281.9	(4)	(E2)	0.00870	$\gamma_{01\gamma=207}$ $\alpha(K)=0.00722.11: \alpha(L)=0.001203.17:$
								$\alpha(M) = 0.000265 \ 4; \ \alpha(N+) = 7.01 \times 10^{-5} \ 10$
								$\alpha(N) = 6.05 \times 10^{-5} \ 9; \ \alpha(O) = 9.05 \times 10^{-6} \ 13;$
								$\alpha(P)=4.91\times10^{-7}$ 7
625.4 2	18 7	1694.2	(5^{+})	1068.75	(3^{+})	(E2)	0.00792	$\%$ I γ =15 5
								$\alpha(\mathbf{K}) = 0.00654 \ I0; \ \alpha(\mathbf{L}) = 0.0010/4 \ I5;$
								$\alpha(M) = 0.0002304; \alpha(N+) = 0.23 \times 10^{-5} 9$ $\alpha(N) = 5.40 \times 10^{-5} 8; \alpha(O) = 8.10 \times 10^{-6} 12;$
								$\alpha(P) = 4.46 \times 10^{-7} 7$
628.0 2	52 9	1464.5	6+	836.5	4+	(E2)	0.00784	$\%$ I γ =44 3
								$\alpha(K)=0.00648 \ 9; \ \alpha(L)=0.001062 \ 15;$
								$\alpha(M)=0.000234$ 4; $\alpha(N+)=6.18\times10^{-5}$ 9
								$\alpha(N) = 5.34 \times 10^{-5} 8; \alpha(O) = 8.01 \times 10^{-6} 12;$
675 0 2	21.6	2140.4	Q+	1464 5	6+	$(\mathbf{F2})$	0.00657	$\alpha(P)=4.42 \times 10^{-7}$
013.92	21.0	∠140.4	0	1404.3	0	(E2)	0.00037	$\gamma_{01\gamma=10}^{\gamma_{01\gamma=10}}$ $\alpha(K)=0.00546.8; \alpha(L)=0.000873.13$
								$\alpha(M)=0.000192 \ 3; \ \alpha(N+)=5.08\times10^{-5} \ 8$

Continued on next page (footnotes at end of table)

				14	⁴⁰ Τb ε	decay 1	991Fi03,2000X	Ku08 (continued)			
γ ⁽¹⁴⁰ Gd) (continued)											
Eγ	Iγ [‡]	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{\#}$	Comments			
713.8 2 718.0 2	14 <i>4</i> 16 6	713.76 2412.2	(2 ⁺) (7 ⁺)	0.0 1694.2	0 ⁺ (5 ⁺)	(E2)	0.00570	$\alpha(N)=4.38\times10^{-5} 7; \ \alpha(O)=6.60\times10^{-6} \ 10; \\ \alpha(P)=3.74\times10^{-7} \ 6 \\ \%I\gamma=12 \ 3 \\ \%I\gamma=13 \ 5 \\ \alpha(K)=0.00475 \ 7; \ \alpha(L)=0.000746 \ 11; \\ \alpha(M)=0.0001635 \ 23; \ \alpha(N+)=4.34\times10^{-5} \ 6 \\ \alpha(N)=3.74\times10^{-5} \ 6; \ \alpha(O)=5.65\times10^{-6} \ 8; \\ \alpha(P)=3.26\times10^{-7} \ 5 \\ \end{cases}$			
740.0 2	10 3	1068.75	(3 ⁺)	328.74	2+	(M1+E2)	0.0074 21	%1 γ =8 24 α (K)=0.0063 19; α (L)=0.00090 21; α (M)=0.00020 5; α (N+)=5.2×10 ⁻⁵ 12 α (N)=4.5×10 ⁻⁵ 11; α (O)=6.9×10 ⁻⁶ 17; α (P)=4.5×10 ⁻⁷ 14			

[†] Adopted values.

[±] For absolute intensity per 100 decays, multiply by 0.84 3.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁴⁰Tb ε decay 1991Fi03,2000Xu08

Decay Scheme

¹⁴⁰₆₄Gd₇₆

4

¹⁴⁰Tb ε decay 1991Fi03,2000Xu08

 $^{140}_{64}\text{Gd}_{76}$