¹⁴⁰Cs β^- decay **1986Ro16**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018

Parent: ¹⁴⁰Cs: E=0.0; $J^{\pi}=1^-$; $T_{1/2}=63.7$ s 3; $Q(\beta^-)=6219$ 10; % β^- decay=100.0

¹⁴⁰Cs-E,J^{π},T_{1/2}: From ¹⁴⁰Cs Adopted Levels.

¹⁴⁰Cs-Q(β^{-}): From 2017Wa10.

 $1997 Gr09, 1996 Gr20, 1996 GrZY, 1996 GrZZ, 1994 He33, 1994 He45, 1992 Gr21, 1992 Gr18: measured \beta, \beta\gamma \text{ with total absorption } \gamma \text{-ray}$

spectrometer (TAGS) at INEL ISOL and compared with simulated spectra to produce $I(\beta^{-})$ distributions.

1986Ro16,1973Sc18,1974Sc14: measured γ, γγ.

1986Ro16,1976Al05: measured $\gamma\gamma(\theta)$.

1989Ma38: measured $\gamma\gamma$ (t).

1981De25,1973Ad04,1973Sc18,1968Al06: measured β , $\beta\gamma$.

Others: 1961Wa14, 1962Wa34, 1963Zh01, 1966Zh02, 1966Ar08, 1967Bo46, 1969Ca03, 1969NaZT, 1969ToZY, 1971Kr22,

1972AdZV, 1972Eh02, 1974Gr29, 1975Al11.

Decay scheme proposed by 1986Ro16.

¹⁴⁰Ba Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	Comments
0.0	0^{+}	12.751 d 4	$\%\beta^{-}=100$
602.31 5	2+	7.2 ps +15-6	$T_{1/2}$: other value 9.7 41 ps (1989Ma38).
1130.54 7	4+ #		-,
1510.64 6	2+ #		
1802.84 8	3-#		
1823.80 10	0+ #		
1951.5 <i>3</i>	3+ #		
1993.53 10	2+ #		
2061.2			
2138.27 12	3 ^{(+)#}		
2204.11 11	2+,3 [#]		
2237.21 7	2+ #		
2309.89 15	2+,1 [#]		
2320.32 18	(3 ⁻)		
2429.52 8	1,2+ [#]		
2521.87 10	$1,2^{(+)}$		
2663.9 4			
2692.0 4	2		
2703.98 10	1-#		
2782.05 23	$2^{(+)},3^+$		
2787.53 17	$1^{(-)}, 2^{(+)}$		
2870.63 11	2 ^{+#}		
2873.78 17	$1^{(+)}, 2^{(+)}$		
2932.58 8	2 ^{-#}		
2973.35 21			
3098.65 15	$1^{(+)}, 2^{(+)}$		
3451.44 19	$1^{(-)}, 2^{(+)}$		
3520.5 3	$1^{(+)},2$		
3526.5 4	$(1^+, 2^+)$ 1(-), 2(+)		
3001.7 3	1 ^(−) ,2 ⁽¹⁾		
3030.08 11	2"		
5045.51 0			

140 Cs β^- decay 1986Ro16 (contin
--

						(ded)		
E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	
3851.00 9	1 [#]	4275.1 3	1,2	4801.16? 21	2	5388.65? ^{&} 17	1-	
3944.06 16	1 [#]	4358.79 19	2 #	4981.9? ^{&} 6	$0^{(+)}, 1, 2^{(+)}$	5588.37? 21	2^{-}	
3973.07 12	2 [#]	4387.8 <i>3</i>	1 ⁽⁻⁾ ,2	5109.90? 18	1-,2-	5611.2? 4	1-,2-	
4032.5? 9	1,2	4395.4? ^{&}		5173.69? ^{&} 18	1-,2-	5651.11? 25	2^{-}	
4037.37 16	2	4416.0 ^{&} 3	$1,2^{(+)}$	5183.8? ^{&} 10	2-	5765.3? 4	2^{-}	
4079.93 13	$1^{(-)}, 2$	4499.93 15	$1^{(+)}, 2^{(+)}$	5310.42? 25	$1^{-},2^{-}$			

¹⁴⁰Ba Levels (continued)

[†] From a least-squares fit to E γ data (normalized $\chi^2 = 1.61$) critical $\chi^2 = 1.26$).

[‡] Adopted values.

[#] From 1986Ro16 based on mult, δ , and log ft (literature results were considered where available).

[@] From Adopted Levels.

[&] Not supported by coincidence information (1974Sc14).

β^{-} radiations

 β feeding is based on I γ data from 1986Ro16 and β (g.s.)=35.9% 17 (1997Gr09).

1997Gr09 (TAGS) used the level scheme from 1994Pe19 for simulated spectra, while previously 1994He45 (TAGS, same authors and method) had used the level scheme of 1987Pe07. 1997Gr09 comment that the 1987Pe07 level scheme provide a closer fit to the measured TAGS spectrum than does the 1994Pe19 level scheme, which differ essentially by the data from 1986Ro16, taken only by 1994Pe19. However 1994Pe19 ignored that twelve levels of 1986Ro16 are tentative, which account for most of the difference. These levels are properly marked here.

For *β* measurements see also 1981De25, 1973Ad04, 1973Sc18, 1968Al06, 1966Zh02.

When the calculated feeding overlaps zero within three standard deviations, the code GTOL (part of ENSDF Analysis Programs) calculates estimated upper limits (90% confidence level) which are given by evaluator in the table comments (see "Statistics for Nuclear and Particle Physics", Louis Lyons, Cambridge University Press, 1986).

E(decay)†	E(level)	Ιβ ^{-‡#}	Log ft	Comments
(454 [@] 10)	5765.3?	0.56 7	4.42 7	av Εβ=136.6 <i>35</i>
(568 [@] 10)	5651.11?	0.73 6	4.64 5	av Eβ=177.0 <i>37</i>
(608 [@] 10)	5611.2?	0.50 12	4.90 11	av Eβ=191.6 <i>37</i>
(631 [@] 10)	5588.37?	0.83 13	4.74 8	av Eβ=200.0 37
(830 [@] 10)	5388.65?	1.04 14	5.06 7	av $E\beta = 276.1 \ 40$ I β^- : 0.38 in 1997Gr09.
(909 [@] 10)	5310.42?	0.44 5	5.57 6	av Eβ=307.1 40
(1035 [@] 10)	5183.8?	0.86 9	5.49 5	av $E\beta$ =358.2 42 I β ⁻ : 0.24 in 1997Gr09.
(1045 [@] 10)	5173.69?	0.83 6	5.52 4	av $E\beta = 362.3 \ 41$ I β^- : 0.36 in 1997Gr09.
(1109 [@] 10)	5109.90?	0.64 7	5.73 5	av Eβ=388.6 42
(1237 [@] 10)	4981.9?	0.23 6	6.35 12	av Eβ=442.0 <i>43</i> Iβ ⁻ : 0.66 in 1997Gr09.
(1418 [@] 10)	4801.16?	0.53 6	6.21 5	av $E\beta = 519.0 \ 43$ I β^- : 0.58 from 1997Gr09.
(1719 10)	4499.93	0.52 8	6.55 7	av Eβ=650.3 45 Iβ ⁻ : 0.42 from 1997Gr09.

