361.48+x[#] 20

(7⁻)

Adopted Levels, Gammas

			Туре	Author	History Citation	Literature Cutoff Date			
		Full	Evaluation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018			
$Q(\beta^{-}) = -5200 \ 60;$ $Q(\varepsilon p) = 3230 \ 50 \ (2)$	S(n)=9 017Wal	660 <i>50</i> ; S(p)=	=1890 <i>50</i> ; Q	(α)=1760 <i>9</i>	0 2017Wa10				
					¹⁴⁰ Eu Levels				
Because of impo adopted here (those in these	ortant di see foot reactior	fferences betw inote on 459.5 n datasets. See	ween $2003H_{0}$ $5+x,(8^{+}))$, the band footn	e25 (⁹² Mo(³ le band head otes and XI	⁵¹ V,2pnγ)), 2002Cu05 ds, spins, and signature REF's for specific com	$(^{107}\text{Ag}(^{36}\text{Ar,n}2p\gamma))$, and E(level), J^{π} values is adopted for the positive parity bands differ from ments and changes.			
				Cross	Reference (XREF) Fla	gs			
			$ \begin{array}{ccc} A & {}^{140}H \\ B & {}^{140}C \\ C & {}^{92}M \\ \end{array} $	Eu IT decay Gd ε decay Io(⁵¹ V,2pnγ	$ \begin{array}{c} D & {}^{92}\text{Mo}({}^{54}\text{Fe,n}) \\ E & {}^{107}\text{Ag}({}^{36}\text{Ar,r}) \end{array} $	5pγ), (⁵² Cr,n3pγ) 12pγ)			
E(level)	\mathbf{J}^{π}	T _{1/2}	XREF			Comments			
0.0	1+	1.51 s 2	AB D	$\%\varepsilon + \%\beta^{+} = 1$ u = +1.365 I Q = +0.31 4 $J^{\pi}: \log ft = 4$ $T_{1/2}: from$ (1973We2 Configuration u: By colling Q: By colling RMS charge	00 3 (2012StZZ) (2014StZZ) .4 to 0 ⁺ . 1991Fi03. Others: 1.54 ZK,1972WeZE). on= $\pi d_{5/2} \otimes v d_{3/2}$ (2006T hear fast beam laser spectrum laser sp	 s 13 (1987De04); 1.3 s 2 a08). accelerated beam (1985Ah02). accelerated beam (1985Ah02). 5 fm 91 (2013An02). 			
174.59 <i>9</i> 185.3 <i>3</i> 191.24 8	2+ 3+		ABD ABD B	J^{π} : γ to 1^+ J^{π} : γ to 1^+	is M1, $\Delta J=1$. is E2, $\Delta J=2$.				
0+x [#]	(5 ⁻)	125 ms 2	A CDE	%IT=100; %ε+%β ⁺ <1 (1991Fi03) Additional information 1. T _{1/2} : from 1991Fi03. E(level): x=210 15 (2012Au07); other value x=210 25 (≈50 keV above the 185.3 level, from absence of K x ray corresponding to an isomeric transition, 1991Fi03). J ^π : γ to 2 ⁺ is (E3), γ to 3 ⁺ is (M2); systematic behavior of 5 ⁻ and 8 ⁺ levels in ¹⁴⁰ Eu, ¹⁴² Tb, and ¹⁴⁴ Ho N=77 isotones with unambiguously measured 5 ⁻ in					
361.3 4			В	¹⁴² Ib (20	0061a08).				
170.41+x [‡] 20 379.00 10 417.72 10 427.92 10 446.98 13 453.25 11	(6 ⁻)		CDE B B B B B B	J^{π} : γ to (5 ⁻) is M1+E2, $\Delta J=1$ tran	isition (in between signature-partner bands).			
284.82+x [@] 20 488.1 4 535.7 4 546.54 15	(6 ⁻)		CD B B B B	J^{π} : γ to (5^{-})) is M1+E2, $\Delta J=1$ tran	sition (in between rotational bands).			

CDE J^{π} : γ to (5⁻) is E2, in-band $\Delta J=2$ transition; γ to 170.41+x, (6⁻) is M1+E2, $\Delta J=1$

¹⁴⁰Eu Levels (continued)

E(level)	J^{π}	T _{1/2}	XREF	Comments
				transition (in between signature-partner bands).
389.27+x 23 610.99 22	(7 ⁻)		D B	J^{π} : γ to 284.82+x, (6 ⁻) is (M1+E2); γ to (5 ⁻) is (E2).
422.42+x 19	(7-)		DE	J^{π} : γ to 170.41+x, (6 ⁻) is M1+E2.
459.5+x [†] 3	(8 ⁺) [†]	299.8 ns 21	CDE	XREF: C(0+Y). J^{π} : γ' s to 422.42+x, (7 ⁻) and 361.48+x, (7 ⁻) are E1. $T_{1/2}$: weighted average of 302 ns 4 (${}^{92}Mo({}^{54}Fe,n5p\gamma)$, 2006Ta08) and 299.0 ns 25 (${}^{107}Ag({}^{36}Ar,n2p\gamma)$, 2002Cu05). Configuration= $\pi h_{1/2} \otimes \pi h_{1/2}$.
687.04 22			В	
513.0+x 6	(7+)		С	XREF: C(53.5+Y). J^{π} : γ from (8 ⁺) is (M1+E2), ΔJ=1.
530.5+x ^{&} 4	(9+)		С	XREF: C(71.00+Y). J ^π : γ to (8 ⁺) is (M1+E2), ΔJ=1.
722.28 9	1.4		В	
749.948	1'		В	$J^{*}: \log ft = 4.6 \text{ from } 0^{\circ}.$
$607.9 + x^{\circ} 3$	(81)		C	XREF: C(148.4+Y). $I^{\pi_1} \propto \text{from } (10^+) \text{ is F2} \text{ AI=2 in-band transition}$
654.80+x [‡] 24	(8 ⁻)		С	J^{π} : γ to 170.41+x, 6 ⁻ is E2, in-band ΔJ =2 transition; γ to 361.48+x, (7 ⁻) is M1+E2, ΔJ =1 transition (in between signature-partner bands).
882.69 22			В	
762.90+x [@] 24	(8-)		С	J^{π} : γ to 284.82+x, (6 ⁻) is E2, in-band $\Delta J=2$ transition; γ to 361.48+x, (7 ⁻) is M1+E2, $\Delta J=1$ transition (in between rotational bands).
1077.8 4	(10+)		В	NEED CLACK NEEDOST N
896.4+x ⁴ 4	(101)		СE	XREF: C(436.9+Y)E(825.1+X). J ^π : γ to (9 ⁺) is M1+E2, ΔJ=1 transition (in between signature-partner bands).
898.88+x [#] 22	(9 ⁻)		CE	J^{π} : γ to 361.48+x, (7 ⁻) is E2, in-band $\Delta J=2$ transition; γ to 654.80+x, (8 ⁻) is M1+E2, $\Delta J=1$ transition (in between signature-partner bands).
1092.6 10			B	
$994.0+x^{c} 6$	(10 ⁺)		C	XREF: C(534.5+Y). J^{π} : γ to (8 ⁺) is E2. $\Lambda J=2$ transition.
1014.5+x ^b 5	(10+)		С	XREF: C(555.0+Y). J ^π : γ to (8 ⁺) is E2, in-band ΔJ =2 transition; γ to (9 ⁺) is M1+E2, ΔJ =1
1215 99 22			R	transition (in between rotational bands).
$1171.1 + x^{\&} 4$	(11+)		CE	XREF: C(711.56+Y)E(1100.0+X). J^{π} : γ to (9 ⁺) is E2, in-band ΔJ =2 transition; γ to (10 ⁺) is M1+E2, ΔJ =1 transition (in between signature-partner bands)
1364.6+x [@] 3	(10 ⁻)		С	J^{π} : γ to 762.90+x, (8 ⁻) is E2, in-band ΔJ =2 transition; γ to 654.80+x, (8 ⁻) is E2, ΔJ =2 transition (in between rotational bands).
1376.5+x [‡] 4	(10 ⁻)		С	J^{π} : γ to 654.80+x, (8 ⁻) is E2, in-band $\Delta J=2$ transition.
1603.8+x ^c 7	(12+)		С	XREF: C(1144.3+Y). J ^π : γ to (10 ⁺) is E2, in-band ΔJ=2 transition.
1614.5+x [#] 3	(11^{-})		С	J^{π} : γ to (9 ⁻) is E2, in-band $\Delta J=2$ transition.
1617.1+x ^{<i>a</i>} 4	(12 ⁺)		СE	XREF: C(1157.53+Y)E(1545.7). J^{π} : γ to (10 ⁺) is E2, in-band ΔJ =2 transition; γ to (11 ⁺) is M1+E2, ΔJ =1 transition (in between signature-partner bands).
1661.6+x ^b 4	(12 ⁺)		С	XREF: C(1202.0+Y). J ^{π} : γ to (11 ⁺) is M1+E2, Δ J=1 transition (in between rotational bands).
1959.9+x 5	(12 ⁻)		С	J^{π} : γ to (11 ⁻) is M1+E2, $\Delta J=1$ transition (in between signature-partner bands).
1978.3+x ^{&} 4	(13 ⁺)		CE	XREF: C(1518.8+Y)E(1907.1+X).

