		Т	ype	Author	History Citation	Literature Cutoff Date						
		Full E	valuation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018						
$Q(\beta^{-})=6219 \ 100$ Additional information	; S(n)=4421 rmation 1.	<i>9</i> ; S(p)=8695	5 8; $Q(\alpha)=$	70 16 20	01 7W a10							
					¹⁴⁰ Cs Levels							
Cross Reference (XREF) Flags												
$\begin{array}{c} \mathbf{A} \qquad {}^{140} \mathrm{Xe} \ \beta^{-} \ \mathrm{decay} \\ \mathbf{B} \qquad {}^{252} \mathrm{Cf} \ \mathrm{SF} \ \mathrm{decay} \end{array}$												
E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	XREF	Comments								
0.0	1-@	63.7 s <i>3</i>	AB	 %β⁻=100 μ=+0.1338953 5 (1986Du16,2011StZZ) Q=-0.112 7 (1979Bo01,2011StZZ) J^π: J from hfs (1979Ek02,1979Bo01), π from E1-M1+M1+M1 cascade starting at 1428, 1⁺ level (see footnote). μ: measured by atomic beam laser spectroscopy. μ: Others: +0.134 <i>I</i> (1981Th06), +0.134 <i>2</i> (1979Ek02), +0.134 <i>3</i> (1979Bo01). Q: measured by collinear fast beam laser spectroscopy – accelerated beam; Sternheimer shielding correction done by authors. Q: Other: -0.10 <i>2</i> (1981Th06). T_{1/2}: from 1969Ca03. Others: 65.5 s 7 (1974Gr29), 67.90 s 83 (1972Eh02), 65.7 s 16 (1968A106). 								
0.0+x	(3 ⁻)		В	Additional	ge radius $\langle r^2 \rangle^{1/2} = 4.83$ information 2.	no deexciting transitions observed						
13.931 21	$(2)^{-}$	471 ns <i>51</i>	AB	$T_{1/2}$: other $T_{1/2}$: other $T_{1/2}$: other	r: 521 ns 11 (1974ClZ rom M1 γ to 1 ⁻ : \neq 0.1	X) $(^{252}$ Cf SF).						
64.756 <i>23</i>	(3) ^{-@}	3.7 ns <i>3</i>	AB	$T_{1/2}$: other J^{π} : ≤ 3 from $\neq 1$ from	r: 8.0 ns 6 (1974CIZX) om M1 γ from 622, (2)) (252 Cf SF). ⁻ ; $\neq 0,2$ from $\gamma\gamma(\theta)$ in β - decay (1975AlZV);						
80.118 <i>23</i> 80.1+x <i>3</i>	$1^{-},0^{-}$ (4 ⁻)	<2.7 ns	AB B	$J^{\pi}: 2^{-}, 1^{-}, 0$	D^{-} from M1 γ to 1 ⁻ ; =	$\neq 2^{-}$ from log <i>ft</i> =6.1 via 0 ⁺ parent.						
103.100 21	(2)-	<7.3 ns	AB	$T_{1/2}$: other	r: 11.0 ns 12 (1974Cl2	(252 Cf SF).						
112.511 <i>23</i> 118.447 <i>20</i>	$(2)^{-}$ $(2,1)^{-}$	<2.3 ns <2.4 ns	AB AB	J^{π} : γ to 1 J^{π} : γ to 1 ⁻ J^{π} : γ to 1 ⁻ $T_{1/2}$: other	¹⁵ M1+E2, γ to (3) ⁻ is E2+M1, no β^- . ⁻ is M1, γ to (2) ⁻ is M r ⁻ 2.6 ns 5 (1970Wa05	18 (M1). 11+E2.) (²⁵² Cf SF)						
149.01 9	(3,4)	<2.7 ns	AB	J^{π} : ≥ 3 from $T_{1/2}$: other	om lack of γ 's to 1 ⁻ at r: <8 ns (1974ClZX)	ad from 1^+ ; ≤ 4 from γ to $(2)^-$.						
159.5+x 5 195.0+x ^a 5 212.06 4 223.56 14 232.08 7	(5^{-}) (6^{-}) $2^{-},1^{-},0^{-}$ $(3)^{-}$	<2.6 ns	B B A A	J^{π} : γ to 1^{-1} J^{π} : 2^{-3}	$^{-}$ is M1+(E2).	$(3)^{-1} \neq 2$ from lack of α to $1^{-1} \neq 4$ from α from						
249.8+x ^{&} 5 294.91 7 345.06 7 438.63 6	(7^{-}) $(1,0)^{-}$ $(2,1)^{-}$		B A A A	$J^{\pi}: \gamma \text{ to } (2$) ⁻ is M1,E2; no γ to (2) ⁻ .						
514.82 8	(0,1)		A	J^{π} : log $ft=$	$6.9 \ via \ 0^+ \text{ parent.}$							

