⁹²Mo(⁵⁴Fe,n5pγ), (⁵²Cr,n3pγ) 1991Fi03,2006Ta08

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 154,1 (2018)	20-Nov-2018

1991Fi03: 97% enriched ⁹²Mo(HI,xpyn), HI= 312 MeV ⁵⁴Fe and 244 MeV ⁵²Cr at LBL SuperHILAC with OASIS mass separator and tape transport. Detector array: Si Δ E-E, HPGe, 2 n-type Ge, 1-mm plastic scintillator Measured γ , $\gamma\gamma$, K x ray; I(K x ray)=50 5 relative to 174.6 γ .

2006Ta08: 98.7% enriched 1 mg/cm² 92 Mo(54 Fe,n5p) reaction at 315 MeV at Oak Ridge HRIBF. The recoil products were

separated in mass/charge ratio by recoil-mass separator (RMS). Measured E γ , I γ , $\gamma\gamma$, conversion electrons using two segmented Ge Clover detectors for γ rays and Si(Li) conversion electron spectrometer (BESCA).

Level scheme from 2006Ta08.

¹⁴⁰Eu Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments				
0.0	1^{+}	1.51 s 2	$\% \varepsilon + \% \beta^+ = 100$				
			$T_{1/2}, \ddot{\aleph}\varepsilon + \vartheta\beta^+$: From Adopted Levels.				
			Configuration= $\pi d_{5/2} \otimes \nu d_{3/2}$.				
174.6 9	2^{+}						
185.3 9	3+						
0+x	5-	125 ms 2	$\%$ IT=100; $\%\varepsilon + \%\beta^{+} < 1$ (1991Fi03)				
			Additional information 1.				
			E(level): $x=210 \ 25 \ (\approx 50 \ \text{keV}$ above the 185.3 level).				
			J^{π} : Deduced by 1991Fi03 from transition strength (RUL) arguments; confirmed by 2006Ta08 from ¹⁴² Tb isotone.				
			T _{1/2} : from 1991Fi03.				
			Configuration= $\pi h_{1/2} \otimes v_{51/2}, \pi h_{1/2} \otimes v_{3/2}.$				
170.47+x 21	6-						
284.83+x 21	6-						
361.39+x 22	7-						
389.27+x 23	(7^{-})						
422.43+x 19	7-						
459.5+x <i>3</i>	8+	302 ns 4	%IT=100				
			Configuration= $\pi h_{11/2} \otimes \nu h_{11/2}$.				
			$T_{1/2}$: from $\gamma(t)$ (2006Ta08).				

[†] From 2006Ta08 (based on mult).

$\gamma^{(140}{ m Eu})$									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{a}	$I_{(\gamma+ce)}^{\#}$	Comments
(10.7 [@])		185.3	3+	174.6	2+				γ deduced by 1991Fi03 based on estimated B(E3) \downarrow of transition feeding the 174.6 level that substantially exceeds 1 W.u., contrary to expectations based on systematics of E3; this indicates that most of the observed intensity of 174.6 γ is due to a 10.7-keV, M1 transition (not observed).
33.0 10	63	422.43+x	7-	389.27+x	(7-)	(M1)	7.3 7	24 12	
37.1 3	100 9	459.5+x	8^{+}	422.43+x	7-	E1	0.737 20	84 8	$\alpha(\exp)=0.65\ 28$
<49 ^{@&b}		0+x	5^{-}						
<59 ^{@&b}		0+x	5-						
98.1 <i>3</i>	26 <i>3</i>	459.5+x	8+	361.39+x	7-	E1	0.299	16 2	α (K)exp=0.3 <i>1</i> α (K)=0.251 <i>4</i>

Continued on next page (footnotes at end of table)

			92	⁹² Mo(⁵⁴ Fe,n5pγ), (⁵² Cr,n3pγ)			1991Fi03	3,2006Ta08	(continued)	
γ ⁽¹⁴⁰ Eu) (continued)										
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α ^{<i>a</i>}	$I_{(\gamma+ce)}^{\#}$	Comments	
104.5 3	9 2	389.27+x	(7^{-})	284.83+x	6-	(M1+E2)	1.85 23	13 3	$1.6 < \alpha(\exp) < 2.1.$	
137.5 3	15 <i>3</i>	422.43+x	7-	284.83+x	6-	(M1+E2)	0.762 20	13 <i>3</i>	$0.75 < \alpha(\exp) < 0.78.$	
170.4 <i>3</i>	53 7	170.47+x	6-	0+x	5-	M1+E2	0.390 21	37 6	α (K)exp=0.4 <i>1</i> α (K)=0.30 <i>5</i>	
174.6 [@]		174.6	2+	0.0	1^{+}	M1	0.383		I_{γ} : 100 4 (1991Fi03).	
185.3 [@]		185.3	3+	0.0	1+	E2	0.278		α (K)exp=0.19 4 (1991Fi03) α (K)=0.193 3 I ₂ ; 92 4 (1991Fi03).	
190.8 <i>3</i>	16 4	361.39+x	7-	170.47+x	6-	M1+E2	0.276 24	10 2	$\alpha(\exp) = 0.21$ 7	
252.0 3	50 7	422.43+x	7-	170.47+x	6-	M1+E2	0.121 20	28 4	$\alpha(\exp)=0.115$	
284.8 3	38 6	284.83+x	6-	0+x	5-	M1+E2	0.085 17	21 3	α (K)exp=0.08 3 α (K)=0.069 17	
361.5 3	14 4	361.39+x	7-	0+x	5-	E2	0.0332	72		
389.2 <i>3</i>	73	389.27+x	(7^{-})	0+x	5^{-}	(E2)	0.0267	4 2		
422.5 3	59 10	422.43+x	7-	0+x	5-	E2	0.0212	30 5		

[†] From 2006Ta08 except where noted; $E\gamma$'s also measured or deduced by 1991Fi03 are noted separately.

[‡] Relative intensities.

%I(γ +ce) from 2006Ta08.

[@] From 1991Fi03 and confirmed by 2006Ta08.

& Upper limit for $E\gamma$ established by 1991Fi03 from nonobservation of K x-ray intensity associated with isomeric decay.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

¹⁴⁰₆₃Eu₇₇