¹⁴¹Ho p decay (4.1 ms) 1998Da03,2001Se03,2008Ka16

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018

Parent: ¹⁴¹Ho: E=0.0; $J^{\pi}=7/2^{-}$; $T_{1/2}=4.1$ ms *I*; Q(p)=1177 8; %p decay=100.0

¹⁴¹Ho-T_{1/2}: From E(p)(t) data (2008Ka16), same as the weighted average of 4.2 ms *4* (1998Da03), 3.9 ms 5 (1999Ry04) and 4.1 ms *1* (2005Bi24).

¹⁴¹Ho-Q(p): From E(p)=1169 8 (1998Da03).

¹⁴¹Ho-Configuration= $\pi 7/2$ [523] Nilsson orbital is expected.

¹⁴¹Ho-%p decay: %p decay is most likely 100%.

Dataset based on unevaluated XUNDL files compiled from 2008Ka16 by F.G. Kondev (ANL) and edited by B. Singh (McMaster); for older references, see also 2002So02 (p-decay evaluation).

1998Da03: First observation of ¹⁴¹Ho p radioactivity, deformation deduced, ⁹²Mo(⁵⁴Fe,p4n) E=285-305 MeV (ANL).

1999Ry04: ⁹²Mo(⁵⁴Fe,p4n), E=315 MeV, $\sigma \approx 13$ nb, recoil mass separator with PSAC/DDSD detectors at focal plane (ORNL).

2001Se03: ⁹²Mo(⁵⁴Fe,p4n) in both direct and inverse kinematics, E(cm)=184-186 MeV. High statistics work (ANL).

2002RyZX,2003BaZZ,2005Bi24: ⁹²Mo(⁵⁴Fe,p4n) E=300 MeV (ORNL).

2008Ka16: ⁹²Mo(⁵⁴Fe,p4n), E=300 MeV. Reaction products were separated according to their mass-to-charge ratio, A/Q=141/25 and 141/26 by the Recoil Mass Spectrometer (RMS). RMS-selected recoils were implanted into a 65-micron thick Double- sided Silicon Strip Detector (DSSD, FWHM=18-25 keV for E(p)=1.17 MeV) after passing through a thin-foil, position-sensitive Micro Channel Plate (MCP) detector and being slowed down to about 60-70 MeV by a degrader foil. The flight time through the separator was 2.2 μ s. The production cross sections were evaluated to be 1.4 μ b at 300 MeV for ¹⁴¹Ho at the RMS transmission of 5%. For the ¹⁴¹Ho measurement, the DSSD was backed with a 0.5-mm thick Si detector (FWHM=75 keV for E(α)=5.5 MeV). The signals from all detectors were read by the Digital Gamma Finder (DGF) modules and analyzed on-board. The ¹⁴¹Ho proton transition of 1169 keV 8 was used to establish the offset-free energy calibration of proton induced signals analyzed in the digital detection system. The energy spectra of emitted protons were obtained using time and pixel correlations with implanted ions, requiring an energy difference below 4% for the coincidence signals recorded in the front and back DSSD strips, and an anticoincidence condition with the Si detector behind the DSSD.

¹⁴⁰Dy Levels

E(level) [†]	$J^{\pi \dagger}$
0.0	0^{+}
202.20 20	(2^{+})

[†] Adopted values.

Protons (140Dy)

E(p)	E(¹⁴⁰ Dy)	I(p)	Comments	
968 10	202.20	0.9 2	E(p),I(p): A 0.97 MeV fine structure proton decay from ¹⁴¹ Ho g.s. to 2 ⁺ level of g.s. band of	
1169 8	0.0	99.1 2	E(p): from 1998Da03. I(p): from 2008Ka16.	