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

140Cs Levels (continued)

E(level) [†]	J ^{π‡}	XREF	Comments
547.87 6	(1,2)	A	$\overline{J^{\pi}}$: $\leq 3^{-}$ from γ to 1^{-} and $\leq 3^{+}$ from γ from 1428, 1^{+} ; $\neq 0$ from γ to $(3)^{-}$.
622.03 5	$(2)^{-@}$	A	$J^{\pi}: 0^{-}, 1^{-}, 2^{-}$ from E1 γ from 1428. $1^{+}: \neq 0.1$ from M1 γ to (3) ⁻ :
653.36 7	$0^{(-)}.1^{(-)}$	A	J^{π} : 0.1 from log ft=6.0 via 0 ⁺ parent: (-) from (E2.M1) γ to 1 ⁻ .
$746.2 + x^a 6$	(8 ⁻)	В	· · · · · · · · · · · · · · · · · · ·
774.13 7	$(0^{-}, 1^{-}, 2^{-})$	Α	J^{π} : (E1) γ from 1428, 1 ⁺ .
800.38 11	(1,2)	Α	J^{π} : $\leq 3^{-}$ from γ to 1^{-} and $\leq 3^{+}$ from γ from 1428, 1^{+} ; $\neq 0$ from γ to $(3)^{-}$.
844.1+x ^{&} 6	(9 ⁻)	В	
903.01 13		Α	
965.78 9	$1^{(-)}$	Α	J^{π} : log ft=6.8 via 0 ⁺ parent, γ to (3) ⁻ .
982.50 14		Α	
1081.77 19		Α	
1137.07 6	0,1	Α	J^{π} : from log <i>ft</i> =5.9 via 0 ⁺ parent.
1159.71 23		Α	
1169.5 3		A	
1193.6 4	0.1	A	
1289.20 8	(10^{-})	A	J^{*} : log $ft=5.9$ via 0° parent.
1298.8+X 0	(10)	A B	$I\pi$ log $ft-4.5$ via 0^+ porent
1427.30 4	1	л р	$J : \log j I - 4.5 $ Viu O parent.
$1485.0+x^{\circ}$ 0	(11)	В	
$1802.4 \pm x^{\circ} 0$ 1080 56 24	(12)	В	
1989.3024	(10)	A	
218/.2+x° /	(12)	В	
2204.8+X /		В	
2248.9+x ^{••} 7	(13 ⁻)	В	
2286.05 22		A	
2312.5+X /	1+	В	$\pi_{1}\log 4-56$ via 0 ⁺ porent
2324.31 19 $2406.0 \pm x^{a}$ 7	(14^{-})	A D	$J : \log f = 5.0 \ \text{via} \ 0$ parent.
2490.0+x /	(14)	D	
2/21.4+X ^o /	(14)	В	
$3020.4 + x^{\infty} 7$	(15^{-})	В	
5148.6+x ^a /	(16 ⁻)	В	
3328.5+x ⁰ 7	(16)	В	
3372.5+x 7		В	
3794.5+x ^{&} 8	(17 ⁻)	В	

[†] From least-squares fit to $E\gamma$'s with $\Delta E\gamma$ =0.3 keV assumed for the γ 's reported with no uncertainty.

^{\ddagger 140}Xe β^- decay: based on γ -ray multipolarities. ²⁵²Cf SF decay: based on the assumption that all transitions are stretched, $(640.9\gamma)(594.3\gamma)(\theta)$ and $(454.7\gamma)(594.3\gamma)(\theta)$ measured angular correlations, and $\alpha(54.8\gamma)$. 2010Li10 assigned (7⁻) and (6⁻) for the 249.7 and 194.9 bandheads respectively based on similarity with 138 I isotone, with higher Δ J=2 In-band transitions assumed (E2)'s, and $\Delta J=1$ interband transitions. The similarity also extended to the lower-lying states down to (3⁻) assumed to the lowest (h2) s, and 25 T intercent and the first transformed to the set of the set

^{*a*} Band (a): Band based on (6⁻), α =0. Possible configuration= $\pi (1g_{7/2})_{7/2}^{5} \otimes v(2f_{7/2})_{3/2}^{3}$

^b Band(B): Band based on (12).