¹⁴⁰Cs β^- decay **1986Ro16** (continued)

β^- radiations (continued)

E(decay)†	E(level)	Iβ ^{-‡#}	Log ft	Comments
(1803 10)	4416.0	0.28 6	6.90 10	av E β =687.5 45
(1824, 10)	4305 42	0.23.4	7 00 8	$I\beta^-: 0.60 \text{ in } 1997\text{Gr09}.$
(1824-10)	4375.41	0.23 4	7.00 8	$I\beta^{-}: 0.60 \text{ from } 1997\text{Gr09}.$
(1831 10)	4387.8	0.27 6	6.94 10	av E β =700.0 45
(1860-10)	1258 70	0.65.5	6 50 1	$I\beta^-: 0.66 \text{ from } 1997\text{Gr09}.$
(1800 10)	4330.79	0.05 5	0.39 4	$I\beta^{-1}: 0.48 \text{ from } 1997\text{Gr09}.$
(1944 10)	4275.1	0.48 6	6.79 6	av E β =750.3 45
(2130, 10)	4070.03	1 47 0	6 17 3	$I\beta^-: 0.60 \text{ from } 1997\text{Gr09}.$
(2139-10)	4079.93	1.4/ 2	0.47 5	$I\beta^{-}$: 1.20 from 1997Gr09.
(2182 10)	4037.37	1.17 11	6.61 5	av E β =857.3 46
(2107 ⁰ 10)	1022 50	0.05.5	5 95 19	$I\beta^-: 0.66 \text{ from } 1997\text{Gr09}.$
(2187 10)	4032.5?	0.277	7.25 12	av $E\beta$ =859.5 46 GTOL upper limit (method 1): 0.01
				$I\beta^{-1}$: 0.36 from 1997Gr09.
(2246 10)	3973.07	2.90 18	6.26 3	av E β =886.4 46
(2275 10)	3044.06	13411	6 62 1	$I\beta^-: 3.24 \text{ from } 1997\text{Gr09}.$
(2275 10)	3944.00	1.34 11	0.02 4	$I\beta^{-}$: 1.80 in 1997Gr09.
(2368 10)	3851.00	1.77 19	6.57 5	av E β =941.9 46
(2274-10)	2015 29	0.052.16	9 10 14	$I\beta^{-1}$: 4.19 in 1997Gr09.
(23/4/10)	3843.3?	0.055 10	8.10 14	$I\beta^{-1}$: 0.54 from 1997Gr09.
(2563 10)	3656.08	4.6 3	6.30 <i>3</i>	av E β =1031.0 46
(2(17,10)	2(01 7	0.72.10	7 10 <i>C</i>	$I\beta^-: 3.18 \text{ in } 1997\text{Gr09}.$
(261/10)	3601.7	0.73 10	1.13 0	av $B\beta = 1055.9 \ 40$ $B\beta^{-1} = 0.90 \text{ in } 1997 \text{GrOg}$
(2693 10)	3526.5	0.36 8	7.49 10	av $E\beta = 1090.4 \ 46$
				$I\beta^{-}$: 0.36 in 1997Gr09.
(2699-10)	3520.5	0.85 6	7.12 4	av $E\beta$ =1093.2 46 $I\beta^{-1}$ 024 in 1997Gr09
(2768 10)	3451.44	0.79 7	7.20 4	av $E\beta = 1125.0 \ 46$
				$I\beta^{-}$: 1.92 in 1997Gr09.
(3120 [@] <i>10</i>)	3098.65	0.14 13	8.2 4	av $E\beta = 1288.0 47$
(224) (224)	2072.25	<0.06	> 9 ($I\beta = 0.12$ in 1997Gr09.
(3240 - 10)	2975.55	≤0.06	≥8.0	$aV E\beta = 1340.2 47$ GTOL upper limit (method 1): 0.06.
				$I\beta^-: 2.64$ in 1997Gr09.
(3286 10)	2932.58	5.42 24	6.676 21	av $E\beta = 1365.1 47$
(3345-10)	2873.78	0.22.13	8.1.3	$I\beta$: 4.55 in 1997(Gr09, av E β =1392.5 47
(001010)	20/01/0	0.22 10	011 0	$I\beta^{-1}: 0.49 \text{ in } 1997 \text{Gr09}.$
(3348 10)	2870.63	1.03 9	7.43 4	av $E\beta = 1393.9 47$
(3431, 10)	2787 53	0.25.6	8 09 11	$I\beta$: 1.56 in 1997(Gr09. av ER-1432 6 47
(5151 10)	2101.55	0.25 0	0.07 11	$I\beta^{-1}: 0.0 \text{ from } 1997\text{Gr09}.$
(3437 10)	2782.05	0.13 6	8.38 20	av $E\beta = 1435.2 \ 47$
(3515 10)	2703.08	3 36 15	7 007 21	$I\beta^{-1}$: 0.060 in 199/Gr09.
(3313-10)	2103.70	5.50 15	1.001 21	$I\beta^-: 3.48 \text{ in } 1997\text{Gr09}.$
(3527 10)	2692.0	0.13 5	8.43 17	av E β =1477.1 47
(3607 10)	2521.87	303	7 15 5	$I\beta^{-}: 0.0 \text{ in } 1997 \text{Gr09}.$
(3097-10)	2321.07	5.0 5	1.13 5	$I\beta^{-1}: 2.64 \text{ in } 1997\text{Gr09}.$

Continued on next page (footnotes at end of table)

$^{140}\mathbf{Cs}\,\beta^-$ decay 1986Ro16 (continued)

β^- radiations (continued)

E(decay)†	E(level)	Iβ ^{-‡#}	Log ft	Comments
(3789 10)	2429.52	1.25 9	7.58 4	av Eβ=1599.6 47
_				$I\beta^{-}$: 2.64 in 1997Gr09.
(3899 [@] 10)	2320.32			$I\beta^{-}$: 0.097 in 1997Gr09.
(3909 10)	2309.89	0.77 9	7.84 6	av E β =1655.5 47
				$I\beta^{-}$: 0.48 in 1997Gr09.
(3982 10)	2237.21	2.8 3	7.32 5	av $E\beta = 1689.4 \ 47$
(4015 10)	0004.11	.0.10		$1\beta^{-}$: 1.44 in 1997Gr09.
(4015 10)	2204.11	≤0.19	≥8.5	av $E\beta = 1/04.9 4/$
				GTOL upper limit (method 1): 0.19 .
(4091 10)	2128 27	0.60.8	× 02 6	$E_{\rm ex} = 1725.7 \ 47$
(4081 10)	2130.27	0.00 8	8.03 0	$IB^{-1} \cdot 0.24$ from 1997Gr09
(1159 @ 10)	2061.2			I^{P}_{μ} , 0.24 from 1007Gr00
(4138 - 10) (4225 - 10)	1003.53	0 50 14	8 18 73	$FF = 1803.5 \ 47$
(4223 10)	1995.55	0.50 14	0.10 15	$I\beta^{-1} \cdot 0.48$ from 1997Gr09
(1268 @ 10)	1051 5	< 0.04	>03	$FR = 1873.2 \ A7$
(4200 10)	1)51.5	20.04	27.5	GTOL upper limit (method 1): 0.04
				$I\beta^{-1}: 0.04$ from 1997Gr09.
(4395 10)	1823.80	1.65 11	7.73 3	av $E\beta = 1883.0 \ 47$
				$I\beta^{-}$: 1.46 from 1997Gr09.
(4416 10)	1802.84			$I\beta^-$: negative feeding -1.30 21 from intensity balence.
(4708 10)	1510.64	3.7 <i>3</i>	7.51 4	av E β =2029.8 47
				E(decay): measured value 4700 70 (1981De25).
0				$1\beta^{-}$: 3.36 from 1997Gr09.
(5088 ^{^w} 10)	1130.54	0.13 9	9.1 <i>3</i>	av E β =2208.2 47
				$I\beta^{-}: 0.0 \text{ from } 1997\text{Gr09}.$
(5617 10)	602.31	14.9 18	7.24 6	av E β =2456.2 47
				E(decay): measured value 5646 50 (1981De25). Others: 5700 700 (1973Sc18), 5200 700 (1973Ad04), 5180 700 (1966Zh02).
				$I\beta^{-}$: 10.07 from 1997Gr09.
(6219 10)	0.0	35.9 17	7.052 21	av E β =2738.9 47
				E(decay): measured value 6208 25 (1981De25). Others: 6210 50 (2001Ko07); 6199 25 (1993Gr17); 6210 20 (1992Pr04); 6330 100 (1973Sc18); 6177 40 (1978Wu04).
				$I\beta^{-}$: from 1997Gr09.

