¹⁴**B***β*⁻ decay **1974Al11,1993ReZX,1996OgZZ**

	History					
Туре	Author	Citation	Literature Cutoff Date			
Update	J. Kelley, C. G. Sheu		28-August-2013			

Parent: ¹⁴B: E=0; $J^{\pi}=2^{-}$; $T_{1/2}=12.6$ ms 6; $Q(\beta^{-})=20644$ 21; $\%\beta^{-}$ decay=100.0

¹⁴B-T_{1/2}: weighted mean of (16.1 ms 12): 1974Al11, (12.8 ms 8): 1986Cu01 and (12.4 ms 3): see references in 1993ReZX; the uncertainty is enlarged.

¹⁴B-Q(β^{-}): from 2012Wa38.

- 1974A111: A target BeO (94% ¹⁰Be) was bombarded with 31-MeV ⁶Li ions; a fast beam chopper was used to establish beam activation and decay counting periods. A plastic scintillator detector measured the beta emissions while a NaI(TI) detector measured coincident decay gamma-rays.
- Activities from numerous reaction products were detected in the target, however by applying a beta particle energy threshold cut to the beta-gamma coincidence data it was possible to select ¹⁴C gamma-rays that followed the decay of ¹⁴B.
- The β -decay is primarily to ¹⁴C*(6.09) [$J^{\pi}=1^{-}$] and (6.73) [$J^{\pi}=3^{-}$] states, though only an upper limit could be placed on a branch to the (7.34) [$J^{\pi}=2^{-}$] state. The half-life, T_{1/2}=16.1 ms *12*, was deduced by analyzing the decay curve of the ¹⁴C*(6.09) state for events in coincidence with E_{β} > 6.3 MeV.
- The experimental results are gamma-ray intensities. The measured γ -ray intensity ratios are $I_{6.09}/I_{6.73}/I_{7.34}=100/(10.0\pm2.0)/<2.2$; using these observed intensities and the level decay branching ratios from 1970Aj01, the relative beta feedings to the ${}^{14}C^*(6.09, 6.73, 7.34)$ states was deduced.
- In order to place the relative intensities on an absolute scale the authors estimated the unobserved feeding to the ground state as (5 3)%, and they made a further assumption that the %beta-n=0. With these assumptions, which account for (5 3)% of the decay, the beta decay branching ratios were deduced by combining the measured γ -ray intensity ratios with the know level gamma-ray decay branching ratios. The absolute beta-branching ratios I $\beta_{6.09}/I\beta_{6.73}/I\beta_{7.34}=(81 9)\%/(8.6 +17-40)\%/< 11\%$ were deduced by normalizing to 100%. There are no new measurements on these relative values, however subsequent experiments have produced measured values for the beta feeding to the ground state and to neutron unbound states.
- 1993ReZX: Spallation products from 800 MeV proton bombardment of a ²³²Th target were captured by a transport line with a mass-to-charge filter and transferred to the TOFI spectrometer at LAMPF. The beamline was separately tuned to transport a number of different nuclides. The neutrons were detected in a polyethylene moderated ³He counter, and standard techniques were implemented. The β -delayed neutron probabilities were deduced from analysis of the number of implanted ions (per beam pulse) and the rate of β -delayed neutrons detected in the zero-threshold counter.
- An associated conference report indicates the β -delayed neutron probability $P_n = (6.1 \ 3)\%$ and $T_{1/2} = 12.4 \ ms \ 3$ (the International conference on nuclear data for science and technology: nuclear data for the twenty-first century, Gatlinburg, TN (United States), 9-13 May 1994).
- Results presented in (1993ReZX) analyzed the data measured in the polyethylene moderated ³He counter and deduced a general value for the energy of neutrons emitted from the decay; $E_n=1.38 \text{ MeV} + 86-65$. The value $E_n=1.3 \text{ MeV} 3$ is published in the 1994 conference report.
- 1996OgZZ: Fragmentation of a 110 MeV/A ²²Ne beam on a Be target produced a ¹⁴B beam that was implanted in a 7 mm thick active plastic stopper. Beta-rays were detected in a Δ E-E scintallator telescope while gamma-rays were detected in a NaI detector. A high-energy component with $E_{\beta} > 14.6$ MeV was observed and found in anti-coincidence with gamma-rays. This branch is attributed to beta feeding directly to the ¹⁴C ground state; $I\beta_{g.s.} = (1.4 \ 8)\%$.
- The conference proceeding (1996OgZZ) presents additional results indicating clear evidence for feeding of ${}^{14}C^*(7.34)$ though no further details are given. No further analysis on the ${}^{14}C^*(6.09, 6.73)$ data are presented, and no subsequent publication of the work is found.
- Comments: Absolute beta branching ratios have been measured for feeding to the ¹⁴C ground state and for feeding to neutron unbound states. Therefore, the relative gamma-ray intensity values of (1974A111) are reevaluated with the current level gamma decay branching ratios, and the deduced intensities are normalzed with the decay feeding the ¹⁴C ground state and the $\%\beta$ -n.
- In the analysis of the uncertainties of the I β branching ratios the I $\beta_{7.34}$ is treated as I $\beta_{max}/2 \pm I\beta_{max}/2$, and the uncertainty mainly impacts the I $\beta_{6.09}$ branch.

¹⁴**B**β⁻ decay **1974Al11,1993ReZX,1996OgZZ** (continued)

¹⁴C Levels

E(level) [†]	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$
0.0	0^{+}	5700 y <i>30</i>
6093.8 2	1^{-}	<7 fs
6728.2 13	3-	66 ps 8
7341 <i>3</i>	2^{-}	111 fs 42

 † From Adopted dataset for $^{14}\mathrm{C}$ in ENSDF database.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(13303 21)	7341	<10	>4.8	av E β =6405 11
(13916 21)	6728.2	8.2 17	5.02 10	$I\beta^{-}$: upper limit is shown. av $E\beta$ =6709 11 $I\beta^{-}$: 8.2 +17-40.
(14550 <i>21</i>) (20644 <i>21</i>)	6093.8 0.0	79 <i>6</i> 1.4 <i>8</i>	4.13 <i>4</i> 6.62 <i>25</i>	av E β =7024 11 av E β =10048 11

[†] Absolute intensity per 100 decays.