¹⁴⁰Eu Levels (continued)

E(level)	J^{π}	XREF	Comments						
			J^{π} : γ to (11 ⁺) is E2, in-band $\Delta J=2$ transition; γ to (12 ⁺) is M1+E2, $\Delta J=1$ transition (in						
			between signature-partner bands).						
2169.8+x 4	(12 ⁻)	С	J^{π} : γ to 1364.6+x, (10 ⁻) is E2, ΔJ =2 transition.						
2197.3+x [@] 4	(12^{-})	С	J^{π} : γ to 1376.5+x, (10 ⁻) is E2, in-band $\Delta J=2$ transition.						
2223.1+x ^c 8	(14 ⁺)	С	XREF: C(1763.6+Y). J^{π} : γ to (12 ⁺) is E2, in-band $\Delta J=2$ transition.						
$2427.7 + x^{\textcircled{0}}4$	(13^{-})	с	J^{π} : both γ' s to (12 ⁻), 2197.3+x and 2169.8+x are M1+E2, $\Delta J=1$.						
$2444.5 + x^{\#}.5$	(13^{-})	СF	I^{π} , γ to 1614 5+x (11 ⁻) is E2 in-band AI=2 transition						
2448.9+x ^{<i>a</i>} 4	(13^{+}) (14^{+})	C E	XREF: C(1989.3+Y)E(2377.1+X). J ^{π} : γ to (12 ⁺) is E2, in-band Δ J=2 transition; γ to (13 ⁺) is M1+E2, Δ J=1 transition (in between signature-partner bands).						
2479.9+x ⁰ 5	(14 ⁺)	С	XREF: C(2020.4+Y). J^{π} : γ to (12 ⁺) is E2, in-band ΔJ =2 transition; γ to (13 ⁺) is M1+E2, ΔJ =1 transition (in between rotational bands).						
2597.7+x [@] 4	(14-)	С	J^{π} : γ to 2427.7+x, (13 ⁻) is supposed to be (M1+E2), $\Delta J=1$ transition, based on band crossing at spin 12.						
2842.4+x ^c 8	(16^{+})	С	XREF: C(2382.9+Y).						
2884.9+x 6	(14 ⁻)	С	J^{π} : γ to 1959.9+x, (12 ⁻) is E2, in-band $\Delta J=2$ transition.						
2898.4+x & 5	(15 ⁺)	CΕ	XREF: $C(2438.8+Y)E(2826.8+X)$.						
$2050 8 \pm x^{a} 5$	(16^{+})	CF	J^{*} : γ to (15°) is E2, in-band $\Delta J=2$ transition. XPEE : $C(2500.2 \pm \text{V}) F(2887.6 \pm \text{V})$						
2939.0TX 3	(10)	CE	I^{π} , γ to (14 ⁺) is (E2) in-hand AI=2 transition						
2970 6+ $x^{@}$ 5	(15^{-})	C	I^{π} : γ to 2597 7+x (14 ⁻) is M1+E2 in-hand AI=1 transition						
$3096.0+x^{b}.5$	(16^+)	c	XREF (2636 4+Y)						
JUJU.U+X J	(10)	C	J^{π} : (highest) level in $\Delta J=2$ band, γ to 2479.9+x, (14 ⁺).						
3287.5+x [#] 11	(15 ⁻)	E	J^{π} : (highest) level in $\Delta J=2$ band, γ to 2444.5+x (13 ⁻).						
3424.5+x [@] 5	(16 ⁻)	С	J^{π} : γ to (15 ⁻) is M1+E2, in-band $\Delta J=1$ transition.						
3583.5+x 7	(17^{-})	С	J^{π} : γ to (15 ⁻) is (E2).						
$3607.5 + x^{a} 5$	(18+)	СЕ	XREF: C(3147.9+Y)E(3534.1+X). J ^{π} : γ to (16 ⁺) is E2, in-band Δ J=2 transition.						
3790.9+x? 5		С	E(level), J^{π} : questionable level because uncertain placement of its daughter γ in (⁵¹ V,2pn γ) (2003He25); 2003He25 assign $J^{\pi}=17^{-}$ with no argument.						
3860.0+x ^{&} 7	(17 ⁺)	E	XREF: E(3788.4+X). J^{π} : γ to (15 ⁺) is E2, in-band $\Delta J=2$ transition.						
3884.5+x [@] 6	(17^{-})	С	J^{π} : γ to (16 ⁻) is M1+E2, in-band $\Delta J=1$ transition.						
3980.3+x 7		С	J^{π} : J^{π} from (⁵¹ V,2pn γ) (2003He25) not adopted – no argument.						
4264.2+x? [@] 6		С	E(level), J^{π} : questionable level because uncertain placement of its daughter γ in (⁵¹ V,2pn γ) (2003He25): 2003He25 assign $J^{\pi} = 18^{-10}$ with no argument						
4361.7+x ^{<i>a</i>} 6	(20 ⁺)	CE	XREF: C(3902.1+Y)E(4288.0+X). J^{π} : γ to (18 ⁺) is E2, in-band ΔJ =2 transition.						
4750.0+x ^{&} 12	(19 ⁺)	E	XREF: E(4678.4+X). I^{π} , γ to (17^{+}) is (E2) in-band $\Delta I=2$ transition						
5269.1+x ^a 7	(22 ⁺)	CE	XREF: $C(4809.5+Y)E(5194.9+X)$. I^{π} , v to (20^{+}) is (E2), in-band $\Delta I=2$ transition.						
5365.2+x 7	(22+)	CE	XREF: C(4905.6+Y)E(5290.4+X). J^{π} : γ to (20 ⁺) is (E2).						
6260.8+x ^a 8	(24 ⁺)	CE	XREF: $C(5801.2+Y)E(6186.9+X)$.						
7334.7+x? ^{<i>a</i>} 16	(26 ⁺)	E	XREF: E(7260.6+X). J^{π} : γ to (24 ⁺) is (E2), in-band $\Delta J=2$ transition.						
0+y ^{<i>d</i>}	J	С	XREF: C(0+Z). Additional information 2.						

¹⁴⁰Eu Levels (continued)

E(level)	J^{π}	XREF	Comments							
			E(level): y>1615+x, since the γ rays are in coincidence with transitions from 1615+x and 898+x levels.							
153.70+y ^d 20	J+1	С	XREF: C(153.70+Z).							
			J^{π} : γ to J is M1+E2, in-band $\Delta J=1$ transition.							
363.6+y d 3	J+2	С	XREF: C(363.6+Z).							
			J^{π} : γ to J+1 is M1+E2, in-band $\Delta J=1$ transition.							
$639.2 + y^d 4$	J+3	С	XREF: C(639.2+Z).							
5			J^{π} : γ to J+2 is M1+E2, in-band $\Delta J=1$ transition.							
$1035.9 + y^d 4$	J+4	С	XREF: C(1035.9+Z).							
2			J^{π} : γ to J+3 is M1+E2, in-band $\Delta J=1$ transition.							
$1507.1 + y^d 5$	J+5	С	XREF: C(1507.1+Z).							
5			J^{π} : γ to J+4 is M1+E2, in-band $\Delta J=1$ transition.							

[†] The 300 ns isomer is 8⁺ by measurements of (⁵⁴Fe,n5p γ) (2006Ta08) and ¹⁰⁷Ag(³⁶Ar,n2p γ) (2002Cu05), and 9⁺ of (⁵¹V,2pn γ) (2003He25) based on systematics of Δ J=1–separated 9⁺ to 15⁺ levels of Z=55-63, N=73-77 odd-odd nuclei (Fig. 8, see also 1996Li13). 2003He25 found that the level spacings relative to 10⁺ follow the systematic trends when 9⁺ is assigned to isomer, and not 8⁺ as of 2002Cu05. However including the 71 γ of 2003He25 to feed directly the isomer in 2002Cu05 data (71 γ is unplaced in 2002Cu05) brings 2002Cu05 in better agreement with systematics. Later 2006Ta08 confirmed 8⁺. Based on that *the* evaluator adopted 8⁺ and 71 γ , and all higher *positive-parity levels having spins greater by 1 than 2002Cu05 and smaller by 1* than 2003He25.

[‡] Band(A): $\pi(g_{7/2}, d_{5/2}) \otimes \nu h_{11/2}, \alpha = 0.$

[#] Band(a): $\pi(g_{7/2}, d_{5/2}) \otimes \nu h_{11/2}$, $\alpha = 1$. From (⁹²Mo(⁵¹V,2pn γ)) (2003He25) (band $\pi h_{11/2}\nu g_{7/2}$, $\alpha = 1$ in ¹⁰⁷Ag(³⁶Ar,n2p γ) (2002Cu05)).

[@] Band(B): $\pi(g_{7/2}, d_{5/2}) \otimes \nu h_{11/2}$ with mixing between the two π orbitals.

& Band(C): $\pi h_{11/2} \nu h_{11/2}$, $\alpha = 1$. ($\alpha = 0$ in ${}^{92}Mo({}^{51}V,2pn\gamma)$ and ${}^{107}Ag({}^{36}Ar,n2p\gamma)$).

^{*a*} Band(c): $\pi h_{11/2} \nu h_{11/2}$, $\alpha = 0$. ($\alpha = 1$ in 92 Mo(51 V,2pn γ) and 107 Ag(36 Ar,n2p γ)).

^b Band(D): $\pi h_{11/2} \otimes \nu h_{11/2}$ most likely conf assigned by 2003He25 in 92 Mo(51 V,2pn γ)).

