¹⁴⁰Ce(γ,γ') 1995He25,2006Vo11,2008Bu21

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018

Dataset based on unevaluated XUNDL files compiled from 2006Vo11 by M. Mitchell and B. Singh (McMaster) and from 2008Bu21 by S. Geraedts and B. Singh (McMaster).

1974Te01: n-capture on Co for γ source, E_{γ} =0-6.5 MeV.

1995He25: E=4.1 MeV electron bremsstrahlung for γ source.

1997He01: same as 1995He25 for E=6.7 MeV electron bremsstrahlung; used cluster detector (Euroball).

2006Vo11 (also 2011Sa70, 2009SaZW, 2005Zi04): E=7.6, 9.9 MeV, bremsstrahlung beam provided by S-DALINAC linear

accelerator at TU Darmstadt; γ rays detected with two Compton-suppressed HPGe detectors placed at 90° and 130° relative to the beam axis.

2008Bu21: bremsstrahlung (S-DALINAC at TU Darmstadt), HPGe detectors and a clover HPGe detector.

1995He25 and 1997He01 are from essentially the same group of authors, as are 2006Vo11 and 2008Bu21; all four were done using same lab environment. Most data come from 2006Vo11.

2015Ro09 (2015RoZY): bremsstrahlung beam with energy up to 8.0 MeV ((S-DALINAC) γ -ray spectra using self-absorption technique for 104 dipole states (no data given, only 6484 γ as example).

2015ToZZ: polarized γ beam E=1-100 MeV, measured E_{γ} and I_{γ} B(E1) \uparrow =600 119 (in between 4.0 MeV to S(n)).

2016De05: polarized γ beam E=3.6 MeV at (HI γ S) facility at TUNL, enriched target (99.72%); measured γ and $\gamma\gamma$ spectra, transition strengths.

Measured:

1964Be25,1960Dz03,1959Of17: *σ*(E).

1973MeYX,1974Te01,2008Bu21: linear pol.

1972Wo21,1974Te01,2006Vo11: $\gamma(\theta)$.

1995He25,1997He01,2006Vo11: deduced $\Gamma_{\gamma 0}^2/\Gamma$ from measured I γ' from which extracted $\Gamma_{\gamma 0}$, then $T_{1/2}$, $\gamma, \gamma'(\theta)$, B(E λ).

2015Ro09,2004Zi01,2003Ha33,2002MoZW,2002Zi05,2002ZiZZ,1994KnZZ: Electric dipole strength distribution below S(n) (Pygmy Dipole Resonance).

¹⁴⁰Ce Levels

 $B(E1)(\uparrow)$ values are from 2006Vo11 unless noted otherwise.

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	$\Gamma_0^2/\Gamma (eV)^{\#}$	Comments
0.0 1596	0^+ 2^+ @	0.0050 ^{&} eV 4	0.0050 ^a 4	$T_{1/2}$: $T_{1/2}$ =0.091 ps 7, no branching; others: 0.076 ps 11 (1959Of17); 0.15 ps 3 (1964Be25); $T_{1/2}$ =3.3 ps 13 (1960Dz03). $B(E2)=606\times10^{-4}$ 48 (1995He25)
1903 2464	0+ 3 ⁻			$B(E2)=000\times10^{-46}$ (1995)1(25).
2899	2+ [@]	0.0040 ^{&} eV 9	0.0024 ^{<i>a</i>} 5	T _{1/2} : T _{1/2} =0.067 ps <i>16</i> , Γ(γ0)/Γ(γ)=0.59 <i>3</i> , from low statistics 2899γ. B(E2)=4.9×10 ⁻⁴ <i>11</i> (1995He25).
3118	2+ [@]	0.0129 ^{&} eV <i>10</i>	0.0129 ^{<i>a</i>} 10	$T_{1/2}$: $T_{1/2}$ =0.036 ps 3. B(E2)=54.3×10 ⁻⁴ 42 (1995He25).
3320	2+ [@]	0.0030 ^{&} eV 7	0.0030 ^{<i>a</i>} 7	T _{1/2} : T _{1/2} =0.154 ps 38, no branching; from low statistics 3320 γ . B(E2)=3.0×10 ⁻⁴ 7 (1995He25).
3643.8 6	1-	1.45 fs <i>19</i>		T _{1/2} : mean value of 1.62 fs <i>12</i> (1995He25), 1.48 fs <i>18</i> (1997He01), and 1.24 fs 20 (2006Vo11) with uncertainty covering all values. Γ_0^2/Γ (eV): 0.281 20 (1995he25), 0.367 56 (2006Vo11). B(E1)(↑) values: 16.7×10 ⁻⁵ 12 (1995He25), 18.2×10 ⁻⁵ 22 (1997He01), 21.7×10 ⁻⁵ 33 (2006Vo11).
4053	(1)			configuration: $2^{\circ} \times 3^{\circ}$ two-phonon state (1995He25).