[†] av Eβ=1890 40 (1982Al01).
[‡] Presented in the comments are data of 1997Gr09; see also 1994He45 (Table 2).
[#] Absolute intensity per 100 decays.
[@] Existence of this branch is questionable.

Iγ normalization: β (g.s.)=35.9% 17 (1997Gr09).

S

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\ddagger\&}$	α@	Comments
400.8 5	0.6 3	2204.11	2+,3	1802.84 3	3-				%Iγ=0.032 <i>16</i> .
411.7 8	1.6 6	2932.58	2-	2521.87 1	$1,2^{(+)}$				%Iy=0.08 4.
413.4 <i>3</i>	3.5 5	2237.21	2+	1823.80 0)+				%Iγ=0.19 <i>3</i> .
528.25 5	55.2 8	1130.54	4+	602.31 2	2+	E2		0.00848	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00715 \ 10; \ \alpha(\mathbf{L}) = 0.001060 \ 15; \ \alpha(\mathbf{M}) = 0.000220 \ 3 \\ &\alpha(\mathbf{N}) = 4.71 \times 10^{-5} \ 7; \ \alpha(\mathbf{O}) = 7.00 \times 10^{-6} \ 10; \\ &\alpha(\mathbf{P}) = 4.32 \times 10^{-7} \ 6 \\ &\% \mathbf{I}\gamma = 2.92 \ 12. \end{aligned}$
555.5 2	2.8 2	4499.93	$1^{(+)}, 2^{(+)}$	3944.06 1	l				%Iy=0.148 <i>12</i> .
602.25 5	1000 <i>30</i>	602.31	2+	0.0 0)+	E2		0.00600	$\alpha(K)=0.00508 \ 8; \ \alpha(L)=0.000729 \ 11; \ \alpha(M)=0.0001513 \ 22 \\ \alpha(N)=3.24\times10^{-5} \ 5; \ \alpha(O)=4.84\times10^{-6} \ 7; \ \alpha(P)=3.09\times10^{-7} \\ 5 \\ \%I\gamma=52.9 \ 18. $
(05.5.0	• • •	2120.25	$a(\pm)$	1510 (4 0	.+				$\%1\gamma = 53.3$ 18.
627.5 3	2.9 3	2138.27	$3^{(+)}$	1510.64 2	2^{+}				$\%1\gamma = 0.153$ 17.
643.5 5	0.7 3	2782.05	2(1),31	2138.27 3	3(1)				$\%1\gamma = 0.037/16.$
672.1 4	21.7 10	1802.84	3-	1130.54 4	1+	(E1+M2)	+0.13 +7-6	0.0020 4	$\alpha(K)=0.0017 \ 3; \ \alpha(L)=0.00021 \ 5; \ \alpha(M)=4.4\times10^{-3} \ 9$ $\alpha(N)=9.5\times10^{-6} \ 20; \ \alpha(O)=1.4\times10^{-6} \ 3; \ \alpha(P)=1.05\times10^{-7}$ 22 %Iy=1.15 7. Mult : D+O from $\gamma\gamma(\theta)$: E1+M2 from decay scheme
693.4 5	2.0 10	2204.11	$2^{+}.3$	1510.64 2	2+				%Iv=0.11 6.
695.5 5	5.4 10	2932.58	2-,-	2237.21 2	2+				$\%$ I γ =0.29 6.
726.2 5	1.3 10	2237.21	2+	1510.64 2	2+				$\%$ I γ =0.07 6.
728.9 6	1.7 5	2932.58	2-	2204.11 2	2+,3				%Iy=0.09 3.
735.9 <i>3</i>	10.9 5	2973.35		2237.21 2	2+				$\%$ I γ =0.58 4.
740.8 10	1.1 4	2692.0	2	1951.5 3	3+				$\%$ I γ =0.058 22.
758.5 ^d 10	0.7 4	5173.69?	$1^{-},2^{-}$	4416.0 1	$1,2^{(+)}$				$\%$ I γ =0.037 22.
760.3 10	0.7 4	4416.0	$1.2^{(+)}$	3656.08 2	2				$\%$ I γ =0.037 22.
^x 771.0 9	0.8 3		,						%Iy=0.042 16.
794.6 <mark>b</mark> 6	1.6 ^b 4	2932.58	2-	2138.27 3	g(+)				%Iγ=0.085 22.
794.6 ^{bd} 6	1.6 ^b 4	5183.8?	2^{-}	4387.8 1	(-),2				%Iy=0.085 22.
798.9 8	2.2 3	2309.89	$2^+, 1$	1510.64 2	2+				$\%$ I γ =0.116 17.
809.8 10	1.0 5	2320.32	(3 ⁻)	1510.64 2	2+				$\%$ I γ =0.05 3.
820.9 4	4.7 3	1951.5	3+	1130.54 4	1 +	M1+E2		0.0034 6	α (K)=0.0029 5; α (L)=0.00038 6; α (M)=7.8×10 ⁻⁵ 11 α (N)=1.68×10 ⁻⁵ 24; α (O)=2.6×10 ⁻⁶ 4; α (P)=1.8×10 ⁻⁷ 4 %I γ =0.249 19. δ : δ =-4.6 to -0.43 (for J=3).
826.9 ^d 15	0.5 3	5183.8?	2^{-}	4358.79 2	2				%I ₇ =0.026 16.

140 Cs β^- decay 1986Ro16 (continued)												
	$\gamma(^{140}\text{Ba})$ (continued)											
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\ddagger \&}$	α [@]	Comments			
862.3 ^b 14	0.8 ^b 5	3098.65	$1^{(+)}, 2^{(+)}$	2237.21	2+				%Iy=0.04 <i>3</i> .			
862.3 ^b 14	0.8 <mark>b</mark> 5	3526.5	$(1^+, 2^+)$	2663.9					%Iγ=0.04 <i>3</i> .			
862.3 ^b 14	0.8 ^b 5	4387.8	$1^{(-)},2$	3526.5	$(1^+, 2^+)$				$\%$ I γ =0.04 3.			
873.2 6	1.3 5	3656.08	2	2782.05	2 ⁽⁺⁾ ,3 ⁺				$\%$ I γ =0.07 3.			
881.1 5	1.1 3	2873.78	$1^{(+)}, 2^{(+)}$	1993.53	2+				%Iγ=0.058 <i>16</i> .			
889.1 ^b 8	0.7 <mark>b</mark> 4	2692.0	2	1802.84	3-				%Iγ=0.037 22.			
889.1 ^{bd} 8	0.7 <mark>b</mark> 4	5388.65?	1-	4499.93	$1^{(+)}, 2^{(+)}$				%Iγ=0.037 22.			
893.4 5	0.7 4	3098.65	$1^{(+)}, 2^{(+)}$	2204.11	2+,3				%Iγ=0.037 22.			
908.25 5	163 4	1510.64	2+	602.31	2+	E2+M1	-0.60 + 18 - 17	0.00289 11	$\alpha(K)=0.00249 \ 10; \ \alpha(L)=0.000317 \ 11;$			
									$\alpha(M) = 6.51 \times 10^{-5} 22$			
									$\alpha(N) = 1.41 \times 10^{-5} \text{ S; } \alpha(O) = 2.16 \times 10^{-5} \text{ 8;}$			
									$\alpha(P) = 1.59 \times 10^{-17}$			
918.3 2	8.2.2	2429.52	1.2^{+}	1510.64	2+	D+O			$\% I \gamma = 0.434 \ 19.$			
			,						δ: for J=1 $δ$ =-0.16 +32-34; for J=2 $δ$ >-0.04 or			
									<-2.0.			
934.9 ^d 3	0.8 4	4032.5?	1,2	3098.65	$1^{(+)}, 2^{(+)}$				%Iγ=0.042 22.			
939.0 ^b 5	0.4^{0} 3	2932.58	2^{-}	1993.53	2+				$\%$ I γ =0.021 16.			
939.0 ^b 5	0.4 ⁰ 3	4037.37	2	3098.65	$1^{(+)}, 2^{(+)}$				$\%$ I γ =0.021 16.			
944.3 ^d 10	0.7 3	4981.9?	$0^{(+)}, 1, 2^{(+)}$	4037.37	2				$\%$ I γ =0.037 16.			
949.4 ^{bd} 7	0.9 ⁰ 3	4801.16?	2	3851.00	1				$\%$ I γ =0.048 16.			
949.4 ^{bd} 7	0.9 ⁰ 3	4981.9?	$0^{(+)}, 1, 2^{(+)}$	4032.5?	1,2				%Iγ=0.048 <i>16</i> .			
969.4 7	0.5 3	3944.06	1	2973.35	- 1				$\%1\gamma = 0.026$ 16.			
980.7^{b} 10	1.4° 5	3851.00	1	2870.63	2+				$\%1\gamma = 0.07$ 3.			
980.7° 10	1.40 5	4079.93	$1^{(-)},2$	3098.65	$1^{(+)}, 2^{(+)}$				$\%1\gamma = 0.07 3.$			
984.5 9	1.5	2787.53	1(),2()	1802.84	3				$\%1\gamma = 0.08 3.$			
1000.7° 5	1.9° 5	39/3.0/	2	2973.35	1(-) 2				$\%1\gamma = 0.10$ 3.			
1000.704 5	1.9 5	5388.65?	$\frac{1}{2^{(+)}}$	4387.8	1 ⁽⁾ ,2	$(\mathbf{M1} + \mathbf{E2})$	15 11 26	0.00191 /	$\%1\gamma = 0.10$ 3.			
1008.1 2	15.6 5	2138.27	3(1)	1130.54	4	(M1+E2)	-4.5 +14-20	0.00181 4	α (K)=0.00156 4; α (L)=0.000203 5; α (M)=4.18×10 ⁻⁵ 9			
									$\alpha(N)=8.99\times10^{-6}$ 19; $\alpha(O)=1.37\times10^{-6}$ 3;			
									$\alpha(P)=9.67\times10^{-8}\ 24$			
1010 4 10	7 8 5	2521.97	1 2(+)	1510 64	2+				$\frac{1}{\sqrt{1}} = 0.824.$			
x1024.1.3	2.3.3	2321.87	1,2	1310.04	2				$\%_{1\gamma=0.41}$ 3. $\%_{1\gamma=0.122}$ 17.			
1031.5^{d} 3	2.5.3	5388 659	1-	4358 79	2				%Iv=0 132 17			
1040.5 2	4.5 3	3973.07	2	2932.58	2-				$\% I \gamma = 0.238 \ 19.$			
1057.2 ^d 5	1.2 4	4032.5?	1,2	2973.35					%Iγ=0.063 22.			
									E_{γ} : differs by 3σ from ΔE_{levels} .			