^c Band(E): (10) band. ((11) band in ⁹²Mo(⁵¹V,2pnγ)).

^d Band(F): $\Delta J=1$ band. Possibly the structure is similar to $\Delta J=1$ high-spin structure of band $\pi(g_{7/2}, d_{5/2}) \otimes \nu h_{11/2}$.

$\gamma(^{140}{\rm Eu})$

For unplaced γ rays see ¹⁴⁰Gd ε decay and ¹⁰⁷Ag(³⁶Ar,n2p γ).

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α#	Comments
174.59	2+	174.8 2	100	0.0	1+	M1	0.381	
185.3	3+	(10.7)		174.59	2+	[M1]	207	α (L)=162.0 23; α (M)=35.3 5; α (N+)=9.47 14 α (N)=8.07 12; α (O)=1.274 18; α (P)=0.1245 18
		185.3 3		0.0	1+	E2	0.278	$\alpha(K)=0.193 \ 3; \ \alpha(L)=0.0666 \ 11; \ \alpha(M)=0.01525 \ 24; \ \alpha(N+)=0.00391 \ 6 \ \alpha(N)=0.00341 \ 6; \ \alpha(O)=0.000482 \ 8; \ \alpha(P)=1.618\times10^{-5} \ 24 \ Mult: \ \alpha(K)=xp^{-140}Eu \ IT \ (1991Ei03)$
191.24		191.2 <i>1</i>	100	0.0	1+			

γ ⁽¹⁴⁰Eu) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
0+x	(5 ⁻)	<48 ^{&}				(M2)		E_{γ} : Upper limit for Eγ established by 1991Fi03 (IT decay) from absence of K x-ray intensity associated with isomeric decay (Eγ<49 in ⁹² Mo(⁵⁴ Fe,n5pγ)).
		<59 ^{&}				(E3)		Mult.: based on RUL, ¹⁴⁷ Eu II (1991Fi03). E_{γ} : Upper limit for E_{γ} established by 1991Fi03 (IT decay) from absence of K x-ray intensity associated with isomeric decay.
361 3		18673	100	174 59	2+			Mult.: based on RUL, ¹⁴⁰ Eu IT (1991Fi03).
170.41+x	(6 ⁻)	170.4 3	100	0+x	(5-)	M1+E2	0.390 21	$\begin{aligned} &\alpha(\mathbf{K}) = 0.30 \ 5; \ \alpha(\mathbf{L}) = 0.072 \ 23; \ \alpha(\mathbf{M}) = 0.016 \ 6; \\ &\alpha(\mathbf{N}+) = 0.0042 \ 14 \\ &\alpha(\mathbf{N}) = 0.0036 \ 12; \ \alpha(\mathbf{O}) = 0.00053 \ 15; \\ &\alpha(\mathbf{P}) = 2.9 \times 10^{-5} \ 9 \\ &\operatorname{ce}(\mathbf{N})/(\gamma + \operatorname{ce}) = 0.0026 \ 9; \ \operatorname{ce}(\mathbf{O})/(\gamma + \operatorname{ce}) = 0.00038 \ 11; \\ &\operatorname{ce}(\mathbf{P})/(\gamma + \operatorname{ce}) = 2.1 \times 10^{-5} \ 7 \\ &\mathbf{E}_{\gamma}: \ 170.0\gamma + 170.4\gamma \ \text{form a doublet structure} \\ &(2003\text{He}25). \end{aligned}$ Mult.: $\alpha(\mathbf{K})$ exp in (⁵⁴ Fe, n5py) (2006Ta08).
379.00 417.72		379.0 <i>1</i> 417.7 <i>1</i>	100 100	$0.0 \\ 0.0$	1+ 1+			
427.92		236.7 <i>1</i> 253.3 2	78 <i>11</i> 78 <i>17</i>	191.24 174.59	2+			
446.98		427.9 2 272.4 1 446 9 3	100 <i>11</i> 14 100	0.0 174.59 0.0	1^+ 2^+ 1^+			
453.25		261.8 2	40 7	191.24	-	M1	0.1265	$\alpha(K)=0.1073 \ I6; \ \alpha(L)=0.01507 \ 22; \ \alpha(M)=0.00325 \ 5; \ \alpha(N+)=0.000875 \ I3 \ \alpha(N)=0.000745 \ I1; \ \alpha(O)=0.0001183 \ I7; \ \alpha(P)=1.178 \times 10^{-5} \ I7 \ Mxlt + \ \alpha(V) xp \ in \ ^{140}Cd \ \alpha \ (10827x05)$
		278.4 <i>5</i> 453.4 2	53 7 100 <i>3</i> 2	174.59 0.0	$2^+_{1^+}$			Mult.: $\alpha(\mathbf{K})$ exp in ¹¹¹ Gd ε (19881005).
284.82+x	(6 ⁻)	284.8 3	100 52	0.0 0+x	(5 ⁻)	M1+E2	0.085 17	$\alpha(K)=0.069\ 17;\ \alpha(L)=0.0123\ 3;\ \alpha(M)=0.00270\ 12;$ $\alpha(N+)=0.000714\ 20$
								$\alpha(N)=0.000613\ 22;\ \alpha(O)=9.34\times10^{-5}\ 70;\alpha(P)=7.1\times10^{-6}\ 23ce(N)/(\gamma+ce)=0.000565\ 22;ce(O)/(\gamma+ce)=8.61\times10^{-5}\ 20;$
								$ce(P)/(\gamma+ce)=6.6\times10^{-6} 22$
								107 Ag(36 Ar,n2py) (from different parent level).
488.1		313.5 3	100	174.59	2+			Mult.: $\alpha(K) \exp in ({}^{54}Fe, n5p\gamma)$ (20061a08).
535.7 546.54		344.5 <i>4</i> 372.0 2	100 19 6	191.24 174.59	2+			
361.48+x	(7-)	546.5 2 190.8 <i>3</i>	100 9 100 25	0.0 170.41+x	1 ⁺ (6 ⁻)	M1+E2	0.276 24	$\alpha(K)=0.21 4; \alpha(L)=0.047 12; \alpha(M)=0.011 3;$
	. •							$\begin{aligned} &\alpha(\text{N}+)=0.0028\ 7\\ &\alpha(\text{N})=0.0024\ 7;\ \alpha(\text{O})=0.00035\ 8;\ \alpha(\text{P})=2.1\times10^{-5}\ 7\\ &\text{ce}(\text{N})/(\gamma+\text{ce})=0.0019\ 5;\ \text{ce}(\text{O})/(\gamma+\text{ce})=0.00028\ 6;\\ &\text{ce}(\text{P})/(\gamma+\text{ce})=1.7\times10^{-5}\ 6\end{aligned}$
		361.5 3	88 25	0+x	(5 ⁻)	E2	0.0332	Mult.: $\alpha(\exp)$ in (⁵⁴ Fe,n5p γ) (2006Ta08). $\alpha(K)=0.0263$ 4; $\alpha(L)=0.00539$ 8; $\alpha(M)=0.001202$