$\gamma(^{140}Cs)$

See $^{140} {\rm Xe} \ \beta^-$ decay and $^{252} {\rm Cf} \ {\rm SF}$ decay for unplaced $\gamma' {\rm s}.$

ω

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger \#}$	α^{\ddagger}	$I_{(\gamma+ce)}$	Comments
13.931	(2)-	13.93 5	100	0.0	1-	M1		42.6 8		B(M1)(W.u.)=0.00040 5 α (L)=34.0 6; α (M)=6.96 13 α (N)=1.47 3; α (O)=0.203 4; α (P)=0.00986 18
64.756	(3) ⁻	50.82 <i>3</i>	100	13.931	(2) ⁻	M1		6.36		$\alpha(N)=1.47$ 3, $\alpha(C)=0.203$ 7, $\alpha(T)=0.00580$ 73 $\alpha(K)=5.44$ 8; $\alpha(L)=0.733$ 11; $\alpha(M)=0.1501$ 22 $\alpha(N)=0.0317$ 5; $\alpha(O)=0.00440$ 7; $\alpha(P)=0.000215$ 3 B(M1)(W n)=0.0062 5
80.118	1-,0-	80.12 3	100	0.0	1-	M1		1.699		$\alpha(\text{K})=1.455\ 21;\ \alpha(\text{L})=0.194\ 3;\ \alpha(\text{M})=0.0398\ 6;\alpha(\text{N}+)=0.00964\ 14\alpha(\text{N})=0.00842\ 12;\ \alpha(\text{O})=0.001170\ 17;\ \alpha(\text{P})=5.73\times10^{-5}\ 8B(\text{M}1)(\text{W.u.})>0.0058$
80.1+x	(4 ⁻)	80.1	100	0.0+x	(3 ⁻)					
103.100	(2)-	38.34 <i>3</i>	19	64.756	(3)-	M1(+E2)	<0.5	19.7 54		α (K)=11.9 4; α (L)=6.1 45; α (M)=1.32 98 α (N)=0.27 20; α (O)=0.032 22; α (P)=0.000475 18 B(M1)(W.u.)>0.00091
		89.17 <i>3</i>	40 2	13.931	$(2)^{-}$					
		103.09 <i>3</i>	100 17	0.0	1-	M1,E2		1.25 43		B(M1)(W.u.)>0.00026; B(E2)(W.u.)>5.4 α (K)=0.90 20; α (L)=0.27 18; α (M)=0.059 40 α (N)=0.0120 80; α (O)=0.00146 89; α (P)=2.93×10 ⁻⁵ 15
112.511	$(2)^{-}$	(9.4)	<3.8	103.100	$(2)^{-}$				135 65	
		47.75 3	1.3 2	64.756	(3)-	[M1,E2]		18 11		$\alpha(K)=7.2$ 7; $\alpha(L)=8.4$ 76; $\alpha(M)=1.8$ 17 $\alpha(N)=0.37$ 34: $\alpha(O)=0.042$ 37: $\alpha(P)=0.000239$ 19
		112.53 3	100 14	0.0	1-	M1+E2	<0.9	0.77 14		$\begin{array}{l} B(M1)(W.u.) > 0.00100 \\ \alpha(K) = 0.62 \ 7; \ \alpha(L) = 0.126 \ 53; \ \alpha(M) = 0.027 \ 12 \\ \alpha(N) = 0.0052 \ 24; \ \alpha(D) = 7 \ 0 \times 10^{-4} \ 27; \ \alpha(P) = 2 \ 22 \times 10^{-5} \ 6 \end{array}$
118.447	(2,1)-	38.33 <i>3</i>	0.45 45	80.118	1-,0-	[M1,E2]		41 27		$\alpha(K) = 0.5522$, $\alpha(C) = 7.576$, $\alpha(K) = 2.22776$ $\alpha(K) = 10.518$; $\alpha(L) = 24.23$; $\alpha(M) = 5.2.49$ $\alpha(K) = 1.05.98$; $\alpha(C) = 0.12$, L^{2} ; $\alpha(K) = 0.00041.8$
		104.52 3	29 4	13.931	(2) ⁻	M1+E2	0.7 2	1.06 11		$\begin{array}{l} a(n)=1.05 \ 5.0, \ a(0)=0.12 \ 11, \ a(1)=0.0041 \ 6 \\ B(M1)(W.u.)>0.00051; \ B(E2)(W.u.)>10 \\ \alpha(K)=0.80 \ 5; \ \alpha(L)=0.20 \ 5; \ \alpha(M)=0.043 \ 10 \\ \alpha(K)=0.0088 \ 20; \ \alpha(D)=0.00100 \ 22; \ \alpha(R)=2.77\times10^{-5} \ 6 \end{array}$
		118.44 <i>3</i>	100 11	0.0	1-	M1		0.557		$a(N)=0.003525, a(C)=0.0010922, a(T)=2.77\times10^{-5}$ B(M1)(W.u.)>0.0023 a(K)=0.4787; a(L)=0.06359; a(M)=0.0130019 $a(N)=0.002754; a(O)=0.0003826; a(P)=1.88\times10^{-5}3$
149.01	(3,4)	45.89 10	73 27	103.100	(2) ⁻	[M1,E2]		21 13		$\alpha(\mathbf{K}) = 0.5275 + \alpha(\mathbf{C}) = 0.000382 + \alpha(\mathbf{L}) = 1.88710 + 5$ $\alpha(\mathbf{K}) = 7.85; \alpha(\mathbf{L}) = 10.2 \cdot 92; \alpha(\mathbf{M}) = 2.2 \cdot 21$ $\alpha(\mathbf{K}) = 0.45 \cdot 41; \alpha(\mathbf{C}) = 0.051 \cdot 45; \alpha(\mathbf{C}) = 0.00026 \cdot 3$
		84.5 2	100 18	64.756	(3)-	[M1]		1.458		B(M1)(W.u.)>0.00072 α (K)=1.248 20; α (L)=0.167 3; α (M)=0.0341 6 α (N)=0.00722 12; α (O)=0.001003 16; α (P)=4.91×10 ⁻⁵ 8
159.5+x	(5^{-})	79.4	100	80.1+x	(4^{-})					
195.0+x	(6 ⁻)	35.5	100	159.5+x	(5^{-})					
	<- /				·- /					