¹⁴⁰Ce Levels (continued)

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	$\Gamma_0^2/\Gamma (eV)^{\text{\#}}$	Comments
4173.6 8	1	3.6 fs 7	0.128 25	$B(E1)(\uparrow)=5.1\times10^{-5}$ 10.
4331	(1)			<i>.</i>
4354.9 7	1	3.7 fs 8	0.12 3	$B(E1)(\uparrow)=4.3\times10^{-5}$ 9.
4371	(1)			
4388	(1) (1)			
4514 9 9	1	2.7 fs 5	0 17 3	$B(E1)(\uparrow)=5.3\times10^{-5}$ 10
4655	(1)	2.7 15 5	0.17 5	
4787.8 9	1	2.3 fs 4	0.20 4	$B(E1)(\uparrow)=5.2\times10^{-5}$ 10.
4875	(1)			
4883	(1)			
4951	(1)	2665	0.10.2	$D(T_1)(A) = 2 T_1 + 10^{-5} T_1$
5157.3 12	1	2.6 fs 5	0.18 3	$B(E1)(\uparrow)=3.7\times10^{-5}$ 7.
5190.2 10	1	2.1 fs 4	0.22 5	$B(E1)(1)=4.0\times10^{-5}$ 9.
5211.6 <i>14</i> 5245	(1)	3.6 IS 9	0.13 4	$B(E1)()=2.7\times10^{\circ}7.$
5330	(1)			
5337.3 9	1	1.8 fs 4	0.25 5	$B(E1)(\uparrow)=4.8\times10^{-5}$ 10.
5470	(1)			
5494	(1)			
5548.4 7	1	0.97 fs 17	0.47 8	$B(E1)(\uparrow)=7.9\times10^{-5}$ 14.
5573.8 14	1	1.7 fs 4	0.27 6	$B(E1)(\uparrow)=4.5\times10^{-5}$ 10.
5624	(1)	0.05.6.4	1 (5 25	
5659.9 6	1-	0.27 fs 4	1.65 25	$B(E1)(\uparrow)=26\times10^{-5} 4 \text{ of } 2006\text{ Vol 1, consistent with } B(E1)(\uparrow)=24.8\times10^{-5} 49 \text{ of}$
				$P(F1)(1) = 10.1 \times 10^{-5} I0$ (with $\Gamma(y) = 0.95.5$ from 1972×021). Other.
5721	(1)			$B(E1)(1) = 13.1 \times 10^{-10}$ (with $1(y0)(1(y) = 0.35)^{-10}$ from $13/41001$).
5759	(1)			
5809	(1)			
5823	(1)			
5928.6 10	1	1.16 fs 24	0.39 8	$B(E1)(\uparrow)=5.4\times10^{-5}$ 11.
5940 6020	(1)			
6119 1 75	1-	0.69 fs 12	0.66.11	$B(F1)(\uparrow) = 8.2 \times 10^{-5}$ 14
6130.6.12	1	1.5 fs 3	0.30 6	$B(E1)(\uparrow)=3.2\times10^{-5} \ 8$
6161.7 14	1	1.08 fs 20	0.42 10	$B(E1)(\uparrow) = 5.2 \times 10^{-5} I_2$
6226	(1)	1.00 15 20	0112 10	
6245	(1)			
6255	(1)			
6273.6 10	1	1.05 fs 20	0.43 8	$B(E1)(\uparrow) = 5.0 \times 10^{-5} \ 9.$
6295.3 8	1-	0.46 fs 8	0.99 18	$B(E1)(\uparrow) = 11.4 \times 10^{-5} \ 20.$
6327.8 12	1	1.3 fs 5	0.35 13	$B(E1)(\uparrow)=4.0\times10^{-5}$ 15.
6343.3 11	1	0.78 Is 13	0.58 11	$B(E1)(1)=0.0\times10^{-5}$ 13. $D(E1)(2)=7.4\times10^{-5}$ 14.
6307.2.8	1 1-	0.09 Is 13	0.00 12	$B(E1)(1)=7.4\times10^{-5}$ 14. $B(E1)(1)=17\times10^{-5}$ 2
6439 9 <i>14</i>	1 1(-)	0.28 Is 3	0.85.15	$B(E1)(1)=1/(10^{-5}).$ $B(E1)(1)=0.1\times10^{-5}$ 16
6449 9 15	1(-)	0.90 fs 18	0.50 10	$B(E1)(\uparrow)=5.1\times10^{-5}$ 11 $B(E1)(\uparrow)=5.4\times10^{-5}$ 11
6458.5 15	1(-)	1.00 fs 20	0.45 9	$B(E1)(\uparrow) = 4.8 \times 10^{-5} 10.$
6484.8 10	1	1.00 fs 20	0.45 9	$B(E1)(\uparrow)=4.7\times10^{-5}$ 10.
6497.0 7	1-	0.33 fs 6	1.37 23	$B(E1)(\uparrow)=14.3\times10^{-5}$ 24.
6535.8 6	1-	0.22 fs 3	2.1 3	$B(E1)(\uparrow)=21\times10^{-5}$ 3.
6549.1 11	1	1.3 fs 3	0.36 8	$B(E1)(\uparrow)=3.7\times10^{-5}$ 8.
6574.9 15	1	1.16 fs 23	0.39 8	$B(E1)(\uparrow)=4.0\times10^{-5}$ 8.
6605.5 10	1(-)	0.69 fs 12	0.66 11	$B(E1)(\uparrow)=6.5\times10^{-5}$ 11.