γ ⁽¹⁴⁰Eu) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
389.27+x	(7-)	104.5 <i>3</i>	100 22	284.82+x	(6 ⁻)	(M1+E2)	1.85 <i>23</i>	$\begin{array}{c} 18; \ \alpha(\mathrm{N}+)=0.000314\ 5\\ \alpha(\mathrm{N})=0.000271\ 4; \ \alpha(\mathrm{O})=4.03\times10^{-5}\ 6;\\ \alpha(\mathrm{P})=2.52\times10^{-6}\ 4\\ \mathrm{ce}(\mathrm{N})/(\gamma+\mathrm{ce})=0.000262\ 4;\\ \mathrm{ce}(\mathrm{O})/(\gamma+\mathrm{ce})=3.90\times10^{-5}\ 6;\\ \mathrm{ce}(\mathrm{P})/(\gamma+\mathrm{ce})=2.43\times10^{-6}\ 4\\ \mathrm{Mult.:\ deduced\ by\ 2002Cu05\ in\ }^{107}\mathrm{Ag}(^{36}\mathrm{Ar,n2p\gamma});\ \mathrm{confirmed\ in\ }^{51}\mathrm{V,2pn\gamma})\\ (2003\mathrm{He}25).\\ \alpha(\mathrm{K})=1.21\ 17;\ \alpha(\mathrm{L})=0.5\ 3;\ \alpha(\mathrm{M})=0.11\ 8;\\ \alpha(\mathrm{N}+)=0.029\ 18\\ \alpha(\mathrm{N})=0.025\ 16;\ \alpha(\mathrm{O})=0.0036\ 21;\ \alpha(\mathrm{P})=0.00011\\ \end{array}$
								⁴ ce(N)/(γ+ce)=0.009 6; ce(O)/(γ+ce)=0.0013 8; ce(P)/(γ+ce)=4.0×10 ⁻⁵ 14 γ placement from (⁵⁴ Fe,n5pγ) (2006Ta08), also measured in ¹⁰⁷ Ag(³⁶ Ar,n2pγ) (2002Cu05). Mult.: α(exp) limits in (⁵⁴ Fe,n5pγ) (2006Ta08; E2 not excluded); ¹⁰⁷ Ag(³⁶ Ar,n2pγ): (E1) from different parent level (2002Cu05).
		389.2 3	78 33	0+x	(5-)	(E2)	0.0267	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0214 \ 3; \ \alpha(\mathbf{L}) = 0.00421 \ 6; \\ &\alpha(\mathbf{M}) = 0.000936 \ 14; \ \alpha(\mathbf{N}+) = 0.000245 \ 4 \\ &\alpha(\mathbf{N}) = 0.000211 \ 3; \ \alpha(\mathbf{O}) = 3.16 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{P}) = 2.07 \times 10^{-6} \ 3 \\ &\text{ce}(\mathbf{N})/(\gamma + \text{ce}) = 0.000206 \ 3; \\ &\text{ce}(\mathbf{O})/(\gamma + \text{ce}) = 3.08 \times 10^{-5} \ 5; \\ &\text{ce}(\mathbf{P})/(\gamma + \text{ce}) = 2.01 \times 10^{-6} \ 3 \\ &\text{Mult.: } \gamma \text{ placement and mult from } (^{54}\text{Fe},\text{n5p}\gamma) \\ &(2006\text{Tao8}); \text{ also measured in} \\ &1^{07}\text{Ag}(^{36}\text{Ar},\text{n2p}\gamma) \ (2002\text{Cu05}, \ (\text{M2}) \text{ from} \\ &\text{different parent level}). \end{aligned}$
610.99 422.42+x	(7 ⁻)	436.4 2 33.0 <i>10</i>	100 10 5	174.59 389.27+x	2 ⁺ (7 ⁻)	(M1)	7.3 7	α (L)=5.7 6; α (M)=1.24 <i>12</i> ; α (N+)=0.33 4 α (N)=0.28 <i>3</i> ; α (O)=0.045 <i>5</i> ; α (P)=0.0044 <i>5</i> ce(N)/(γ +ce)=0.034 <i>5</i> ; ce(O)/(γ +ce)=0.0054 <i>7</i> ; ce(P)/(γ +ce)=0.00053 <i>7</i>
		137.5 3	25 5	284.82+x	(6 ⁻)	(M1+E2)	0.762 20	γ measured only in (³ Fe, n5p γ) (20061a08). α (K)=0.55 8; α (L)=0.16 8; α (M)=0.037 18; α (N+)=0.010 5 α (N)=0.008 4; α (O)=0.0012 5; α (P)=5.3×10 ⁻⁵ 17
		252.0 <i>3</i>	85 12	170.41+x	(6-)	M1+E2	0.121 20	ce(N)/(γ +ce)=0.0047 22; ce(O)/(γ +ce)=0.0007 3; ce(P)/(γ +ce)=3.0×10 ⁻⁵ 10 γ placement and mult from (⁵⁴ Fe,n5p γ) (2006Ta08); also measured in ¹⁰⁷ Ag(³⁶ Ar,n2p γ)-2002Cu05 ((E1), from different parent level). α (K)=0.097 22; α (L)=0.0182 16; α (M)=0.0040 5; α (N+)=0.00106 10 α (N)=0.00091 9; α (O)=0.000138 8; α (P)=1.0×10 ⁻⁵ 4 ce(N)/(γ +ce)=0.00082 9; ce(O)/(γ +ce)=0.000123 7; ce(P)/(γ +ce)=9.E-6 3

$\gamma(^{140}\text{Eu})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
422.42+x	(7 ⁻)	422.5 3	100 <i>17</i>	0+x	(5 ⁻)	[E2]	0.0212	Mult.: $\alpha(\exp)$ in (⁵⁴ Fe,n5pγ) (2006Ta08); ¹⁰⁷ Ag(³⁶ Ar,n2pγ) found (E1) (2002Cu05). $\alpha(K)=0.01706\ 25;\ \alpha(L)=0.00322\ 5;$ $\alpha(M)=0.000715\ 11;\ \alpha(N+)=0.000188\ 3$ $\alpha(N)=0.0001616\ 23;\ \alpha(O)=2.43\times10^{-5}\ 4;$ $\alpha(P)=1.669\times10^{-6}\ 24$ ce(N)/(γ+ce)=0.0001582\ 23; ce(O)/(γ+ce)=2.38\times10^{-5}\ 4; ce(P)/(γ+ce)=1.634×10 ⁻⁶ \ 23 Mult.: ¹⁰⁷ Ag(³⁶ Ar,n2pγ) found (M2)
459.5+x	(8+)	37.1 3	100 9	422.42+x	(7-)	E1	0.737 20	(2002Cu05). $\alpha(L)=0.580 \ 16; \ \alpha(M)=0.126 \ 4; \ \alpha(N+)=0.0319 \ 9$ $\alpha(N)=0.0278 \ 8; \ \alpha(O)=0.00387 \ 11; \ \alpha(P)=0.000226 \ 6$ $\operatorname{ce}(N)/(\gamma+\operatorname{ce})=0.0160 \ 5; \ \operatorname{ce}(O)/(\gamma+\operatorname{ce})=0.00223 \ 7; \ \operatorname{ce}(P)/(\gamma+\operatorname{ce})=0.000130 \ 4$ $B(E1)(W.u.)=7.9\times10^{-6} \ 10$ Mult : $\alpha(\operatorname{exp})$ in $({}^{54}\operatorname{Fe} \ n 5px)$ (2006Ta08):
		98.1 3	26 3	361.48+x	(7-)	E1	0.299	¹⁰⁷ Ag(³⁶ Ar,n2pγ) (2002Cu05) found (M1). $\alpha(K)=0.251 4; \alpha(L)=0.0375 7; \alpha(M)=0.00808$ $14; \alpha(N+)=0.00211 4$ $\alpha(N)=0.00182 3; \alpha(O)=0.000273 5;$ $\alpha(P)=2.09\times10^{-5} 4$ ce(N)/(γ+ce)=0.001399 24; ce(O)/(γ+ce)=0.000210 4; ce(P)/(γ+ce)=1.61×10^{-5} 3 B(E1)(W.u.)=1.11×10 ⁻⁷ 16 Mult.: $\alpha(exp)$ in (⁵⁴ Fe,n5pγ) (2006Ta08); confirmed in ¹⁰⁷ Ag(³⁶ Ar,n2pγ) (2002Cu05).
687.04 530.5+x	(9+)	495.8 2 71.0 2	100 100	191.24 459.5+x	(8+)	(M1+E2)	6.9 20	$\alpha(K)=3.4 \ 8; \ \alpha(L)=2.7 \ 21; \ \alpha(M)=0.6 \ 5; \\ \alpha(N+)=0.16 \ 13 \\ \alpha(N)=0.14 \ 11; \ \alpha(O)=0.019 \ 15; \ \alpha(P)=0.00033 \\ 14 \\ \gamma \ ray \ from \ (^{51}V,2pn\gamma) \ (2003He25), \ while \\ unplaced \ in \ ^{107}Ag(^{36}Ar,n2p\gamma) \ (2003He25). \\ Mult.: \ deduced \ in \ (^{51}V,2pn\gamma) \ (2003He25). \\ \end{cases}$
722.28	1+	269.0 2 304.5 2 722.3 1 296.6 2	1.0 22 4.8 22 100 15 12.7 13	453.25 417.72 0.0 453.25	1+	M1	0.0906	α(K)=0.0769 <i>11</i> ; α(L)=0.01076 <i>16</i> ;
		550 7 2	22.2	101.24				$\alpha(M)=0.00232 \ 4; \ \alpha(N+)=0.000625 \ 9$ $\alpha(N)=0.000532 \ 8; \ \alpha(O)=8.45\times10^{-5} \ 12;$ $\alpha(P)=8.43\times10^{-6} \ 12$ Mult.: $\alpha(K)$ exp in ¹⁴⁰ Gd ε (1988Tu05).
		575.4 <i>1</i>	55 5 39 4	191.24 174.59	2+	M1	0.01638	$\begin{aligned} &\alpha(\mathrm{K}) = 0.01395 \ 20; \ \alpha(\mathrm{L}) = 0.00191 \ 3; \\ &\alpha(\mathrm{M}) = 0.000411 \ 6; \ \alpha(\mathrm{N}+) = 0.0001105 \ 16 \\ &\alpha(\mathrm{N}) = 9.41 \times 10^{-5} \ 14; \ \alpha(\mathrm{O}) = 1.497 \times 10^{-5} \ 21; \\ &\alpha(\mathrm{P}) = 1.510 \times 10^{-6} \ 22 \\ &\mathrm{Mult.:} \ \alpha(\mathrm{K}) \mathrm{exp \ in} \ ^{140} \mathrm{Gd} \ \varepsilon \ (1988\mathrm{Tu05}). \end{aligned}$
607.9+x	(8+)	749.9 <i>1</i> 94.9 <i>2</i>	100 <i>6</i> 100	0.0 513.0+x	1 ⁺ (7 ⁺)	(M1+E2)	2.5 4	$\alpha(K)=1.58$ 24; $\alpha(L)=0.7$ 5; $\alpha(M)=0.17$ 12;