 $^{140}_{56}\mathrm{Ba}_{84}\text{-}6$

L

From ENSDF

					¹⁴⁰ Cs	β^- decay	1986Ro	16 (continued)	
						γ (¹⁴⁰ B	a) (contin	ued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Mult. [#]	$\delta^{\ddagger \&}$	α [@]	Comments
1064.0 ^b 7	2.4 ^b 3	3851.00	1	2787.53	$1^{(-)}, 2^{(+)}$				%Iγ=0.127 17.
1064.0 ^b 7	2.4 <mark>b</mark> 3	4037.37	2	2973.35					%Iγ=0.127 <i>17</i> .
1068.0 10	1.4 5	2870.63	2+	1802.84	3-				$\%$ I γ =0.07 3.
1072.9 10	3.7 4	2204.11	2+,3	1130.54	4+				$\%$ I γ =0.196 23.
1098.6 ^{<i>u</i>} 10	2.5 5	4032.5?	1,2	2932.58	2 ⁻ 2 ⁺				$\% I \gamma = 0.13 3.$
1101.6 10	1.5.5	3973.07 4037 37	2	2870.03	2-				$\%1\gamma = 0.08 3.$
^x 1109.5 10	1.2 5	1057.57	2	2752.50	2				$\% I \gamma = 0.06 \ 3.$
1113.6 ^d 10	0.6 4	5388.65?	1-	4275.1	1,2				%Iy=0.032 22.
^x 1129.65 ^c 5	23 ^c				,				%Iy=1.22 5.
1129.65 ^c 5	≈23 ^c	2932.58	2-	1802.84	3-	M1+E2	+1.7 2	0.00152 4	$\alpha(K)=0.00131$ 3; $\alpha(L)=0.000168$ 4;
									$\alpha(M) = 3.45 \times 10^{-5} 7$
									$\alpha(N) = 7.43 \times 10^{\circ} I_{0}; \alpha(O) = 1.136 \times 10^{\circ} 24;$
									$\alpha(P)=8.23\times10^{-5}$ 19; $\alpha(PF)=1.088\times10^{-5}$ 10
1137.5 ^d 4	1.8 2	5109.90?	1-,2-	3973.07	2				%Iy=0.095 <i>12</i> .
1137.5 ^d 4	1.8 2	5173.69?	1-,2-	4037.37	2				%Iy=0.095 <i>12</i> .
1146.9 ^b 4	1.5 <mark>b</mark> 2	3098.65	$1^{(+)}, 2^{(+)}$	1951.5	3+				%Iγ=0.079 <i>11</i> .
1146.9 ^b 4	1.5 ^b 2	3851.00	1	2703.98	1-				%Iγ=0.079 <i>11</i> .
1154.2 15	0.7 2	2663.9		1510.64	2+				%Iγ=0.037 11.
1158.5 ^d 8	0.3 2	4032.5?	1,2	2873.78	$1^{(+)}, 2^{(+)}$				%Iγ=0.016 <i>11</i> .
1164.4 20	0.6 4	4037.37	2	2873.78	$1^{(+)}, 2^{(+)}$				%Iγ=0.032 22.
1171.6 ⁰ 20	0.5° 4	3601.7	$1^{(-)}, 2^{(+)}$	2429.52	1,2+				%Iγ=0.026 22.
1171.6 ⁰⁰ 20	0.5° 4	5588.37?	2^{-}	4416.0	$1,2^{(+)}$				$\%$ I γ =0.026 22.
1181.4 8	$0.4 \ 3$	2692.0	(3^{-})	1510.64	2' 4+				$\%1\gamma = 0.021$ 10. $\%1\gamma = 0.217$ 14
1200.3 1	89.9 6	1802.84	3-	602.31	$\frac{1}{2^+}$	(E1)		5.74×10^{-4}	$\alpha(K) = 0.000472, 7; \alpha(L) = 5.76 \times 10^{-5} 8;$
120010 1	0,1,7 0	1002101	0	002101	-			017 17 10	$\alpha(M) = 1.175 \times 10^{-5} I7$
									$\alpha(N)=2.53\times10^{-6} 4; \ \alpha(O)=3.89\times10^{-7} 6;$
									α (P)=2.88×10 ⁻⁸ 4; α (IPF)=3.02×10 ⁻⁵ 5
									$\%$ I γ =4.75 18.
									∂ : -0.02 2. Mult : from $22(\theta)$ E1 from decay scheme
1221.4 1	45.0 4	1823.80	0^{+}	602.31	2^{+}	E2		1.20×10^{-3}	$\alpha(K) = 0.001024 \ 15; \ \alpha(L) = 0.0001312 \ 19;$
	1010	1020100	ů.	002101	-			11207110	$\alpha(M) = 2.69 \times 10^{-5} 4$
									$\alpha(N)=5.80\times10^{-6}$ 9; $\alpha(O)=8.86\times10^{-7}$ 13;
									$\alpha(P)=6.37\times10^{-8} 9$; $\alpha(IPF)=9.00\times10^{-6} 13$
1					()				%Iγ=2.38 <i>9</i> .
1262.9 ^{<i>a</i>} 6	1.4 4	5651.11?	2-	4387.8	1 ⁽⁻⁾ ,2				%Iγ=0.074 22.