Continued on next page (footnotes at end of table)

¹⁴⁰Ce Levels (continued)

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	$\Gamma_0^2/\Gamma (eV)^{\#}$	Comments
6616.2 10	1(-)	0.74 fs 13	0.61 11	$B(E1)(\uparrow)=6.0\times10^{-5}$ 11.
6771.7 14	(2^+)			$B(E2)(\uparrow)=110\times10^{-4} 30.$
6781.9 <i>15</i>	1	0.85 fs 19	0.53 12	$B(E1)(\uparrow)=4.9\times10^{-5}$ 11.
6841.8 <i>12</i>	1	0.79 fs 22	0.58 16	$B(E1)(\uparrow)=5.2\times10^{-5}$ 14.
6862.4 7	1-	0.24 fs 4	1.9 <i>3</i>	$B(E1)(\uparrow)=17\times10^{-5}$ 3.
6905.9 15	1	0.45 fs 10	1.01 22	$B(E1)(\uparrow) = 8.8 \times 10^{-5}$ 19.
6932.6 14	1	0.52 fs 11	0.88 19	$B(E1)(\uparrow)=7.5\times10^{-5}$ 16.
6960.4 12	1	0.47 fs 10	0.96 20	$B(E1)(\uparrow)=8.2\times10^{-5}$ 17.
7206.0 14	1	0.31 fs 5	1.43 24	$B(E1)(\uparrow)=11.0\times10^{-5}$ 19.
7214.8 15	1	0.34 fs 6	1.33 23	$B(E1)(\uparrow)=10.2\times10^{-5}$ 17.
7341.5 14	1	0.9 fs 2	0.51 20	$B(E1)(\uparrow)=3.7\times10^{-5}$ 14.
7673.4 12	1	0.76 fs 18	0.60 14	$B(E1)(\uparrow)=3.8\times10^{-5}$ 9.

[†] Unless noted otherwise, spins are from 2006Vo11 and parities from 2008Bu21 based on γ -ray multipolarity and parity measurements (all γ 's decay to the 0⁺ g.s.).

[‡] Unless noted otherwise, deduced from Γ_0^2/Γ values in 2006Vo11, when available, assuming $\Gamma_0=\Gamma$ based on the observation of only the ground-state transitions. As no transitions other than those to the ground-state were observed, it is a reasonable approximation.