$\gamma(^{140}\text{Eu})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [‡]	α#	Comments
654.80+x	(8-)	292.9 4		361.48+x	(7 ⁻)	M1+E2	0.078 16	$\begin{array}{c} \alpha(\mathrm{N}+)=0.04 \ 3\\ \alpha(\mathrm{N})=0.04 \ 3; \ \alpha(\mathrm{O})=0.005 \ 4; \ \alpha(\mathrm{P})=0.00015 \ 6\\ \mathrm{Mult.: \ deduced \ in \ (^{51}\mathrm{V},2\mathrm{pn}\gamma) \ (2003\mathrm{He25}).\\ \alpha(\mathrm{K})=0.064 \ 16; \ \alpha(\mathrm{L})=0.01121 \ 19;\\ \alpha(\mathrm{M})=0.00247 \ 8; \ \alpha(\mathrm{N}+)=0.000653 \ 12\\ \alpha(\mathrm{N})=0.000561 \ 14; \ \alpha(\mathrm{O})=8.55\times10^{-5} \ 23;\\ \alpha(\mathrm{P})=6 \ 6\times10^{-6} \ 22 \end{array}$
282.60		484.5 2	100	170.41+x	(6 ⁻)	E2	0.01455	I _Y : 75; both I(292.9γ) and I(484.5γ) are lower limits in (⁵¹ V,2pnγ); the branchings listed here are calculated from these limits. Mult.: deduced in (⁵¹ V,2pnγ) (2003He25). α (K)=0.01186 17; α (L)=0.00210 3; α (M)=0.000464 7; α (N+)=0.0001223 18 α (N)=0.0001051 15; α (O)=1.596×10 ⁻⁵ 23; α (P)=1.178×10 ⁻⁶ 17 I _Y : 100; both I(292.9γ) and I(484.5γ) are lower limits in (⁵¹ V,2pnγ); the branchings listed here are calculated from these limits. Mult.: deduced in (⁵¹ V,2pnγ) (2003He25).
882.69 762.90+x	(8 ⁻)	708.1 2 401.4 2	100	174.59 361.48+x	2 ⁺ (7 ⁻)	M1+E2	0.033 9	α (K)=0.027 8; α (L)=0.0043 6; α (M)=0.00094
								<i>10</i> ; α (N+)=0.00025 <i>3</i> α (N)=0.000215 <i>24</i> ; α (O)=3.3×10 ⁻⁵ <i>5</i> ; α (P)=2.9×10 ⁻⁶ <i>10</i> Mult.: deduced in (⁵¹ V,2pn γ) (2003He25).
		478.1 <i>4</i>		284.82+x	(6 ⁻)	E2	0.01508	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.01228 \ 18; \ \alpha(\mathbf{L}) = 0.00219 \ 4; \\ &\alpha(\mathbf{M}) = 0.000483 \ 7; \ \alpha(\mathbf{N}+) = 0.0001273 \ 19 \\ &\alpha(\mathbf{N}) = 0.0001095 \ 16; \ \alpha(\mathbf{O}) = 1.661 \times 10^{-5} \ 24; \\ &\alpha(\mathbf{P}) = 1.218 \times 10^{-6} \ 18 \end{aligned} $
1077.8		903 2 3	100	174 59	2+			Mult.: deduced in $({}^{51}V,2pn\gamma)$ (2003He25).
896.4+x	(10 ⁺)	365.8 3	100	530.5+x	(9 ⁺)	M1+E2	0.042 10	$\alpha(K)=0.035 \ 10; \ \alpha(L)=0.0057 \ 5; \ \alpha(M)=0.00124$ 9; $\alpha(N+)=0.00033 \ 3$ $\alpha(N)=0.000282 \ 23; \ \alpha(O)=4.4\times10^{-5} \ 5;$
								$\alpha(P)=3.6\times10^{\circ}$ 12 Mult.: deduced in (⁵¹ V.2pn γ) (2003He25).
898.88+x	(9 ⁻)	244.0 ^{&} 2	≥29	654.80+x	(8 ⁻)	M1+E2	0.132 21	$\alpha(K)=0.106\ 24;\ \alpha(L)=0.0203\ 21;\ \alpha(M)=0.0045$ $6;\ \alpha(N+)=0.00118\ 13$ $\alpha(N)=0.00102\ 12;\ \alpha(O)=0.000154\ 11;$
								$\alpha(P)=1.1\times10^{-5} 4$
		537.4 1	100	361.48+x	(7-)	E2	0.01108	Mult.: deduced in (³¹ V,2pny) (2003He25). $\alpha(K)=0.00910 \ I3; \ \alpha(L)=0.001548 \ 22;$ $\alpha(M)=0.000340 \ 5; \ \alpha(N+)=8.98\times10^{-5} \ I3$ $\alpha(N)=7.71\times10^{-5} \ I1; \ \alpha(O)=1.178\times10^{-5} \ I7;$ $\alpha(P)=9 \ 12\times10^{-7} \ I3$
								Mult.: deduced in $({}^{51}V,2pn\gamma)$ (2003He25).
1092.6 1131.1		918 <i>1</i> 1131.1 <i>3</i>	100 100	174.59 0.0	2^+ 1 ⁺			
994.0+x	(10 ⁺)	386.1 2	100	607.9+x	(8 ⁺)	E2	0.0274	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0218 \ 3; \ \alpha(\mathbf{L}) = 0.00432 \ 6; \\ &\alpha(\mathbf{M}) = 0.000961 \ 14; \ \alpha(\mathbf{N}+) = 0.000252 \ 4 \\ &\alpha(\mathbf{N}) = 0.000217 \ 3; \ \alpha(\mathbf{O}) = 3.25 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{P}) = 2.11 \times 10^{-6} \ 3 \end{aligned}$
1014.5+x	(10 ⁺)	(20.5)		994.0+x	(10 ⁺)			Mult.: deduced in (24 V,2pn γ) (2003He25). E _{γ} : (51 V,2pn γ) (2003He25) propose this
	. /	. /			1		4 4	

$\gamma(^{140}\text{Eu})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
1014.5+x	(10 ⁺)	406.6 2	≥100	607.9+x	(8+)	E2	0.0236	unobserved transition based upon possible (646.8 γ)(386.1 γ) coincidence. α (K)=0.0189 3; α (L)=0.00365 6; α (M)=0.000810 12; α (N+)=0.000212 3 α (N)=0.000183 3; α (O)=2.75×10 ⁻⁵ 4;
		483.5 <i>4</i>	15	530.5+x	(9+)	M1+E2	0.020 6	$\alpha(P)=1.84\times10^{-5}$ Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). $\alpha(K)=0.017$ 5; $\alpha(L)=0.0025$ 5; $\alpha(M)=0.00055$ 9; $\alpha(N+)=0.000148$ 25 $\alpha(N)=0.000126$ 21; $\alpha(O)=2.0\times10^{-5}$ 4; $\alpha(P)=1.8\times10^{-6}$ 6
								Mult.: deduced in $({}^{51}V,2pn\gamma)$ (2003He25).
1215.99	(11+)	1041.4 2	100	174.59	2^+	M1 - E2	0.004.10	
11/1.1+x	(11')	274.7 3	19 3	896.4+x	(10°)	MI+E2	0.094 18	$\begin{array}{l} \alpha(\mathrm{K}) = 0.076 \ 18; \ \alpha(\mathrm{L}) = 0.0138 \ 6; \\ \alpha(\mathrm{M}) = 0.00304 \ 19; \ \alpha(\mathrm{N}+) = 0.00080 \ 4 \\ \alpha(\mathrm{N}) = 0.00069 \ 4; \ \alpha(\mathrm{O}) = 0.0001047 \ 18; \\ \alpha(\mathrm{P}) = 8.\mathrm{E-6} \ 3 \end{array}$
								I_{γ} : average of the values in (⁵¹ V,2pn γ) and ¹⁰⁷ Ag(³⁶ Ar,n2p γ).
		640.6 <i>1</i>	100 14	530.5+x	(9+)	E2	0.00714	Mult.: deduced in (51 V,2pn γ) (2003He25). α (K)=0.00593 9; α (L)=0.000947 14; α (M)=0.000207 3; α (N+)=5.49×10 ⁻⁵ 8 α (N)=4.70×10 ⁻⁵ 7; α (O)=7.25×10 ⁻⁶ 11; α (D)=4.70×10 ⁻⁷ 0;
1364.6+x	(10 ⁻)	601.7 2		762.90+x	(8 ⁻)	E2	0.00832	$\alpha(\mathbf{r}) = 6.01 \times 10^{-5} \text{ g}^{-1}$ Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). $\alpha(\mathbf{K}) = 0.00689 \ 10; \ \alpha(\mathbf{L}) = 0.001124 \ 16;$ $\alpha(\mathbf{K}) = 0.00689 \ 10; \ \alpha(\mathbf{L}) = 0.001124 \ 16;$
		709.4 4		654.80+x	(8-)	E2	0.00560	
1376.5+x	(10 ⁻)	722.0 3	100	654.80+x	(8-)	E2	0.00537	Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). α (K)=0.00449 7; α (L)=0.000692 10; α (M)=0.0001506 22; α (N+)=4.00×10 ⁻⁵ 6 α (N)=3.43×10 ⁻⁵ 5; α (O)=5.31×10 ⁻⁶ 8;
1603.8+x	(12+)	609.8 4	100	994.0+x	(10+)	E2	0.00805	$\alpha(P)=4.58\times10^{-7} 7$ Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). $\alpha(K)=0.00667 \ 10; \ \alpha(L)=0.001083 \ 16;$ $\alpha(M)=0.000237 \ 4; \ \alpha(N+)=6.28\times10^{-5} \ 9$ $\alpha(N)=5.38\times10^{-5} \ 8; \ \alpha(O)=8.28\times10^{-6} \ 12;$ $\alpha(P)=6.75\times10^{-7} \ 10$
1614.5+x	(11 ⁻)	715.6 2	100	898.88+x	(9 ⁻)	E2	0.00548	Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). α (K)=0.00458 7; α (L)=0.000708 <i>10</i> ;