From ENSDF

					140 C	s β^- decay	1986Ro16 (co	ntinued)		
$\gamma(^{140}\text{Ba})$ (continued)										
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	$\delta^{\ddagger\&}$	α@	Comments	
1270.9 4	2.4 3	2782.05	$2^{(+)},3^+$	1510.64	2+				%Iy=0.127 17.	
1276.6 5	2.1 5	2787.53	$1^{(-)}, 2^{(+)}$	1510.64	2^{+}				%Iγ=0.11 <i>3</i> .	
1281.1 10	1.2 5	3601.7	$1^{(-)}, 2^{(+)}$	2320.32	(3^{-})				$\%$ I γ =0.06 3.	
1288.5 8	2.26	3526.5	$(1^+, 2^+)$	2237.21	21				$\%1\gamma = 0.12$ 4.	
1291.9° 10	2.8° 6	3601.7	$1^{(-)}, 2^{(+)}$	2309.89	$2^{+},1$				$\%1\gamma = 0.15$ 4.	
1291.9° 10 1200.2 15	$2.8^{\circ} 6$	4079.93	$1^{(-)},2$	2787.53	$1^{(-)}, 2^{(+)}$				$\%1\gamma = 0.15$ 4. $\%1\gamma = 0.227$ 18	
1299.2 13	4.5 5	4275.1	1,2 $1,2^{(+)}$	2975.55	$1^{(+)} 2^{(+)}$				$\%1\gamma = 0.22778.$	
1323.4 7	1.3 3	3526.5	$(1^+, 2^+)$	2204.11	2+,3				%Iy=0.069 16.	
1339.2 15	1.8 6	4275.1	1,2	2932.58	2-				$\%I\gamma = 0.10$ 4.	
1363.3 5	4.9 3	2873.78	$1^{(+)}, 2^{(+)}$	1510.64	2+				%I _y =0.259 <i>1</i> 9.	
1375.9 ^b 4	2.0 ^b 3	4079.93	$1^{(-)}, 2$	2703.98	1-				%Iy=0.106 <i>17</i> .	
1375.9 ^{bd} 4	2.0 ^b 3	5651.11?	2-	4275.1	1,2				%Iγ=0.106 <i>17</i> .	
1381.8 9	1.1 3	3520.5	$1^{(+)},2$	2138.27	3(+)			2	$\%$ I γ =0.058 16.	
1391.25 10	35.1 6	1993.53	2+	602.31	2+	M1+E2	+0.18 + 5 - 6	$1.22 \times 10^{-3} 2$	$\alpha(K)=0.001014$ 15; $\alpha(L)=0.0001263$ 19;	
									$\alpha(M) = 2.59 \times 10^{-5} 4$	
									$\alpha(\mathbf{N})=5.59\times10^{-9}$; $\alpha(\mathbf{O})=8.00\times10^{-7}$ 13; $\alpha(\mathbf{P})=6.46\times10^{-8}$ 10: $\alpha(\mathbf{IPE})=4.30\times10^{-5}$ 6	
									$u(1)=0.40\times10$ 10, $u(111)=4.50\times10$ 0 %Iv=1.86.8	
1396.4 15	1.2 8	3601.7	$1^{(-)}, 2^{(+)}$	2204.11	2+,3				$\%$ I γ = 0.06 5.	
^x 1411.1 10	1.8 5				,				$\%I\gamma = 0.10 \ 3.$	
1418.5 7	7.0 10	3656.08	2	2237.21	2+				$\%$ I γ =0.37 6.	
1422.0° 5	13.8° 10	2932.58	2-	1510.64	2+	D+Q	+0.41 + 53 - 29		$\sqrt[9]{\gamma=0.73}$ 6.	
1422.0^{-5}	1.0° J 2 7 3	3831.00 4416.0	$1 1 2^{(+)}$	2429.32	1,2				$\%1\gamma = 0.05 \ \text{S}.$	
1442.45 1454.7^{b}	2.75 30^{b} /	/387.8	1,2 1(-) 2	2973.33	2-				$%I_{2} = 0.149 \ 17.$	
1454.7 + 4 1454.7 + bd	3.0 + 3.0 + 1	5100 002	$1^{-},2^{-}$	2952.50	2				$\%_{12} = 0.15922$	
1454.7 + 1450.3 d	204	5310 422	$1^{-},2^{-}$	3851.00	1				$%I_{2} = 0.153 22$	
^x 1473.6 7	1.2.3	5510.421	1,2	5651.00	1				%1y=0.153 22. %1y=0.063 16.	
^x 1479.2 9	1.0 3								$\%$ I γ =0.053 16.	
1492.3 5	1.8 5	4275.1	1,2	2782.05	$2^{(+)}, 3^+$				%Iγ=0.10 <i>3</i> .	
1513.8 5	2.6 5	3944.06	1	2429.52	1,2+				$\%$ I γ =0.14 3.	
1517.0 ⁰ 5	$3.8^{o}_{h}4$	3656.08	2	2138.27	3(+)				%Iγ=0.201 23.	
1517.0 ^{<i>bd</i>} 5	3.8^{D}_{L} 4	5173.69?	1-,2-	3656.08	2				%Iγ=0.201 23.	
1526.8 ⁰ 8	1.2 ^b 4	3520.5	$1^{(+)}, 2$	1993.53	2+				%Iγ=0.063 22.	
1526.8 ^{bd} 8	1.2 ^b 4	5183.8?	2-	3656.08	2				%Iγ=0.063 22.	
1536.2 2	12.0 4	2138.27	3(+)	602.31	2+	D+Q			$\% 1\gamma = 0.63 4.$	
1542.3 6	1.4 4	4416.0	1,2 ⁽⁺⁾	2873.78	1 ⁽⁺⁾ ,2 ⁽⁺⁾				0: +0.04 + 15 - 12 or $+3.0 + 5.7 - 1.5$. % $I\gamma = 0.074$ 22.	