[#] Unless noted otherwise, from 2006Vo11.

[@] Spins adopted by 1995He25 from measured angular correlations (parities from literature).

[&] $\Gamma_{\gamma 0}$, from 1995He25.

^a From 1995He25.

5190.1 10 5190.2

1

 $0.0 \ 0^{+}$

D

$\gamma(^{140}\text{Ce})$

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{‡#}	Comments
1179 ^c	3643.8	1-	2464	3-		B(E2)(W.u.)<28 (2016De05)
1596 [@]	1596	2^{+}	0.0	0^{+}	E2 ^{&}	
1740	3643.8	1-	1903	0^{+}		B(E1)(W.u.)=0.00075 6 (2016De05)
2047	3643.8	1-	1596	2^{+}		B(E1)(W.u.)=0.00054 3 (2016De05)
2899 [@]	2899	2^{+}	0.0	0^+	E2 ^{&}	γ peak close to detection limit (1995He25).
3118 [@]	3118	2^{+}	0.0	0^+	(E2) <mark>&</mark>	
3320 [@]	3320	2^{+}	0.0	0^{+}	(E2) ^{&}	γ peak close to detection limit.
3643.8 6	3643.8	1-	0.0	0^{+}	È1	Mult.: POL=-5.5 24 (2008Bu21); also from linear pol (1973MeYX).
4053	4053	(1)	0.0	0^{+}	(D)	
4173.5 8	4173.6	1	0.0	0^{+}	D	
4331	4331	(1)	0.0	0^{+}	(D)	
4354.8 7	4354.9	1	0.0	0^{+}	D	
4371	4371	(1)	0.0	0^{+}	(D)	
4388	4388	(1)	0.0	0^{+}	(D)	
4437	4437	(1)	0.0	0^{+}	(D)	
4514.8 9	4514.9	1	0.0	0^{+}	D	
4655	4655	(1)	0.0	0^{+}	(D)	
4787.7 9	4787.8	1	0.0	0^{+}	D	
4875	4875	(1)	0.0	0^{+}	(D)	
4883	4883	(1)	0.0	0^{+}	(D)	
4951	4951	(1)	0.0	0^{+}	(D)	
5157.2 12	5157.3	1	0.0	0^{+}	D	

Continued on next page (footnotes at end of table)

$\gamma(^{140}\text{Ce})$ (continued)