$\gamma(^{140}\text{Eu})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ [†]	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	α #	Comments
1617.1+x	(12 ⁺)	446.0 <i>1</i>	100 8	1171.1+x (11 ⁺)	M1+E2	0.025 7	$\begin{aligned} \alpha(M) = 0.0001541 \ 22; \ \alpha(N+) = 4.10 \times 10^{-5} \ 6 \\ \alpha(N) = 3.51 \times 10^{-5} \ 5; \ \alpha(O) = 5.44 \times 10^{-6} \ 8; \\ \alpha(P) = 4.67 \times 10^{-7} \ 7 \\ \text{Mult.: deduced in } (^{51}\text{V},2\text{pn}\gamma) \ (2003\text{He}25). \\ \alpha(K) = 0.021 \ 6; \ \alpha(L) = 0.0032 \ 5; \ \alpha(M) = 0.00070 \\ 10; \ \alpha(N+) = 0.00019 \ 3 \\ \alpha(N) = 0.000158 \ 23; \ \alpha(O) = 2.5 \times 10^{-5} \ 5; \\ \alpha(P) = 2.2 \times 10^{-6} \ 8 \end{aligned}$
		720.6 2	25 10	896.4+x (10 ⁺)	E2	0.00540	Mult.: deduced in ¹⁰⁷ Ag(³⁶ Ar,n2p γ) (2002Cu05); confirmed in (⁵¹ V,2pn γ) (2003He25). α (K)=0.00451 7; α (L)=0.000695 10; α (M)=0.0001514 22; α (N+)=4.02×10 ⁻⁵ 6 α (N)=3.44×10 ⁻⁵ 5; α (O)=5.34×10 ⁻⁶ 8; α (P)=4.60×10 ⁻⁷ 7
1661.6+x	(12+)	490.4 <i>3</i>	46	1171.1+x (11 ⁺)	M1+E2	0.019 6	Mult.: deduced in ¹⁰⁷ Ag(³⁶ Ar,n2p γ) (2002Cu05); confirmed in (⁵¹ V,2pn γ) (2003He25). $\alpha(K)=0.0165; \alpha(L)=0.00245; \alpha(M)=0.00053$ 9; $\alpha(N+)=0.00014225$ $\alpha(N)=0.00012121; \alpha(O)=1.9\times10^{-5}4;$ $\alpha(P)=1.7\times10^{-6}6$
		646.8 <i>3</i>	100 69	1014.5+x (10 ⁺)	(E2)	0.00697	Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). α (K)=0.00580 9; α (L)=0.000923 13; α (M)=0.000202 3; α (N+)=5.35×10 ⁻⁵ 8 α (N)=4.58×10 ⁻⁵ 7; α (O)=7.07×10 ⁻⁶ 10;
1959.9+x	(12-)	345.4 <i>3</i>	100	1614.5+x (11 ⁻)	M1+E2	0.049 12	$\alpha(P)=5.88\times10^{-7} \ 9$ E _{\gamma} : 646.8+647.7 form a doublet structure. $\alpha(K)=0.041 \ 11; \ \alpha(L)=0.0067 \ 5; \ \alpha(M)=0.00148 \ 8; \ \alpha(N+)=0.000391 \ 25 \ \alpha(N)=0.000336 \ 19; \ \alpha(O)=5.2\times10^{-5} \ 5; \ \alpha(N)=4.2\times10^{-6} \ 14$
1978.3+x	(13+)	361.3 2	100 10	1617.1+x (12 ⁺)	M1+E2	0.044 11	$\alpha(P)=4.2\times10^{-6} I4$ Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). $\alpha(K)=0.036 I0; \alpha(L)=0.0059 5; \alpha(M)=0.00129$ 9; $\alpha(N+)=0.00034 3$ $\alpha(N)=0.000293 22; \alpha(O)=4.5\times10^{-5} 5;$ $\alpha(D)=2.8\times10^{-6} I3$
		807.3 2	31 <i>10</i>	1171.1+x (11 ⁺)	E2	0.00416	$\begin{aligned} &\alpha(r) = 5.0 \times 10^{-5.5} \\ &\text{Mult.: deduced in } ^{107} \text{Ag}(^{36}\text{Ar}, n2p\gamma) \\ &(2002\text{Cu05}); \text{ confirmed in } (^{51}\text{V}, 2pn\gamma) \\ &(2003\text{He25}). \\ &\alpha(\text{K}) = 0.00350 \ 5; \ \alpha(\text{L}) = 0.000523 \ 8; \\ &\alpha(\text{M}) = 0.0001135 \ 16; \ \alpha(\text{N}+) = 3.02 \times 10^{-5} \ 5 \\ &\alpha(\text{N}) = 2.59 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 4.03 \times 10^{-6} \ 6; \\ &\alpha(\text{P}) = 3.58 \times 10^{-7} \ 5 \end{aligned}$
2169.8+x	(12-)	805.3 <i>3</i>	100	1364.6+x (10 ⁻)	E2	0.00419	Mult.: deduced in ¹⁰⁷ Ag(³⁶ Ar,n2p γ) (2002Cu05); confirmed in (⁵¹ V,2pn γ) (2003He25). α (K)=0.00352 5; α (L)=0.000526 8; α (M)=0.0001142 16; α (N+)=3.04×10 ⁻⁵ 5 α (N)=2.60×10 ⁻⁵ 4; α (O)=4.05×10 ⁻⁶ 6; α (P)=3.60×10 ⁻⁷ 5
2197.3+x	(12 ⁻)	821.0 3		1376.5+x (10 ⁻)	E2	0.00401	Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). α (K)=0.00337 5; α (L)=0.000502 7;

γ ⁽¹⁴⁰Eu) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [‡]	α [#]	Comments
2197.3+x	(12 ⁻)	832.3 3		1364.6+x	(10 ⁻)	E2	0.00389	$\frac{\alpha(M)=0.0001089 \ 16; \ \alpha(N+)=2.90\times10^{-5} \ 4}{\alpha(N)=2.48\times10^{-5} \ 4; \ \alpha(O)=3.87\times10^{-6} \ 6; \ \alpha(P)=3.45\times10^{-7} \ 5}$ $I_{\gamma}: \ 42; \ both \ I(821.0\gamma) \ and \ I(832.3\gamma) \ are lower limits in \ (^{51}V,2pn\gamma); \ the \ branchings listed here \ are \ calculated from these limits.$ Mult.: deduced in \(^{51}V,2pn\gamma) \ (2003He25). \(\alpha(K)=0.00327 \ 5; \ \alpha(L)=0.000486 \ 7; \ \alpha(M)=0.0001053 \ 15; \ \alpha(N+)=2.81\times10^{-5} \ 4 $\alpha(N)=2.40\times10^{-5} \ 4; \ \alpha(O)=3.74\times10^{-6} \ 6; \ \alpha(P)=3.35\times10^{-7} \ 5$ $I_{\gamma}: \ 100; \ both \ I(821.0\gamma) \ and \ I(832.3\gamma) \ are limits \ \beta(N)=0.0001053 \ 10^{-7} \ 5$
								lower limits in $({}^{51}V,2pn\gamma)$; the branchings listed here are calculated from these limits. Mult.: deduced in $({}^{51}V,2pn\gamma)$ (2003He25).
2223.1+x	(14+)	619.3 [@] 3	100 [@]	1603.8+x	(12+)	E2	0.00775	$\alpha(K)=0.00643 \ 9; \ \alpha(L)=0.001038 \ 15; \\ \alpha(M)=0.000227 \ 4; \ \alpha(N+)=6.02\times10^{-5} \ 9 \\ \alpha(N)=5.16\times10^{-5} \ 8; \ \alpha(O)=7.94\times10^{-6} \ 12; \\ \alpha(P)=6.51\times10^{-7} \ 10 \\ E = c \ (10.2 + c10.2 \ form or equivalent structure)$
2427.7+x	(13 ⁻)	230.4 1	100 10	2197.3+x	(12 ⁻)	M1+E2	0.157 22	E _{γ} : 619.3+619.3 form a doublet structure. Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). α (K)=0.13 <i>3</i> ; α (L)=0.025 <i>4</i> ; α (M)=0.0055 <i>9</i> ; α (N+)=0.00144 <i>20</i> α (N)=0.00124 <i>19</i> ; α (O)=0.000186 <i>19</i> ;
		258.0 2	35 10	2169.8+x	(12 ⁻)	M1+E2	0.113 <i>19</i>	α (P)=1.3×10 ⁻⁵ 4 Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). α (K)=0.091 21; α (L)=0.0169 13; α (M)=0.0037 4; α (N+)=0.00098 8 α (N)=0.00085 8; α (O)=0.000128 6; α (P)=9.E-6 3
2444.5+x	(13 ⁻)	830.0 <i>3</i>	100	1614.5+x	(11 ⁻)	E2	0.00391	Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). α (K)=0.00329 5; α (L)=0.000489 7; α (M)=0.0001060 15; α (N+)=2.83×10 ⁻⁵ 4 α (N)=2.42×10 ⁻⁵ 4; α (O)=3.77×10 ⁻⁶ 6; α (D)=2.27×10 ⁻⁷ 5
2448.9+x	(14+)	470.5 2	74 <i>7</i>	1978.3+x	(13+)	M1+E2	0.021 6	$\begin{array}{l} \alpha(r) = 5.37 \times 10^{-5} \text{ J} \\ \text{Mult.: deduced in } ^{107} \text{Ag}(^{36} \text{Ar}, n2p\gamma) \\ (2002 \text{Cu05}); \text{ confirmed in } (^{51} \text{V}, 2pn\gamma) \\ (2003 \text{He25}). \\ \alpha(\text{K}) = 0.018 \ 6; \ \alpha(\text{L}) = 0.0027 \ 5; \ \alpha(\text{M}) = 0.00060 \\ 9; \ \alpha(\text{N}+) = 0.00016 \ 3 \\ \alpha(\text{N}) = 0.000136 \ 22; \ \alpha(\text{O}) = 2.1 \times 10^{-5} \ 4; \\ \alpha(\text{P}) = 1.0 \times 10^{-6} \ 7 \end{array}$
		787.3 3	100 <i>10</i>	1661.6+x	(12+)	E2	0.00441	Mult.: deduced in ¹⁰⁷ Ag(³⁶ Ar,n2p γ) (2002Cu05); confirmed in (⁵¹ V,2pn γ) (2003He25). $\alpha(K)=0.00370~6; ~\alpha(L)=0.000556~8; ~\alpha(M)=0.0001208~17; ~\alpha(N+)=3.22\times10^{-5}~5$ $\alpha(N)=2.75\times10^{-5}~4; ~\alpha(O)=4.28\times10^{-6}~6; ~\alpha(D)=3.78\times10^{-7}~6$
		831.9 <i>3</i>	79 10	1617.1+x	(12+)	E2	0.00389	Mult.: deduced in $({}^{51}V,2pn\gamma)$ (2003He25). $\alpha(K)=0.00327$ 5; $\alpha(L)=0.000486$ 7; $\alpha(M)=0.0001055$ 15; $\alpha(N+)=2.81\times10^{-5}$ 4