	Adopted Levels, Gammas (continued)												
						$\gamma(^{14}$	⁰ Cs) (co	ontinued)					
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [†]	$\delta^{\dagger \#}$	α^{\ddagger}	Comments				
212.06	2-,1-,0-	93.64 5	4.3 5	118.447	(2,1)-	[M1]		1.086	B(M1)(W.u.)>0.00028				
		99.56 10	1.5 4	112.511	(2)-	[M1]		0.912	$ \begin{array}{l} \alpha(\mathbf{K}) = 0.930 \ I4; \ \alpha(\mathbf{L}) = 0.1241 \ I8; \ \alpha(\mathbf{M}) = 0.0254 \ 4 \\ \alpha(\mathbf{N}) = 0.00537 \ 8; \ \alpha(\mathbf{O}) = 0.000746 \ I1; \ \alpha(\mathbf{P}) = 3.66 \times 10^{-5} \ 6 \\ \alpha(\mathbf{K}) = 0.781 \ I2; \ \alpha(\mathbf{L}) = 0.1041 \ I5; \ \alpha(\mathbf{M}) = 0.0213 \ 3 \\ \alpha(\mathbf{N}) = 0.00450 \ 7; \ \alpha(\mathbf{O}) = 0.000626 \ 9; \ \alpha(\mathbf{P}) = 3.07 \times 10^{-5} \ 5 \end{array} $				
		108.95 5	2.2 10	103.100	(2) ⁻	[M1]		0.706	B(M1)(W.u.)>8.2×10 ⁻⁵ α (K)=0.605 9; α (L)=0.0805 12; α (M)=0.01648 24 α (N)=0.00348 5; α (O)=0.000484 7; α (P)=2.38×10 ⁻⁵ 4				
		147.3 3	1.2 4	64.756	(3)-	[M1]		0.303	B(M1)(W.u.)>9.2×10 ⁻⁵ B(M1)(W.u.)>2.0×10 ⁻⁵ α (K)=0.260 4; α (L)=0.0343 6; α (M)=0.00703 11				
		198.1 2	24 2	13.931	(2) ⁻	[M1]		0.1342	$\alpha(N)=0.001486\ 23;\ \alpha(O)=0.000207\ 4;\ \alpha(P)=1.020\times10^{-5}\ 16$ B(M1)(W.u.)>0.00017 $\alpha(K)=0.1152\ 17;\ \alpha(L)=0.01513\ 22;\ \alpha(M)=0.00310\ 5$ $\alpha(N)=0.000655\ 10;\ \alpha(O)=9.12\times10^{-5}\ 13;\ \alpha(P)=4.51\times10^{-6}\ 7$				
		212.00 10	100 11	0.0	1-	M1+(E2)	<0.6	0.115 4	B(M1)(W.u.)>0.00042 α (K)=0.0975 21; α (L)=0.0139 14; α (M)=0.0029 3 α (N)=0.00060 6; α (O)=8.2×10 ⁻⁵ 7; α (P)=3.72×10 ⁻⁶ 7				
223.56	(2)-	158.7 2	100	64.756	(3)-	[M1]		0.246	$\alpha(K) = 0.211 \ 3; \ \alpha(L) = 0.0279 \ 4; \ \alpha(M) = 0.00571 \ 9$ $\alpha(N) = 0.001207 \ 18; \ \alpha(O) = 0.0001681 \ 25; \ \alpha(P) = 8.29 \times 10^{-6} \ 12$				
232.08	(3)	119.69 <i>10</i> 128.7 <i>3</i>	3.1 <i>6</i>	112.511 103.100	(2) $(2)^{-}$	[M1]		0.441	B(M1)(W.u.)>0.00011 α (K)=0.378 6; α (L)=0.0502 8; α (M)=0.01027 16				
		167.26 <i>15</i>	100 <i>10</i>	64.756	(3) ⁻	M1+E2	≈1.7	≈0.283	$\alpha(N)=0.00217 \ 4; \ \alpha(O)=0.000302 \ 5; \ \alpha(P)=1.487\times10^{-5} \ 23$ B(M1)(W.u.)>0.00042; B(E2)(W.u.)>26 $\alpha(K)\approx0.221; \ \alpha(L)\approx0.0496; \ \alpha(M)\approx0.01049$ $\alpha(N)\approx0.00216; \ \alpha(O)\approx0.000270; \ \alpha(P)\approx7.18\times10^{-6}$				
249.8+x	(7 ⁻)	218.3 <i>3</i> 54.8	8.9 <i>19</i>	13.931 195.0+x	(2) ⁻ (6 ⁻)	(M1)		5.11	$\alpha(\exp) \approx 17$ $\alpha(K)=4.37$ 7; $\alpha(L)=0.587$ 9; $\alpha(M)=0.1203$ 17 $\alpha(N)=0.0254$ 4; $\alpha(O)=0.00353$ 5; $\alpha(P)=0.0001722$ 25				
294.91	(1,0)-	90.3 176.4 2	8.4 10	159.5+x 118.447	(5 ⁻) (2,1) ⁻	[M1]		0.184	α (K)=0.1580 23; α (L)=0.0208 3; α (M)=0.00426 7 α (N)=0.000900 13; α (O)=0.0001254 18; α (P)=6.20×10 ⁻⁶ 9				
		182.4 2 214.8 2 281.00 <i>15</i>	17.4 <i>17</i> 22.5 <i>36</i> 100 <i>10</i>	112.511 80.118 13.931	(2) ⁻ 1 ⁻ ,0 ⁻ (2) ⁻	(M1)		0.0528	α (K)=0.0454 7; α (L)=0.00590 9; α (M)=0.001205 17 α (N)=0.000255 4; α (O)=3.56×10 ⁻⁵ 5; α (P)=1.769×10 ⁻⁶ 25				
345.06		294.8 <i>4</i> 121.51 <i>20</i> 133.0 <i>3</i> 196.2 <i>2</i>	3.5 <i>14</i> 12.0 <i>59</i> 18.2 <i>29</i> 64.7 <i>41</i>	0.0 223.56 212.06 149.01	1 ⁻ 2 ⁻ ,1 ⁻ ,0 ⁻ (3,4)	(M1)		0.1378	α (K)=0.1183 <i>17</i> ; α (L)=0.01554 <i>23</i> ; α (M)=0.00318 <i>5</i> α (N)=0.000672 <i>10</i> ; α (O)=9.37×10 ⁻⁵ <i>14</i> ; α (P)=4.63×10 ⁻⁶ <i>7</i>				

