Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	P. K. Joshi, B. Singh, S. Singh, A. K. Jain	NDS 138, 1 (2016)	15-Oct-2016						

 $Q(\beta^{-})=8254\ 29;\ S(n)=2580\ 6;\ S(p)=12960\ SY;\ Q(\alpha)=-1998\ 5$ 2012Wa38

Estimated uncertainty: $\Delta S(p)=300$ (2012Wa38).

S(2n)=7043 4, S(2p)=25000 500 (syst), $Q(\beta^{-}n)=3704 7$ (2012Wa38).

1994Be24, 1998Do08: E=750 MeV/nucleon. Measured projectile fission fragment yields, mass, charge, and velocity distributions, and production σ . Fragment separator, energy-loss, tof techniques. 1998Do08 studied low-energy fission component features. Mass measurements: 2013Va12: measured mass excess=-60191 keV 17 (CPT mass spectrometer), 2012Ha25 (JYFLTRAP Penning trap), 2004Ge18.

2007Ji14: calculated levels, J, π , pairing and quadrupole interaction.

¹³⁹Te Levels

Cross Reference (XREF) Flags

A ²⁴⁸Cm SF decay

E(level)	$\mathbf{J}^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0	(7/2 ⁻)	1.6 s <i>3</i>	A	%β ⁻ =100; %β ⁻ n=? Theoretical T _{1/2} =2.10 s, %β ⁻ n=26.6 (2003Mo09). Theoretical T _{1/2} =0.115 s, %β ⁻ n=0.7 (2016Ma12). J ^π : from the systematic trend of yrast excitations in N=87 isotones. Alternate assignment of 5/2 ⁻ is less likely since the 271 level fits the systematics for the 9/2 ⁻ levels in N=87 isotones and the 271γ has a stretched dipole character. 2007Ji14 give 5/2 ⁻ from their theoretical calculations, also the same in 2012Au07 from systematics. 1997Mo25 give 3/2 ⁻ from theoretical predictions. T _{1/2} : 1.6 s <i>3</i> from analysis of composite integral decay curve for ¹³⁹ Sb, ¹³⁹ Te, ¹³⁸ Te and ¹³⁷ I background (2007ArZQ thesis, same value also cited in 2011Ar18). The statistics is very weak in the decay curve shown in figure 77 of 2007ArZQ. In the opinion of the evaluators this half-life should be viewed with caution. Systematic value=0.5 s (2012Au07), and theoretical half-life=2.10 s (2003Mo09). In 2006KeZZ (GSI annual report), half-life is listed as 598 ms 20 from integral β counting, but in e-mail reply of Sept 29, 2008 from K.L. Kratz, the half-lives in the report were pointed out as questionable due to calibration issues. Perhaps based on this report, value of 0.60 s is listed in KAPL 2009 Wall Chart of Nuclides. Configuration=ν2f ³ _{1/2} ⊗vi ² _{1/2} 0 ⁺ .
271.0 10	$(9/2^{-})$		Α	Configuration= $\nu 2f_{7/2}^{2/2} _{0+} \otimes \nu i_{13/2}^{2/2} _{0+} \otimes \nu 1h_{9/2}.$
627.5 [‡] 15	$(13/2^{-})$		A	
1063.9 [‡] 18	$(17/2^{-})$		A	
1598.7 [‡] 20	$(21/2^{-})$		Α	
2210.5+ 23			A	

[†] From $\gamma\gamma(\theta)$ data, assuming $J^{\pi}(g.s.)=7/2^{-}$ and $\Delta\pi=$ no for stretched dipole and quadrupole transitions.

[‡] Band(A): Band built on $(13/2^{-})$. Configuration= $\nu 1h_{9/2} \otimes (\text{first } 2^{+} \text{ in } {}^{138}\text{Te})$.

Adopted Levels, Gammas (continued)

 $\gamma(^{139}\text{Te})$

E _i (level)	\mathbf{J}_i^{π}	Eγ	E_f	\mathbf{J}_f^{π}	Mult. [†]
271.0	$(9/2^{-})$	271.0	0.0	$(7/2^{-})$	D
627.5	$(13/2^{-})$	356.5	271.0	$(9/2^{-})$	Q
1063.9	$(17/2^{-})$	436.4	627.5	$(13/2^{-})$	Q
1598.7	$(21/2^{-})$	534.8	1063.9	$(17/2^{-})$	Q
2210.5		611.8	1598.7	$(21/2^{-})$	

[†] From $\gamma\gamma(\theta)$ in SF decay. Mult=Q and D indicate stretched quadrupole (most likely E2), and stretched dipole (most likely M1+E2), respectively.

Adopted Levels, Gammas

Level Scheme

¹³⁹₅₂Te₈₇

Adopted Levels, Gammas

¹³⁹₅₂Te₈₇