$\gamma(^{140}\text{Eu})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
2479.9+x	(14+)	502.1 4	100	1978.3+x ((13+)	M1+E2	0.018 5	$\alpha(N)=2.40\times10^{-5} 4; \ \alpha(O)=3.75\times10^{-6} 6; \\ \alpha(P)=3.36\times10^{-7} 5$ Mult.: deduced in ¹⁰⁷ Ag(³⁶ Ar,n2p γ) (2002Cu05); confirmed in (⁵¹ V,2pn γ) (2003He25). $\alpha(K)=0.015 5; \ \alpha(L)=0.0023 4; \\ \alpha(M)=0.00050 9; \ \alpha(N+)=0.000133 24 \\ \alpha(N)=0.000114 20; \ \alpha(O)=1.8\times10^{-5} 4; \\ \alpha(P)=1.6\times10^{-6} 6$
		817.5 5	87 43	1661.6+x ((12+)	E2	0.00405	Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). α (K)=0.00340 5; α (L)=0.000507 8; α (M)=0.0001101 16; α (N+)=2.93×10 ⁻⁵ 5 α (N)=2.51×10 ⁻⁵ 4; α (O)=3.91×10 ⁻⁶ 6; α (P)=3.48×10 ⁻⁷ 5
2597.7+x	(14 ⁻)	170.0 2	100	2427.7+x ((13 ⁻)	(M1+E2)	0.392 21	Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). α (K)=0.30 5; α (L)=0.072 23; α (M)=0.016 6; α (N+)=0.0042 14 α (N)=0.0037 13; α (O)=0.00054 15; α (P)=3.0×10 ⁻⁵ 9 F : 170.0+170.6 form a doublet structure
2842.4+x	(16+)	619.3 [@] 3	100 [@]	2223.1+x ((14+)	(E2)	0.00775	Mult.: assumed in (⁵¹ V,2pn γ) (2003He25). α (K)=0.00643 9; α (L)=0.001038 15; α (M)=0.000227 4; α (N+)=6.02×10 ⁻⁵ 9 α (N)=5.16×10 ⁻⁵ 8; α (O)=7.94×10 ⁻⁶ 12; α (P)=6 51×10 ⁻⁷ 10
2884.9+x	(14-)	925.0 3	100	1959.9+x ((12 ⁻)	E2	0.00309	$\alpha(1)=0.31\times10^{-5}$ form a doublet structure. $\alpha(K)=0.00261$ 4; $\alpha(L)=0.000378$ 6; $\alpha(M)=8.18\times10^{-5}$ 12; $\alpha(N+)=2.18\times10^{-5}$ 3 $\alpha(N)=1.87\times10^{-5}$ 3; $\alpha(O)=2.92\times10^{-6}$ 4; $\alpha(D)=2.68\times10^{-7}$ 4;
2898.4+x	(15 ⁺)	920.0 <i>3</i>	100	1978.3+x ((13+)	E2	0.00312	$\alpha(\mathbf{r})=2.08\times10^{-4} 4$ Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). $\alpha(\mathbf{K})=0.00264 4; \alpha(\mathbf{L})=0.000383 6;$ $\alpha(\mathbf{M})=8.29\times10^{-5} 12; \alpha(\mathbf{N}+)=2.21\times10^{-5} 4$ $\alpha(\mathbf{N})=1.89\times10^{-5} 3; \alpha(\mathbf{O})=2.96\times10^{-6} 5;$ $\alpha(\mathbf{D})=2.71\times10^{-7} 4$
2959.8+x	(16+)	510.9 2	100	2448.9+x ((14+)	(E2)	0.01264	Mult.: assumed in (⁵¹ V,2pn γ) (2003He25). α (K)=0.01035 <i>15</i> ; α (L)=0.00180 <i>3</i> ; α (M)=0.000395 <i>6</i> ; α (N+)=0.0001043 <i>15</i> α (N)=8.96×10 ⁻⁵ <i>13</i> ; α (O)=1.364×10 ⁻⁵ <i>20</i> ; α (P)=1.033×10 ⁻⁶ <i>15</i>
2970.6+x	(15 ⁻)	372.9 2	100	2597.7+x ((14-)	M1+E2	0.040 10	Mult.: deduced in (⁵¹ V,2pny) (2003He25). $\alpha(K)=0.033 \ 9; \ \alpha(L)=0.0054 \ 5;$ $\alpha(M)=0.00117 \ 10; \ \alpha(N+)=0.00031 \ 3$ $\alpha(N)=0.000267 \ 23; \ \alpha(O)=4.1\times10^{-5} \ 5;$ $\alpha(P)=3.5\times10^{-6} \ 12$
3096.0+x	(16+)	616.0 5	100	2479.9+x ((14+)	(E2)	0.00785	Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). α (K)=0.00651 10; α (L)=0.001053 15; α (M)=0.000230 4; α (N+)=6.11×10 ⁻⁵ 9 α (N)=5.24×10 ⁻⁵ 8; α (O)=8.06×10 ⁻⁶ 12; α (P)=6.59×10 ⁻⁷ 10
3287.5+x 3424.5+x	(15 ⁻) (16 ⁻)	843 454.0 <i>2</i>	100	2444.5+x (2970.6+x ((13 ⁻) (15 ⁻)	(E2) M1+E2	0.024 7	Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). E_{γ} ,Mult.: ¹⁰⁷ Ag(³⁶ Ar,n2p γ) (2002Cu05). α (K)=0.020 6; α (L)=0.0030 5; α (M)=0.00066 <i>10</i> ; α (N+)=0.00018 <i>3</i> and of table)