4

	Adopted Levels, Gammas (continued)													
						γ (¹⁴⁰ Cs) (conti	nued)						
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger \#}$	α^{\ddagger}	Comments					
345.06		226.5 [@] 4 232.4 2 242.0 2 331.0 2	8.8 [@] 35 20.6 47 42.4 59 100 12	118.447 112.511 103.100 13.931	$(2,1)^{-} (2)^{-} (2)^{-} (2)^{-}$									
438.63	(2,1) ⁻	226.5 ^(a) 4 320.1 4 326.1 3 335.6 2 373.87 10 438.69 10	1.2 [@] 5 2.8 8 2.6 8 8.5 15 20.8 23 100 10	212.06 118.447 112.511 103.100 64.756 0.0	$2^{-},1^{-},0^{-}$ (2,1) ⁻ (2) ⁻ (2) ⁻ (3) ⁻ 1 ⁻	M1		0.01679	$\alpha(K)=0.01447\ 21;\ \alpha(L)=0.00185\ 3;\ \alpha(M)=0.000378\ 6$ $\alpha(N)=8\ 00\times10^{-5}\ 12;\ \alpha(O)=1\ 118\times10^{-5}\ 16;\ \alpha(P)=5\ 60\times10^{-7}\ 8$					
514.82	(0,1)	220.0 <i>4</i> 283.0 <i>5</i> 396.35 <i>10</i> 514.9 2	5.8 <i>19</i> 7.7 <i>39</i> 73 8 100 <i>10</i>	294.91 232.08 118.447 0.0	$(1,0)^{-}$ $(3)^{-}$ $(2,1)^{-}$ 1^{-}				u(1)=0.00×10 12, u(0)=1.110×10 10, u(1)=0.00×10 0					
547.87	(1,2)	202.8 2 252.9 3 429.44 10 435.5 3 483.3 2 547 84 10	8.4 11 4.4 11 57.9 53 18.4 35 14.7 26	345.06 294.91 118.447 112.511 64.756	$(1,0)^{-}$ $(2,1)^{-}$ $(2)^{-}$ $(3)^{-}$ 1^{-}									
622.03	(2)-	276.99 10	7.0 8	345.06	1	(M1)		0.0548	α (K)=0.0471 7; α (L)=0.00613 9; α (M)=0.001252 18 α (N)=0.000265 4; α (O)=3.69×10 ⁻⁵ 6; α (P)=1.84×10 ⁻⁶ 3					
		389.97 10	18.3 18	232.08	(3)-	(E2)		0.0193	$\alpha(K)=0.01607\ 23;\ \alpha(L)=0.00256\ 4;\ \alpha(M)=0.000531\ 8$ $\alpha(N)=0.0001106\ 16;\ \alpha(O)=1.464\times10^{-5}\ 21;\ \alpha(P)=5.64\times10^{-7}\ 8$					
		410.2 2 503.4 3 509.6 2 518 9 2	2.4 3 2.2 5 10.5 15 12 8 13	212.06 118.447 112.511 103.100	$2^{-},1^{-},0^{-}$ (2,1) ⁻ (2) ⁻ (2) ⁻									
		557.26 10	62.5 50	64.756	$(3)^{-}$	M1		0.00927	α (K)=0.00800 <i>12</i> ; α (L)=0.001016 <i>15</i> ; α (M)=0.000207 <i>3</i> α (N)=4.38×10 ⁻⁵ <i>7</i> ; α (O)=6.13×10 ⁻⁶ <i>9</i> ; α (P)=3.09×10 ⁻⁷ <i>5</i>					
		608.05 <i>10</i> 621.98 <i>10</i>	28 <i>3</i> 100 <i>8</i>	13.931 0.0	$(2)^{-}$ 1 ⁻	M1+E2	≈1.2	≈0.00601	$\alpha(K) \approx 0.00515; \ \alpha(L) \approx 0.000687; \ \alpha(M) \approx 0.0001407$ $\alpha(N) \approx 2.96 \times 10^{-5}; \ \alpha(O) \approx 4.09 \times 10^{-6}; \ \alpha(P) \approx 1.93 \times 10^{-7}$					
653.36	0(-),1(-)	358.4 2 441.2 3 572.7 5 639.18 15	2.3 4 11 3 3 1 27.5 25	294.91 212.06 80.118 13.931	$(1,0)^{-}$ $2^{-},1^{-},0^{-}$ $1^{-},0^{-}$ $(2)^{-}$									
		653.40 [@] 10	100 [@]	0.0	1-	(E2,M1)		0.0055 9	α (K)=0.0047 8; α (L)=0.00062 7; α (M)=0.000126 14 α (N)=2.7×10 ⁻⁵ 3; α (O)=3.7×10 ⁻⁶ 5; α (P)=1.8×10 ⁻⁷ 4					
746.2+x	(8 ⁻)	496.4 551.2	1.7 <i>5</i> 100 <i>10</i>	249.8+x 195.0+x	(7 ⁻) (6 ⁻)									