 ∞

 $^{140}_{56}\mathrm{Ba}_{84}\text{-}8$

				¹⁴⁰ C	$\cos \beta^{-}$ decay	1986Ro1	6 (continued)	
					$\gamma(^{140})$	Ba) (continue	ed)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\ddagger \&}$	$\alpha^{@}$	Comments
1601.8 <i>1</i>	9.5 4	2204.11	2+,3	602.31 2+				%Iγ=0.50 <i>3</i> .
								$\delta: \delta = +0.55 + 23 - 15$ (J=2); for J=3 $\delta = -0.08$ 11 or $\delta > +5.0$
1607.7 4	3.6.6	4037.37	2	2429.52 1.2+				01 < -35.8. %I $\gamma = 0.19.4.$
1613.9 <i>I</i>	13.9 3	3851.00	1	2237.21 2+				$\%$ I γ =0.74 4.
1627.2 10	1.8 8	3451.44	$1^{(-)}, 2^{(+)}$	1823.80 0+				$\%$ I γ =0.10 5.
1634.9 <i>1</i>	47.9 6	2237.21	2+	602.31 2+	M1+E2	+1.00 2	8.79×10^{-4}	$\alpha(K)=0.000648 \ 10; \ \alpha(L)=8.06\times 10^{-5} \ 12;$
								$\alpha(M) = 1.651 \times 10^{-5} 24$
								$\alpha(N)=3.56\times10^{-6} 5$; $\alpha(O)=5.48\times10^{-7} 8$; $\alpha(P)=4.08\times10^{-8}$
								6; α (IPF)=0.0001300 <i>19</i>
			$(-) \circ (+)$					$\%$ I γ =2.53 10.
1648.5 <i>10</i>	1.4 <i>4</i>	3451.44	$1^{(-)}, 2^{(+)}$	1802.84 3				$\%1\gamma = 0.074$ 22.
1651.1° 5	2.80 5	2782.05	$2^{(+)},3^{+}$	1130.54 4+				$\%1\gamma=0.15$ 3.
1651.1° 5	2.80 5	4079.93	$1^{(-)},2$	2429.52 1,2+				$\%$ I γ =0.15 3.
1662.9 2	3.53 2510	39/3.0/	(1+2+)	2309.89 2,1				$\%1\gamma = 0.185 \ 18.$
1707.4.2	2.5 10	2309.89	$\binom{1}{2^+}$	$602.31 2^+$	D+O			$\%1\gamma = 0.15$ 0. $\%1\gamma = 1.27$ 6
1707.12	21.1 5	2507.07	2,1	002.51 2	DIQ			δ : -0.31 5 (for J=1), +0.20 7 (for J=2).
1718.1 2	5.4 4	2320.32	(3 ⁻)	602.31 2+				%Iγ=0.286 24.
1735.8 10	10.2 20	3973.07	2	2237.21 2+				%Iy=0.54 11.
1737.5 ^d 10	6.1 20	5588.37?	2-	3851.00 1				%Iγ=0.32 <i>11</i> .
^x 1767.3 9	1.0 3							$\%$ I γ =0.053 16.
1770.2 6	1.1 3	4079.93	$1^{(-)},2$	2309.89 2+,1				$\%$ I γ =0.058 16.
*1780.5 5	1.0 3	5010 400	1- 0-	2526.5 (1+ 2+)				$\%1\gamma = 0.053$ 16.
1784.0 ^a 15	0.83	5310.42?	1-,2-	3526.5 (1+,2+)				$\%1\gamma = 0.042$ 16.
1795.000 10	1.50 10	4032.5?	1,2	2237.21 2+				$\%1\gamma = 0.08$ 6.
1795.0 ⁰ 10	1.50 10	4499.93	$1^{(+)}, 2^{(+)}$	2703.98 1-				$\%$ I γ =0.08 6.
1799.30 8	2.80 10	3601.7	$1^{(-)}, 2^{(+)}$	1802.84 3-				$\%$ I γ =0.15 6.
1799.3 ⁰ 8	2.8 ⁰ 10	4037.37	2	2237.21 2+				%Iγ=0.15 <i>6</i> .
1807.9 5	0.6 4	4499.93	$1^{(+)}, 2^{(+)}$	2692.0 2				%Iγ=0.032 22.
1827.3 2	7.3 4	2429.52	1,2+	$602.31 \ 2^+$				$\sqrt[6]{\gamma=0.39}$ 3.
1835.0 4	3.5 3	39/3.0/	2	$2138.27 3^{(1)}$		0.24.11		$\%1\gamma = 0.185 \ 18.$
1857.9.6	9420	3851.00	2 1	$1002.04 \ 3$ 1003 53 2^+	D+Q	-0.24 11		$\%1\gamma = 3.49 \ 21.$
1899.6.9	2.1.4	4037 37	2	$2138\ 27\ 3^{(+)}$				$\%1\gamma = 0.50$ 11. $\%1\gamma = 0.111$ 22
x1911.7 15	1.0 4	1007107	-	2130.27 3				$\%$ I γ =0.053 22.
1918.7 5	3.8 6	2521.87	$1,2^{(+)}$	602.31 2+				$\%$ I γ =0.20 4.
1928.2 7	1.8 3	4358.79	2	2429.52 1,2+				%Iγ=0.095 17.
1940.2 8	1.9 5	3451.44	$1^{(-)}, 2^{(+)}$	1510.64 2+				%Iγ=0.10 <i>3</i> .
x1942.8 10	1.2 5	2014.07	1	1002 52 24	D	0.04.00		$\%$ I γ =0.06 3.
1949.9 7	9.08	3944.06	1	1993.53 2+	D+Q	$-0.34\ 20$		$\%1\gamma = 0.48$ 5.

 $^{140}_{56}\mathrm{Ba}_{84}$ -9

From ENSDF

 $^{140}_{56}\mathrm{Ba}_{84}\text{-}9$

					¹⁴⁰ Cs	β^- decay	1986Ro16	(continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	$\delta^{\ddagger \&}$	α@	Comments
1993.5 <i>3</i>	9.9 4	1993.53	2+	0.0	0^{+}				%Iγ=0.52 <i>3</i> .
2000 0 2	1466	2520.5	1(+) 2	1510 (4	2+				$\%$ I γ =0.53 3.
2009.9 3	2.0 8	3520.5 3973.07	2	1951.5	$\frac{2}{3^{+}}$				$\%1\gamma = 0.775.$ $\%1\gamma = 0.115.$
2038.5 ^b 5	1.8 ^b 3	4275.1	1,2	2237.21	2+				$\%$ I γ =0.095 17.
2038.5 ^b 5	1.8 ^b 3	4358.79	2	2320.32	(3 ⁻)				$\%$ I γ =0.095 17.
2048.1 <i>3</i>	5.4 3	3851.00	1	1802.84	3-				%Iγ=0.286 <i>19</i> .
2061.5 4	2.4 4	2663.9	1(-) 2	602.31	2^+				$\%$ I γ =0.127 22.
2067.73	0.23 185	4387.8	$1^{(-)}, 2$ $1^{(-)}, 2$	2320.32	(3) 2+				$\%1\gamma = 0.328\ 20.$ $\%1\gamma = 0\ 10\ 3$
2080.8 10 $2089.7^{b} 10$	1.05	2692.0	2	602 31	2 2+				%1y = 0.10 3.
2089.7^{bd} 10	0.9^{b} 3	2092.0 5611.2?	$\frac{2}{1-2^{-}}$	3520.5	$1^{(+)}$ 2				%Iy=0.048 16
2101.7 1	57.2 6	2703.98	1-,2	602.31	2^+ ,2	E1+M2	-0.09 3	8.80×10^{-4}	$\alpha(K)=0.0001915; \alpha(L)=2.30\times10^{-5}7; \alpha(M)=4.70\times10^{-6}13$
									$\alpha(N)=1.01\times10^{-6}$ 3; $\alpha(O)=1.56\times10^{-7}$ 5; $\alpha(P)=1.17\times10^{-8}$ 4; $\alpha(IPF)=0.000660$ 10 %[$\gamma=3.02$ 12.
2109.2 ^d 4	2.9 5	5765.3?	2-	3656.08	2				$\%$ I γ =0.15 3.
2120.0 4	1.7 3	3944.06	1	1823.80	0^{+}				%Iγ=0.090 <i>17</i> .
^x 2147.0 2	7.3 3	2072.07	0	1000 04	2-				$\%$ I γ =0.386 22.
21/0.0 2	12.8 4	39/3.07	$2^{(+)}_{2^{(+)}}$	1802.84	3 2+				$\%1\gamma = 0.68$ 4. $\%1\gamma = 0.05$ 3
2180.3 8	5.2.3	2782.03	$1^{(-)},2^{(+)}$	602.31	$\frac{2}{2^{+}}$				$\%1\gamma = 0.05$ 5. $\%1\gamma = 0.275$ 19
2236.0^{b} 15	3.0^{b} 10	4037.37	2	1802.84	3-				$\%$ I γ =0.16 6.
2236.0 ^{bd} 15	3.0 ^b 10	5109.90?	$1^{-},2^{-}$	2873.78	$1^{(+)}, 2^{(+)}$				$\%$ I γ =0.16 6.
2237.3 1	56 3	2237.21	2+	0.0	0+				%Iγ=2.96 <i>19</i> .
4									$\%$ I γ =2.99 19.
2250.9 ^{<i>a</i>} 3	2.9 4	5183.8?	2-	2932.58	2-		0.10.0	0.50 10-4	%Iγ=0.153 22.
2268.3 1	22.6 4	2870.63	2+	602.31	2*	M1+E2	-0.19 8	8.50×10 ⁻⁴	$\begin{aligned} \alpha(\mathbf{K}) &= 0.000356\ 6;\ \alpha(\mathbf{L}) = 4.3 / \times 10^{-5}\ 7;\ \alpha(\mathbf{M}) = 8.94 \times 10^{-6}\ 13\\ \alpha(\mathbf{N}) &= 1.93 \times 10^{-6}\ 3;\ \alpha(\mathbf{O}) = 2.98 \times 10^{-7}\ 5;\ \alpha(\mathbf{P}) = 2.25 \times 10^{-8}\\ 4;\ \alpha(\mathbf{IPF}) &= 0.000440\ 7\\ \% I\gamma &= 1.20\ 5. \end{aligned}$
2277.00 15	12.4 6	4079.93	1 ⁽⁻⁾ ,2	1802.84	3-				$\% I\gamma = 0.66 4.$
2280.3 ^d 7	2.1 6	4801.16?	2	2521.87	$1,2^{(+)}$				%Iγ=0.11 <i>4</i> .
2309.3 6	4.9 10	2309.89	2+,1	0.0	0^{+}				$\%$ I γ =0.26 6.
2212 1d 8	1610	5102.00	2-	2970 (2	2+				$\frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}$
2312.4° 8 2330 5 1	1.6 10	5185.8? 2932.58	$\frac{2}{2^{-}}$	28/0.63	$\frac{2}{2^{+}}$	D+O			$\%1\gamma = 0.08 \ 0.$ $\%1\gamma = 3.71 \ 15$
2330.3 1	,0.2 /	2752.50	-	002.51	-	212			δ : +0.41 +53-29 or δ <-3.2 or >+2.9.
2340.00 15	4.6 6	3851.00	1	1510.64	2+	D+Q	-0.67 32		%Iγ=0.24 <i>4</i> .

