¹⁴⁰Ce(*α*,*α*'*γ*) **2009En03**

Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018		

Dataset based on unevaluated XUNDL file compiled by K. Abusaleem (U. of Jordan) and B. Singh (McMaster) from 2009En03.

2009En03: experiment carried at the AGOR cyclotron at KVI, Germany, E=136 MeV and beam current of=0.7 pnA. The target was 92.72% enriched, in ¹⁴⁰Ce, self-supporting, 6.8 mg/cm² thick. Ions were detected with the light EUROSUPERNOVA comprised of two drift chambers and two scintillator planes. The emitted γ -rays were detected using seven HPGe detectors. The detectors were calibrated using ⁵⁶Co source. The Big-Bite spectrometer was used for α particles. The total photopeak efficiency was 0.45% at E γ =1.33 MeV and 0.15% at E γ =6.0 MeV The elastically scattered α -particles were blocked using Al plate.

Measured ion energy, $E\gamma$, $I\gamma$, α - γ coin, $\alpha\gamma(\theta)$.

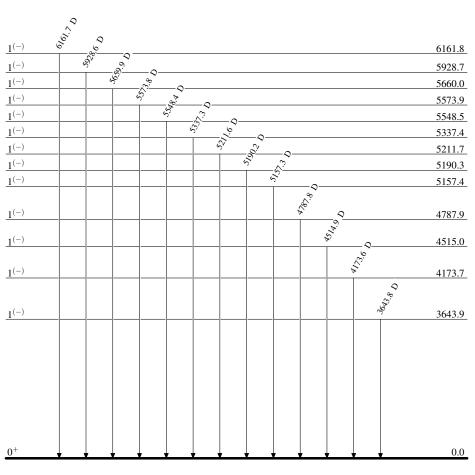
Related papers (Pygmy Dipole Resonance): 2011Sa70, 2009EnZY, 2008SaZL, 2007Sa48, 2006Sa37.

¹⁴⁰Ce Levels

E(level)	$J^{\pi \dagger}$	$d\sigma/d\Omega (mb/sr)^{\ddagger}$	E(level)	$J^{\pi \dagger}$	$d\sigma/d\Omega (mb/sr)^{\ddagger}$	E(level)	$J^{\pi \dagger}$	$d\sigma/d\Omega (mb/sr)^{\ddagger}$
0.0	0^+		5157.4 12	1(-)	0.116 25	5573.9 14	$1^{(-)}$	0.14 3
3643.9 6	$1^{(-)}$	0.176 20	5190.3 10	$1^{(-)}$	0.17 3	5660.0 6	$1^{(-)}$	0.34 4
4173.7 8	$1^{(-)}$	0.140 19	5211.7 14	$1^{(-)}$	0.067 24	5928.7 10	$1^{(-)}$	0.13 4
4515.0 9	$1^{(-)}$	0.109 19	5337.4 9	$1^{(-)}$	0.35 4	6161.8 14	$1^{(-)}$	0.35 4
4787.9 9	$1^{(-)}$	0.084 21	5548.5 7	$1^{(-)}$	0.20 3			

[†] Spin: from gamma-ray measured multipolarity (based on $\alpha\gamma(\theta)$); parity: only natural parities are excited under the kinematic conditions of the experiment.

[‡] No significant branching of the 1⁻ states into excited states could be observed and $\Gamma_0/\Gamma=1$ was assumed in the determination of the cross sections; however because many weak and unobserved branchings can exist, the extracted cross sections are rather lower limits (2009En03).


 $\gamma(^{140}\text{Ce})$

Eγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	Eγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]
3643.8 6	3643.9	1(-)	$0.0 \ 0^+$	D	5337.3 9	5337.4	1(-)	$0.0 \ 0^+$	D
4173.6 8	4173.7	$1^{(-)}$	$0.0 \ 0^+$	D	5548.4 7	5548.5	$1^{(-)}$	$0.0 \ 0^+$	D
4514.9 9	4515.0	$1^{(-)}$	$0.0 \ 0^+$	D	5573.8 14	5573.9	$1^{(-)}$	$0.0 \ 0^+$	D
4787.8 9	4787.9	$1^{(-)}$	$0.0 \ 0^+$	D	5659.9 6	5660.0	$1^{(-)}$	$0.0 \ 0^+$	D
5157.3 12	5157.4	$1^{(-)}$	$0.0 \ 0^+$	D	5928.6 10	5928.7	$1^{(-)}$	$0.0 \ 0^+$	D
5190.2 10	5190.3	$1^{(-)}$	$0.0 \ 0^+$	D	6161.7 14	6161.8	$1^{(-)}$	$0.0 \ 0^+$	D
5211.6 14	5211.7	1 ⁽⁻⁾	$0.0 \ 0^+$	D					

[†] Based on $\alpha\gamma(\theta)$ measurements all γ transitions are dipole, (E1) deduced from the tentative negative parity of parent states decaying to 0⁺ g.s.

$\frac{140}{\text{Ce}(\alpha, \alpha' \gamma)} \quad 2009 \text{En03}$

¹⁴⁰₅₈Ce₈₂