S

 $^{140}_{55}\mathrm{Cs}_{85}\text{--}5$

L

	Adopted Levels, Gammas (continued)													
	$\gamma(^{140}Cs)$ (continued)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [†]	α^{\ddagger}	Comments						
774.13	(0^-,1^-,2^-)	561.6 [@] 3 655.7 3	8.1 [@] 14 19 5	212.06 118.447	2 ⁻ ,1 ⁻ ,0 ⁻ (2,1) ⁻									
800.38	(1,2)	774.12 ^{&} 10 455.1 5 505.0 4 568.1 5 588.2 5 696.9 3 736.2 5	100 ^{&} 17 11.1 74 24.1 74 18.5 74 7.4 37 33 7 39 7	$\begin{array}{c} 0.0\\ 345.06\\ 294.91\\ 232.08\\ 212.06\\ 103.100\\ 64.756\end{array}$	1^{-} (1,0) ⁻ (3) ⁻ 2 ⁻ ,1 ⁻ ,0 ⁻ (2) ⁻ (3) ⁻									
		786.9 ^{^(a) 2}	76 [@] 9	13.931	$(2)^{-}$									
844.1+x	(9 ⁻)	594.3	100 57	249.8+x	(7^{-})	(E2)	0.00591	$\alpha(K)=0.00502\ 7;\ \alpha(L)=0.000711\ 10;\ \alpha(M)=0.0001463\ 21$ $\alpha(N)=3.07\times10^{-5}\ 5;\ \alpha(Q)=4.16\times10^{-6}\ 6;\ \alpha(P)=1.83\times10^{-7}\ 3$						
903.01		690.5 <i>10</i> 889.1 <i>2</i> 902 9 3	20 <i>10</i> 97 <i>13</i> 100 <i>1</i> 5	212.06 13.931 0.0	$2^{-},1^{-},0^{-}$ (2) ⁻ 1^-									
965.78	1(-)	344.1 5 671.6 10 734.1 3 847.1 3 862.4 5 900.7 5 951.9 2 966 5 7	6.4 23 34 11 32.3 57 22.7 68 18.4 57 22.7 68 100 9 10 7 57	622.03 294.91 232.08 118.447 103.100 64.756 13.931 0.0	$\begin{array}{c} (2)^{-} \\ (1,0)^{-} \\ (3)^{-} \\ (2,1)^{-} \\ (2)^{-} \\ (3)^{-} \\ (2)^{-} \\ 1^{-} \end{array}$									
982.50		864.2 <i>5</i> 982.7 <i>4</i>	48 <i>13</i> 100 <i>17</i>	118.447 0.0	$(2,1)^{-}$ 1^{-}									
1081.77		736.2 5 786.9 [@] 2	51 10 100 [@] 12 34 15	345.06 294.91	$(1,0)^{-}$									
1137.07	0,1	842.2 2 925.04 15 1018.5 2 1024.7 2 1122.8 5	27.1 28 67.3 56 13.5 23 12.0 23 7.5 38	118.447 294.91 212.06 118.447 112.511 13.931	(2,1) $(1,0)^{-}$ $2^{-},1^{-},0^{-}$ $(2,1)^{-}$ $(2)^{-}$ $(2)^{-}$ $(2)^{-}$									
1159.71		721.4 <i>4</i> 935.9 <i>3</i>	29 <i>11</i> 30 <i>7</i>	438.63 223.56	$(2,1)^{-}$									
1169.5		1079.8 5 1089.8 10	100 36 100 67 100 50	80.118 80.118	$1^{-},0^{-}$ $1^{-},0^{-}$									
1193.6		570.9 7 1180.2 5	70 <i>31</i> 88 <i>3</i> 8	622.03 13.931	$(2)^{-}$ $(2)^{-}$									

6

L

	Adopted Levels, Gammas (continued)													
						$\gamma(^{140}\mathrm{Cs})$ (continued)							
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [†]	α^{\ddagger}	Comments						