$\gamma(^{140}\text{Eu})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
					_			α (N)=0.000151 23; α (O)=2.3×10 ⁻⁵ 4; α (P)=2.1×10 ⁻⁶ 7 Mult : deduced in (⁵¹ V 2pp2) (2003He25)
3424.5+x	(16 ⁻)	825.3 15	70	2597.7+x	(14 ⁻)	(E2)	0.00396	$\alpha(K)=0.003335; \alpha(L)=0.004968; \alpha(M)=0.000107516; \alpha(N+)=2.87\times10^{-5}5$
								α (N)=2.45×10 ⁻⁵ 4; α (O)=3.82×10 ⁻⁶ 6; α (P)=3.41×10 ⁻⁷ 5 Mult.: deduced in (⁵¹ V,2pn γ) (2003He25).
3583.5+x	(17 ⁻)	612.9 5	100	2970.6+x	(15 ⁻)	(E2)	0.00795	$\alpha(\mathbf{K})=0.00659\ 10;\ \alpha(\mathbf{L})=0.001068\ 16;\ \alpha(\mathbf{M})=0.000234\ 4;\ \alpha(\mathbf{N}+)=6.19\times10^{-5}\ 9$
								$\alpha(P)=5.51\times10^{-5}$, $\alpha(O)=8.17\times10^{-12}$, $\alpha(P)=6.67\times10^{-7}$ 10 Mult.: deduced in (⁵¹ V,2pn γ) (2003He25).
3607.5+x	(18 ⁺)	511.5 3	<36	3096.0+x	(16 ⁺)	(E2)	0.01260	$\alpha(K)=0.01032 \ 15; \ \alpha(L)=0.00179 \ 3; \\ \alpha(M)=0.000394 \ 6; \ \alpha(N+)=0.0001039 \ 15 \\ \alpha(N)=8.93\times10^{-5} \ 13; \ \alpha(O)=1.359\times10^{-5} \ 20; \\ \alpha(D)=1.020\times10^{-6} \ 15 $
		647.7 2	100	2959.8+x	(16 ⁺)	E2	0.00695	α (r)=1.050×10 ⁻¹⁵ Mult.: deduced in (⁵¹ V,2pny) (2003He25). α (K)=0.00578 8; α (L)=0.000919 13;
								$\alpha(M)=0.0002013; \alpha(N+)=5.33\times10^{-5} 8$ $\alpha(N)=4.56\times10^{-5} 7; \alpha(O)=7.04\times10^{-6} 10;$ $\alpha(P)=5.86\times10^{-7} 9$
								E_{γ} : 646.8+647.7 form a doublet structure. Mult.: deduced in ¹⁰⁷ Ag(³⁶ Ar,n2p γ) (2002Cu05); confirmed in (⁵¹ V,2pn γ)
		0_						(2003He25).
3790.9+x? 3860.0+x	(17 ⁺)	366.3 ^{&} 2 961.6 4	100 100	3424.5+x 2898.4+x	(16^{-}) (15^{+})			E_{γ} : measured in (²¹ V,2pnγ) (2003He25). Mult.: deduced in ¹⁰⁷ Ag(³⁶ Ar,n2pγ) (2002Cu05).
3884.5+x	(17 ⁻)	460.0 <i>3</i>	100	3424.5+x	(16 ⁻)	(M1+E2)	0.023 6	$\alpha(\mathbf{K})=0.019\ 6;\ \alpha(\mathbf{L})=0.0029\ 5;\ \alpha(\mathbf{M})=0.00064$ $I0;\ \alpha(\mathbf{N}+)=0.00017\ 3$ $\alpha(\mathbf{N})=0.000145\ 22;\ \alpha(\mathbf{Q})=2\ 3\times10^{-5}\ 4;$
								$\alpha(P)=2.0\times10^{-6} 7$ Mult.: deduced in (⁵¹ V,2pny) (2003He25).
2000.2		913.7 5	50	2970.6+x	(15 ⁻)			E_{γ} : measured in (⁵¹ V,2pn γ) (2003He25).
$3980.3 + x^2$		396.8 2 370.6 <mark>&</mark> 2	100	3583.5+X	(17)			E_{γ} : measured in (³¹ V,2pn γ) (2003He25). E_{γ} : (⁵¹ V,2pn γ) (2003He25)
4361.7+x	(20^{+})	754.2 3	100	3607.5 + x	(17) (18 ⁺)	E2	0.00486	$\alpha(K)=0.00407 \ 6; \ \alpha(L)=0.000619 \ 9;$
								$\alpha(M)=0.0001346 \ 19; \ \alpha(N+)=3.58\times10^{-5} \ 5$ $\alpha(N)=3.07\times10^{-5} \ 5; \ \alpha(O)=4.76\times10^{-6} \ 7;$
								$\alpha(P) = 4.16 \times 10^{-7} 6$
								Mult.: deduced in ¹⁰⁷ Ag(³⁶ Ar,n2pγ) (2002Cu05); confirmed in (⁵¹ V,2pnγ) (2003He25).
4750.0+x 5269.1+x	(19 ⁺) (22 ⁺)	890 907.4 <i>4</i>	100	3860.0+x 4361.7+x	(17 ⁺) (20 ⁺)	(E2) (E2)	0.00322	E _γ : measured in ¹⁰⁷ Ag(³⁶ Ar,n2pγ) (2002Cu05). α (K)=0.00272 4; α (L)=0.000395 6; (C) = 0.00272 4; α (L)=0.000395 6;
								$\alpha(N) = 3.50 \times 10^{-7} 12; \ \alpha(N+) = 2.28 \times 10^{-7} 4$ $\alpha(N) = 1.95 \times 10^{-5} 3; \ \alpha(O) = 3.05 \times 10^{-6} 5; \ \alpha(P) = 2.79 \times 10^{-7} 4$
5365.2+x	(22 ⁺)	1003.5 3	100	4361.7+x	(20 ⁺)	(E2)	0.00260	E _{γ} : measured in (⁵¹ V,2pn γ) (2003He25). α (K)=0.00220 3; α (L)=0.000314 5; α (M)=6.78×10 ⁻⁵ 10; α (N+ $_{\circ}$)=1.81×10 ⁻⁵ 3
								$\alpha(N)=1.546\times10^{-5}\ 22;\ \alpha(O)=2.43\times10^{-6}\ 4;$

$\gamma(^{140}\text{Eu})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
6260.8+x	(24 ⁺)	991.7 <i>4</i>	100	5269.1+x	(22 ⁺)	(E2)	0.00266	$\alpha(P)=2.26\times10^{-7} 4$ Mult.: deduced in (⁵¹ V,2pny) (2003He25). $\alpha(K)=0.00225 4; \alpha(L)=0.000322 5;$ $\alpha(M)=6.96\times10^{-5} 10; \alpha(N+)=1.86\times10^{-5} 3$ $\alpha(N)=1.589\times10^{-5} 23; \alpha(O)=2.49\times10^{-6} 4;$ $\alpha(P)=2.32\times10^{-7} 4$ Ex: measured in ¹⁰⁷ Ag(³⁶ Ar n ² ny)
7334.7+x?	(26 ⁺)	1074 ^{&}		6260.8+x	(24 ⁺)	(E2)		(2002Cu05) and (⁵¹ V,2pn γ) (2003He25). E _{γ} : measured in ¹⁰⁷ Ag(³⁶ Ar,n2p γ)
153.70+y	J+1	153.7 2	100	0+y	J	(M1+E2)	0.537 12	(2002Cu05). $\alpha(K)=0.40\ 7;\ \alpha(L)=0.11\ 4;\ \alpha(M)=0.024\ 10;$ $\alpha(N+)=0.0062\ 24$ $\alpha(N)=0.0054\ 22;\ \alpha(O)=0.0008\ 3;$ $\alpha(D)=2\ 0x10^{-5}\ 12$
363.6+y	J+2	209.9 2	100	153.70+y	J+1	(M1+E2)	0.207 24	$\begin{aligned} \alpha(\mathbf{r}) = 5.9 \times 10^{-7} I_{2}^{2} \\ \text{Mult.: deduced in } ({}^{51}\text{V},2\text{pny}) \ (2003\text{He25}). \\ \alpha(\mathbf{K}) = 0.16 \ 4; \ \alpha(\mathbf{L}) = 0.034 \ 7; \ \alpha(\mathbf{M}) = 0.0076 \ 17; \\ \alpha(\mathbf{N}+) = 0.0020 \ 4 \\ \alpha(\mathbf{N}) = 0.0017 \ 4; \ \alpha(\mathbf{O}) = 0.00025 \ 4; \end{aligned}$
639.2+y	J+3	275.6 2	100	363.6+y	J+2	(M1+E2)	0.093 18	α (P)=1.6×10 ⁻³ 5 Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). α (K)=0.076 18; α (L)=0.0136 6; α (M)=0.00301 19; α (N+)=0.00079 4 α (N)=0.00068 4; α (O)=0.0001036 17; (D) 7.0×10=6.25
1035.9+y	J+4	396.7 2	100	639.2+y	J+3	(M1+E2)	0.034 9	$\begin{aligned} &\alpha(P) = 7.8 \times 10^{-6} 25 \\ &\text{Mult.: deduced in } ({}^{51}\text{V},2\text{pn}\gamma) \ (2003\text{He25}). \\ &\alpha(\text{K}) = 0.028 \ 8; \ \alpha(\text{L}) = 0.0045 \ 6; \ \alpha(\text{M}) = 0.00098 \\ &10; \ \alpha(\text{N}+) = 0.00026 \ 3 \\ &\alpha(\text{N}) = 0.000222 \ 24; \ \alpha(\text{O}) = 3.4 \times 10^{-5} \ 5; \end{aligned}$
1507.1+y	J+5	471.2 3	100	1035.9+y	J+4	(M1+E2)	0.021 6	$\alpha(P)=2.9\times10^{-6} \ 10$ Mult.: deduced in (⁵¹ V,2pn γ) (2003He25). $\alpha(K)=0.018 \ 6; \ \alpha(L)=0.0027 \ 5; \ \alpha(M)=0.00060 \ 9; \ \alpha(N+)=0.00016 \ 3 \ \alpha(N)=0.000136 \ 22; \ \alpha(O)=2.1\times10^{-5} \ 4; \ \alpha(P)=1.9\times10^{-6} \ 7 \ Mult.: deduced in (51V,2pn\gamma) (2003He25).$

[†] From ¹⁴⁰Eu IT (1991Fi03) for transitions below the 125 ms isomer; from (⁵⁴Fe,n5p γ) (2006Ta08) for transitions in between the 125 ms and 300 ns isomers; mostly from (⁵¹V,2pn γ) (2003He25), and ¹⁰⁷Ag(³⁶Ar,n2p γ) (2002Cu05) for transitions above the 300 ns isomer.

[‡] Mult from (⁵¹V,2pn γ) (2003He25) deduced from measured ang dist, R(DCO), and pol (asym); mult from ¹⁰⁷Ag(³⁶Ar,n2p γ) (2002Cu05) deduced by comparison of I(γ +ce)'s calculated with α (E1), α (M1), and α (E2). When discrepant, 2003He25 method was considered more reliable. Most assignments are presented in Comments (based on this footnote). Also given in Comments are mult assignments based on experimental conversion coefficients.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with undivided intensity.

[&] Placement of transition in the level scheme is uncertain.

¹⁴⁰₆₃Eu₇₇

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁴⁰₆₃Eu₇₇

¹⁴⁰₆₃Eu₇₇

 $^{140}_{63}\rm{Eu}_{77}$

Band(E): (10) band

¹⁴⁰₆₃Eu₇₇