 $^{140}_{56}\mathrm{Ba}_{84}\text{--}10$

From ENSDF

 $^{140}_{56}\mathrm{Ba}_{84}$ -10

140					140 Cs β	- decay	1986Ro16 (cont	inued)		
γ ⁽¹⁴⁰ Ba) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\ddagger \&}$	Comments		
2362.00 15	4.2 6	4499.93	$1^{(+)}, 2^{(+)}$	2138.27	3 ⁽⁺⁾			%Iy=0.22 4.		
2371.5 ^d 4 x2383 5 6	1.9 <i>4</i> 09 <i>4</i>	4801.16?	2	2429.52	1,2+			$\%_{1\gamma=0.100}$ 22. $\%_{1\gamma=0.048}$ 22		
2387.1^{d} 10	0.8 4	5173 692	1-2-	2787 53	$1^{(-)} 2^{(+)}$			$\% I_{\gamma} = 0.042.22$		
$2401.1^{d} 6$	1.2.2	5183.8?	2-	2782.05	$2^{(+)}.3^+$			$\%$ I γ = 0.063 11.		
2429.6 1	22.7 4	2429.52	1,2+	0.0	$ \frac{1}{0^{+}} $,5			$\% I\gamma = 1.20 5.$ $\% I\gamma = 1.21 5.$		
^x 2452.4 15	1.0 5							%Iγ=0.05 <i>3</i> .		
2456.4 ^{<i>d</i>} 10	1.5 10	5388.65?	1-	2932.58	2-			%Iγ=0.08 <i>6</i> .		
2459.5 ^{<i>d</i>} 10 2462.9 5	2.0 <i>10</i> 7.0 <i>10</i>	4981.9? 3973.07	$ 0^{(+)}, 1, 2^{(+)} 2 $	2521.87 1510.64	$1,2^{(+)}$ 2 ⁺	D+Q	+0.31 +63-39	%Iγ=0.11 6. %Iγ=0.37 6.		
2477.5 ^d 8 2496.6 2	0.9 <i>3</i> 5.5 <i>3</i>	5183.8? 3098.65	2^{-} 1 ⁽⁺⁾ ,2 ⁽⁺⁾	2703.98 602.31	1- 2 ⁺			%Iy=0.048 <i>16</i> . %Iy=0.291 <i>20</i> .		
2513.3 ^{bd} 15	4.0 ^b 20	5388.65?	1-	2873.78	$1^{(+)}, 2^{(+)}$			%Iγ=0.21 <i>11</i> .		
2513.3 ^{bd} 15	4.0 ^b 20	5611.2?	1-,2-	3098.65	$1^{(+)}, 2^{(+)}$			%Iγ=0.21 <i>11</i> .		
2521.9 1	61 4	2521.87	$1,2^{(+)}$	0.0	0^{+}			%Iy=3.23 24. %Iy=3.25 24.		
2553.6 ^d 6	0.8 4	5651.11?	2-	3098.65	$1^{(+)}, 2^{(+)}$			%Iγ=0.042 22.		
2564.1 ^d 7	1.1 3	4801.16?	2	2237.21	2^{+}			%Iγ=0.058 16.		
2646.8 ^d 5	1.5 4	5310.42?	1-,2-	2663.9				%Iγ=0.079 22.		
2656.7 ^d 10	0.3 2	5588.37?	2^{-}	2932.58	2^{-}			%Iγ=0.016 11.		
2660.8 ^d 10	0.5 3	5183.8?	2-	2521.87	$1,2^{(+)}$			%Iγ=0.026 <i>16</i> .		
2663.7 ^b 10	0.5 ^b 3	2663.9		0.0	0^{+}			%Iy=0.026 16. %Iy=0.027 16.		
2663.7 ^{bd} 10	0.5 ^b 3	4801.16?	2	2138.27	3 ⁽⁺⁾			%Iy=0.026 16.		
2666.7 ^d 10	0.6 3	5765.3?	2-	3098.65	$1^{(+)}, 2^{(+)}$			%Iy=0.032 <i>16</i> .		
2674.6 5	1.4 2	4499.93	$1^{(+)}, 2^{(+)}$	1823.80	0^{+}			%Iγ=0.074 <i>11</i> .		
x2694.3 15 2703.7 2	1.0 8 12.1 <i>3</i>	2703.98	1-	0.0	0+			$\%$ I γ =0.05 5. %I γ =0.64 3. %I γ =0 65 3		
2737 2 ^d 13	093	5611.22	1-2-	2873 78	$1^{(+)} 2^{(+)}$			%Iv=0.048.16		
2764.8 4	1.9 3	4275.1	1,2	1510.64	2+ ,2			$\% I\gamma = 0.100 I7.$		
2788.2 6	1.9 3	2787.53	$1^{(-)}, 2^{(+)}$	0.0	0^{+}			%Iy=0.100 17. %Iy=0.101 17.		
2848.2 2	11.7 5	4358.79	2	1510.64	2+	D+Q		% $i\gamma = 0.62 \ 4.$ $\delta: +0.25 \ +37 - 20 \ \text{or} \ -4.3 < \delta < -2.0.$		
2873.6 2	8.1 3	2873.78	$1^{(+)}, 2^{(+)}$	0.0	0^{+}			%Iγ=0.428 23. %Iγ=0.432 23.		
2969.2 ^{<i>d</i>} 2	8.2 3	5173.69?	1-,2-	2204.11	2+,3			%Iy=0.434 23.		