1193.6 1289.20	0,1	1192.8 <i>10</i> 850.4 <i>2</i> 1077.6 <i>10</i> 1171.2 <i>10</i> 1176.7 <i>2</i> 1200.08 <i>10</i>	100 38 30.9 44 11.8 59 7.4 44 81 10	0.0 438.63 212.06 118.447 112.511	$ \begin{array}{c} 1^{-} \\ (2,1)^{-} \\ 2^{-},1^{-},0^{-} \\ (2,1)^{-} \\ (2)^{-} \\ 1^{-},0^{-} \end{array} $									
1298.8+x	(10 ⁻)	1209.08 10 1289.2 3 454.7	100 12 15 4 97 9	0.0 844.1+x	1 ⁻ ,0 1 ⁻ (9 ⁻)	(E2,M1)	0.0138 <i>16</i>	α (K)=0.0118 <i>15</i> ; α (L)=0.00163 7; α (M)=0.000335 <i>12</i> α (N)=7.0×10 ⁻⁵ <i>3</i> ; α (O)=9.6×10 ⁻⁶ <i>6</i> ; α (P)=4.4×10 ⁻⁷ <i>8</i> Δ J=1 for 454.7 γ , Δ J=2 for 594.3 γ from (454.7 γ)(594.3 γ)(θ): A ₂ =-0.09 <i>3</i> , A ₄ =-0.01 <i>4</i> . δ : +0.07 + <i>1</i> 4- <i>1</i> 3 or +4.4 +60- <i>1</i> 8 (2010Li10).						
1427.58	1+	552.6 138.2 3 290.57 10 445.12 15 461.85 10 524.5 2 627 3 2	100 9 0.16 4 2.20 20 3.5 4 7.4 6 2.3 2 4 9 5	746.2+x 1289.20 1137.07 982.50 965.78 903.01 800.38	(8^{-}) 0,1 0,1 $1^{(-)}$ (1,2)									
		653.40 [@] 10	24 [@] 2	774.13	(1,2) $(0^-,1^-,2^-)$	(E1)	1.70×10^{-3}	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.001476 \ 21; \ \alpha(\mathrm{L}) = 0.000182 \ 3; \ \alpha(\mathrm{M}) = 3.70 \times 10^{-5} \ 6 \\ \alpha(\mathrm{N}) = 7.81 \times 10^{-6} \ 11; \ \alpha(\mathrm{O}) = 1.085 \times 10^{-6} \ 16; \ \alpha(\mathrm{P}) = 5.34 \times 10^{-8} \\ 8 \end{array} $						
		774.12 ^{&} 10 805.52 10	2.7 ^{&} 27 100	653.36 622.03	$0^{(-)}, 1^{(-)}$ (2) ⁻	E1	1.10×10^{-3}	$\alpha(K)=0.000955 \ 14; \ \alpha(L)=0.0001171 \ 17; \ \alpha(M)=2.38\times10^{-5} \ 4$						
		879.75 10 912.8 2 989.02 10 1132.7 4 1215.4 3 1309.08 10 1315.05 10 1347.5 2 1413.66 10 1427.56 10	13.7 9 4.4 4 15.2 12 3.3 8 1.4 3 32 3 41 4 0.7 2 61 6 5.7 6	547.87 514.82 438.63 294.91 212.06 118.447 112.511 80.118 13.931 0.0	$(1,2) (0,1) (2,1)^- (1,0)^- 2^-,1^-,0^- (2,1)^- (2)^- 1^-,0^- (2)^- 1^- 1^- $			$a(10)=3.02\times10^{-7}, a(0)=0.99\times10^{-10}, a(1)=3.47\times10^{-5}$						
1485.0+x	(11 ⁻)	640.9	100 11	844.1+x	(9 ⁻)	(E2)	0.00487	α (K)=0.00414 6; α (L)=0.000578 8; α (M)=0.0001186 17 α (N)=2.49×10 ⁻⁵ 4; α (O)=3.39×10 ⁻⁶ 5; α (P)=1.513×10 ⁻⁷ 22 Δ J=2 (probable E2) for 594.3 γ and 640.9 γ from (640.9 γ)(594.3 γ)(θ); A_2 =+0.096 17, A_4 =-0.005 25.						
1862.4+x	(12 ⁻)	377.4 563.6	39 <i>6</i> 100 <i>10</i>	1485.0+x 1298.8+x	(11 ⁻) (10 ⁻)									
1989.56		561.6 [@] 3	100 [@] 17	1427.58	1+									