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^{‡#}	Comments
5211.5 14	5211.6	1	$0.0 \ 0^+$	D	
5245	5245	(1)	$0.0 \ 0^+$	(D)	
5330	5330	(1)	$0.0 \ 0^+$	(D)	
5337.2 9	5337.3	1	$0.0 \ 0^+$	D	
5470	5470	(1)	$0.0 \ 0^+$	(D)	
5494	5494	(1)	$0.0 \ 0^+$	(D)	
5548.3 7	5548.4	1	$0.0 \ 0^+$	D	
5573.7 14	5573.8	1	$0.0 0^+$	D	
5624	5624	(1)	$0.0 0^+$	(D)	
5659.8 6	5659.9	1-	$0.0 0^+$	E1	E_{γ} : from 2006Vo11.
					Mult.: from linear pol and $\gamma(\theta)$ (1974Te01); POL=-2.9 16 (2008Bu21).
5721	5721	(1)	$0.0 0^+$	(D)	
5759	5759	(1)	$0.0 \ 0^+$	(D)	
5809	5809	(1)	$0.0 0^{+}$	(D)	
5823	5823	(1)	$0.0 0^{+}$	(D)	
5928.5 10	5928.6	1	$0.0 0^{-1}$	D (D)	
5940	5940	(1)	$0.0 0^{+}$	(D)	
6110.0.15	6110.1	(1)	$0.0 0^{+}$	(D) E1	POI = 7.2.44
6130 5 12	6130.6	1	$0.0 \ 0^+$	D	FOL = -7.5 44.
6161 6 14	6161 7	1	$0.0 \ 0^+$	D	
6226	6226	(1)	$0.0 \ 0^{+}$	D (D)	
6245	6245	(1) (1)	$0.0 \ 0^{+}$	(D)	
6255	6255	(1)	$0.0 0^{+}$	(D)	
6273 4 10	6273.6	1	$0.0 0^{+}$	D	
6295.1 8	6295.3	1-	$0.0 \ 0^+$	Ē1	$POL = -3.8 \ 34.$
6327.6 12	6327.8	1	$0.0 0^+$	D	
6343.1 11	6343.3	1	0.0 0+	D	
6352.5 10	6352.7	1	$0.0 \ 0^+$	D	
6397.0 8	6397.2	1-	$0.0 \ 0^+$	E1	POL=-6.8 24.
6439.7 ^a 14	6439.9	$1^{(-)}$	$0.0 \ 0^+$	(E1)	POL= $-2.6\ 27$ for $6439\gamma + 6449\gamma + 6459\gamma$.
6449.7 ^a 15	6449.9	$1^{(-)}$	$0.0 0^+$	(E1)	
6458.3 ^a 15	6458.5	$1^{(-)}$	$0.0 0^+$	(E1)	
6484.6 10	6484.8	1	$0.0 0^+$	D	
6496.8 7	6497.0	1-	0.0 0+	E1	POL=-1.3 24.
6535.6 6	6535.8	1-	$0.0 \ 0^+$	E1	POL=-3.7 22.
6548.9 11	6549.1	1	$0.0 \ 0^+$	D	
6574.7 15	6574.9	1	$0.0 \ 0^+$	D	
6605.3 ^b 10	6605.5	1(-)	$0.0 \ 0^+$	(E1)	POL= $-2.6\ 42$ for $6606\gamma + 6616\gamma$.
6616.0 ^b 10	6616.2	$1^{(-)}$	$0.0 \ 0^+$	(E1)	
6771.5 14	6771.7	(2^{+})	$0.0 \ 0^+$	(E2)	
6781.7 <i>15</i>	6781.9	1	$0.0 0^+$	D	
6841.6 <i>12</i>	6841.8	1	$0.0 0^+$	D	
6862.2 7	6862.4	1-	$0.0 0^+$	E1	POL=-5.7 32.
6905.7 15	6905.9	1	$0.0 0^+$	D	
6932.4 14	6932.6	1	$0.0 0^+$	D	
6960.2 <i>12</i>	6960.4	1	$0.0 \ 0^+$	D	
7205.8 14	/206.0	1	$0.0 \ 0^+$	D	
1214.0 13	/214.8	1	0.0 0'	D	
1341.3 14	1341.3	1	$0.0 0^{+}$	D	
10/3.2 12	/0/3.4	1	0.0 0	D	

 † From 2006Vo11 (corrected for recoil by evaluator) except when noted otherwise.

$\gamma(^{140}\text{Ce})$ (continued)

- [‡] Except where noted otherwise, multipolarities were determined by 2006Vo11 and parities by 2008Bu21. Multipolarities were determined by γ intensity ratio in the 90° detector and 130° detector (Δ J=1 dipole for ratio=0.7; Δ J=2 quadrupole for ratio=2.1). Parities were determined by linear polarization measurements using Compton polarimetry (positive asymmetries correspond to positive parity and negative asymmetries to negative parity).
- [#] Although all adopted spin values in Table 3 (2006Vo11) are J=1 as result of dipole, Δ J=1 transitions to g.s., only about two thirds of the total number of γ 's, which can not be individually identified, are shown as measured on the graph in Fig. 3 (2006Vo11). The evaluator assumed that these are those having measured Γ_0^2/Γ values in Table 3 (also about two thirds), for which assigned D-dipole, while for the remaining transitions the tentative (D) dipole character was assigned.

- & From 1995He25 by angular correlation (parities from literature).
- ^{*a*} Analyzed as a composite unresolved structure of $6439\gamma + 6449\gamma + 6459\gamma$ by 2008Bu21.
- ^b Analyzed as a composite unresolved structure of $6606\gamma + 6616\gamma$ by 2008Bu21.

^c Placement of transition in the level scheme is uncertain.

[@] From 1995He25.

¹⁴⁰Ce(γ,γ') 1995He25,2006Vo11,2008Bu21

Level Scheme

¹⁴⁰₅₈Ce₈₂

¹⁴⁰Ce(γ,γ') 1995He25,2006Vo11,2008Bu21

Level Scheme (continued)

Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁴⁰₅₈Ce₈₂

7