 $^{140}_{56}\mathrm{Ba}_{84}$ -11

140 Cs β^- decay 1986Ro16 (continued)									
$\gamma(^{140}\text{Ba})$ (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	$\delta^{\ddagger\&}$	Comments	
2998.2 ^{<i>d</i>} 3 ^x 3023.2 2	3.6 2 3.5 2	4801.16?	2	1802.84	3-			%Iγ=0.190 <i>13</i> . %Iγ=0.185 <i>13</i> .	
3053.3 2	21.45	3656.08	2	602.31	2+	D+(Q)	-0.04 11	$\%$ I γ =1.13 5.	
3066.75 ^{bu} 25	2.90 3	5388.65?	1-	2320.32	(3-)			$\&I_{\gamma}=0.153\ I^{\gamma}.$ E _{γ} : differs by 3σ from $\Delta E_{levels}.$	
3066.75 ⁰ <i>a</i> 25	2.9 ⁰ 3	5588.37?	2-	2521.87	$1,2^{(+)}$			%Iy=0.153 17.	
3088.7 ^{<i>a</i>} 5	1.8 3	5611.2?	$1^{-},2^{-}$	2521.87	$1,2^{(+)}$			$\%$ I γ =0.095 17.	
3098.6 3	2.6 3	3098.65	1(*),2(*)	0.0	0			$\% l\gamma = 0.137 17.$ $\% l\gamma = 0.139 17.$	
3115.9 ^d 2	4.3 4	5109.90?	1-,2-	1993.53	2^{+}			%Iy=0.227 23.	
3159.8 ^{<i>a</i>} 10 x3166.1 10	0.4 2 0.5 2	5588.37?	2-	2429.52	1,2+			%I _Y =0.021 11. %I _Y =0.026 11.	
3189.5 ^d 2	4.3 4	5183.8?	2-	1993.53	2^{+}			%Iy=0.227 23.	
3242.8 ^d 10 3248.5 10	5.4 <i>10</i> 3.4 <i>10</i>	5765.3? 3851.00	2^{-} 1	2521.87 602.31	$1,2^{(+)}$ 2 ⁺			%Iy=0.29 6. %Iy=0.18 6.	
3267.6 ^{<i>d</i>} 7 ^x 3285.2 5	2.1 <i>4</i> 3.0 <i>5</i>	5588.37?	2-	2320.32	(3 ⁻)			$\%$ I γ =0.111 22. %I γ =0.16 3.	
3303.7 ^d 9	1.3 4	5611.2?	1-,2-	2309.89	$2^+, 1$			%Iγ=0.069 22.	
3318.7 ^d 9	1.5 4	5310.42?	1-,2-	1993.53	2+			%Iy=0.079 22.	
3341.2 ^b 5	8.0 ^b 4	3944.06	1	602.31	2+			%Iy=0.42 <i>3</i> .	
3341.2 ^{bd} 5 3371.00 25	8.0 ^b 4 9.7 4	5651.11? 3973.07	2^{-} 2	2309.89 602.31	2 ⁺ ,1 2 ⁺	D+Q		$\%$ I γ =0.42 3. %I γ =0.51 3. δ : +0.30 +22-5 or >+14.4 or <-3.2.	
3383.0 ^d 5	1.1 4	5588.37?	2-	2204.11	2+,3			%Iγ=0.058 22.	
3394 ^d 4	2.2 3	5388.65?	1-	1993.53	2+			%Iγ=0.116 <i>17</i> .	
3407.1 ^{<i>d</i>} 10	0.5 3	5611.2?	1-,2-	2204.11	2+,3			%Iγ=0.026 <i>16</i> .	
3412.8 ^d 10	0.5 3	5651.11?	2^{-}	2237.21	2+			%Iγ=0.026 <i>16</i> .	
3435.0 2	8.5 4	4037.37	$\frac{2}{2}$	602.31	2+			%Iy=0.45 3.	
3451.45 20	9.8 4	3451.44	1 ⁽⁻⁾ ,2 ⁽⁺⁾	0.0	0^{+}			$\%$ I γ =0.52 3. %I γ =0.52 3.	
3477.6 3	3.4 3	4079.93	$1^{(-)}, 2$	602.31	2+			%Iy=0.180 <i>18</i> .	
3507.1 ^{<i>a</i>} 4	1.7 3	5310.42?	1-,2-	1802.84	3-			%Iy=0.090 17.	
3526.6 <i>5</i>	1.6 <i>3</i> 1.7 <i>3</i>	3526.5	(1+,2+)	0.0	0+			%1y=0.085 17. %1y=0.085 17. %1y=0.090 17.	
3565.00 ^{bd} 25	2.9 ^b 3	5388.65?	1-	1823.80	0^{+}			%Iy=0.153 <i>17</i> .	
3601.8 9	5.3 6	3601.7	$1^{(-)}, 2^{(+)}$	0.0	0+			$\%$ I γ =0.28 4. %I γ =0.28 4.	

 $^{140}_{56}\mathrm{Ba}_{84}$ -12

From ENSDF

 $^{140}_{56}\mathrm{Ba}_{84}$ -12

¹⁴⁰Cs β^- decay 1986Ro16 (continued)

 $\gamma(^{140}\text{Ba})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
						%Iy=0.28 <i>4</i> .
3627.9 ^d 10	1.6 3	5765.3?	2-	2138.27	3 ⁽⁺⁾	%Iy=0.085 17.
3635.4 ^d 9	2.2 3	5588.37?	2-	1951.5	3+	%Iγ=0.116 <i>17</i> .
3657.7 <mark>d</mark> 10	0.4 2	5651.11?	2-	1993.53	2+	%Iγ=0.021 11.
3671.7 d 5	1.7 3	5183.8?	2-	1510.64	2+	%Iγ=0.090 <i>17</i> .
3698.9 ^d 7 ^x 3756.4 5 ^x 3786.4 8	0.7 <i>3</i> 2.2 <i>4</i> 1.4 <i>5</i>	5651.11?	2-	1951.5	3+	%Iγ=0.037 <i>16</i> . %Iγ=0.116 <i>22</i> . %Iγ=0.07 <i>3</i> .
3793.3 ^{<i>d</i>} 4 ^x 3825.4 15 ^x 3829.5 10	4.3 6 0.4 2 0.5 2	4395.4?		602.31	2+	%Iy=0.23 4. %Iy=0.021 11. %Iy=0.026 11.
3845.2 ^d 6	1.0 3	3845.3?		0.0	0^{+}	%Iy=0.053 <i>16</i> .
3851.1 10	0.4 3	3851.00	1	0.0	0^{+}	%I _y =0.021 16.
3944.1 <i>3</i>	6.4 13	3944.06	1	0.0	0^{+}	%Iγ=0.34 7.
4053.2 10	0.5 3	5183.8?	2-	1130.54	4+	$\%$ I γ =0.026 <i>16</i> .
^x 4075.7 6	0.9 3					$\%$ I γ =0.048 <i>16</i> .
^x 4108.1 8	1.0 3					$\%_{1}\gamma=0.053$ 16.
*4210.1 8	1.0 4					$\%_{1\gamma=0.053}$ 22.
×4237.6 8	0.73					$\%_{1}\gamma = 0.037/10.$
*4381.4 8	0.6 2	4416.0	1.2(+)	0.0	0+	$\%_{1}\gamma_{=0.052}$ 11.
4410.50	1.2.3	4410.0	1,2(*)	0.0	0.	%17=0.005 10. %L = 0.052 16
$x_{4472.00}$	1.0.5					%1Y=0.035 10.
x4525 3 8	1.0.2					701Y-0.052 11. (%Ly-0.069 22
^x 4531.4 6	1.0 3					%Iy=0.053 16.
4572.1^{d} 10	0.4.2	5173.69?	$1^{-}.2^{-}$	602.31	2^{+}	%Iv=0.021 11
x4786.3 10	0.4 2	01701071	- ,=	002101	-	$\% I\gamma = 0.021 \ II.$
4786.3 ^d 10	0.4 2	5388.65?	1-	602.31	2^{+}	%Iγ=0.021 <i>11</i> .
^x 4813.2 10	0.4 2					%I ₇ =0.021 11.
4982.4 ^d 8	0.7 3	4981.9?	$0^{(+)}, 1, 2^{(+)}$	0.0	0^{+}	%Iy=0.037 16.
^x 5228.2 15	0.2 2					%Iγ=0.011 <i>11</i> .

[†] From 1986Ro16 for E γ <3700 and from 1974Sc14 for E γ >3700.

[‡] From $\gamma\gamma(\theta)$ (1986Ro16). No transitions of significant intensities have multipole order greater than two (1986Ro16). [#] From $\gamma\gamma(\theta)$. It was assumed that M2 cannot compete with E1; therefore, D+Q are M1+E2 and Q γ' s are E2.

[@] Additional information 1.

[&] If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^{*a*} For absolute intensity per 100 decays, multiply by 0.0529 20.

140 Cs β^- decay 1986Ro16 (continued)

 $\gamma(^{140}\text{Ba})$ (continued)

^b Multiply placed with undivided intensity.
^c Multiply placed with intensity suitably divided.
^d Placement of transition in the level scheme is uncertain.
^x γ ray not placed in level scheme.

14

Decay Scheme

¹⁴⁰Cs β^- decay 1986Ro16

Decay Scheme (continued)

 $^{140}_{56}\mathrm{Ba}_{84}$