7

 $^{140}_{55}\mathrm{Cs}_{85}$ -7

$\gamma(^{140}Cs)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
1989.56		820.9 5	15.2 69	1169.5		2324.31	1+	2211.9 5	28 11	112.511 (2	2)-
		1086.7 5	90 <i>34</i>	903.01		2496.0+x	(14 ⁻)	247.1	23 7	2248.9+x (1	13-)
		1189.5 10	83 20	800.38	(1,2)			633.6	100 21	1862.4+x (1	12-)
2187.2+x	(12)	702.2	100	1485.0+x	(11 ⁻)	2721.4+x	(14)	472.5	100 31	2248.9+x (1	13-)
2204.8+x		719.8	100	1485.0+x	(11 ⁻)			534.2	79 24	2187.2+x (1	12)
2248.9+x	(13 ⁻)	386.5 ^a		1862.4+x	(12 ⁻)	3020.4+x	(15^{-})	299.0	63 21	2721.4+x (1	14)
		763.9	100 24	1485.0+x	(11 ⁻)			771.5	100 33	2248.9+x (1	13-)
2286.05		2074.0 <i>3</i>	100 27	212.06	$2^{-}, 1^{-}, 0^{-}$	3148.6+x	(16 ⁻)	652.6	100	2496.0+x (1	14-)
		2286.0 <i>3</i>	73 27	0.0	1-	3328.5+x	(16)	308.1	61 22	3020.4+x (1	15-)
2312.5+x		827.5	100	1485.0+x	(11 ⁻)			607.1	100 33	2721.4+x (1	14)
2324.31	1^{+}	1154.5 <i>3</i>	83 11	1169.5		3372.5+x		876.5	100	2496.0+x (1	14-)
		1885.9 <i>3</i>	94 22	438.63	$(2,1)^{-}$	3794.5+x	(17^{-})	774.1	100	3020.4+x (1	15-)
		2112.3 3	100 28	212.06	$2^{-},1^{-},0^{-}$						

[†] Unambiguously either from ¹⁴⁰Xe β^- decay or from ²⁵²Cf SF decay (there is No overlap In between the level schemes).

[‡] Additional information 3.

[#] If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

[@] Multiply placed with undivided intensity.

[&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain.

¹⁴⁰₅₅Cs₈₅

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{140}_{55}\mathrm{Cs}_{85}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

¹⁴⁰₅₅Cs₈₅

Level Scheme (continued)

¹⁴⁰₅₅Cs₈₅

¹⁴⁰₅₅Cs₈₅

¹⁴⁰₅₅Cs₈₅