²⁴⁸Cm SF decay 2000Ur06

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	P. K. Joshi, B. Singh, S. Singh, A. K. Jain	NDS 138, 1 (2016)	15-Oct-2016						

Parent: ²⁴⁸Cm: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=3.48\times10^5$ y 6; %SF decay=0.0038 21

²⁴⁸Cm-T_{1/2}: From ²⁴⁸Cm Adopted Levels in the ENSDF database (Sept 2014 update).

²⁴⁸Cm-%SF decay: From 0.046 29 per 100 fissions (1994EnZZ) and %SF=8.39 16 (²⁴⁸Cm Adopted Levels in the ENSDF database, Sept 2014 update).

2000Ur06: measured E γ , I γ , $\gamma\gamma$ -coin using EUROGAM2 array of Compton-suppressed Ge detectors. Identification of ¹³⁹Te γ rays made by gating on known transitions in complementary Ru isotopes. Mass identification made using the technique of mass correlation proposed by 1991Ho16: <A(Ru)>=106.3 2 resulting in <A(Te)>=138.8 2. The ordering of the gammas in the level scheme was established on the basis of the measured I γ values. Consult 2000Ur06 for additional discussions on the systematics of N=87 isotones.

¹³⁹Te Levels

E(level)	$J^{\pi \dagger}$	Comments		
0.0	(7/2 ⁻)	J^{π} : from the systematic trend of yrast excitations in N=87 isotones. Alternate assignment of 5/2 ⁻ less likely since the 271 level fits the systematics for the 9/2 ⁻ levels in N=87 isotones and the 271 γ has a stretched dipole character.		
271.0 627.5 [‡] 1063.9 [‡] 1598.7 [‡] 2210.5 [‡]	(9/2 ⁻) (13/2 ⁻) (17/2 ⁻) (21/2 ⁻)	Configuration = $\nu 2f_{7/2}^{2/2} + 0 + 0 \approx \nu 1_{13/2}^{2} + 0 \approx \nu 1_{13$		

[†] From $\gamma\gamma(\theta)$ data, assuming $J^{\pi}(g.s.)=(7/2^{-})$ and $\Delta\pi=$ no for stretched dipole and quadrupole transitions.

[‡] Band(A): Band built on (13/2⁻). Configuration= $\nu 1h_{9/2} \otimes (\text{first } 2^+ \text{ in } {}^{138}\text{Te}).$

$\gamma(^{139}\text{Te})$

Eγ	E_i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult.	Comments
271.0	271.0	$(9/2^{-})$	$0.0 (7/2^{-})$	D	Mult.: see comment for 356.5γ .
356.5	627.5	(13/2 ⁻)	271.0 (9/2-)	Q	Mult.: $(356.5+534.8\gamma+436.4\gamma)(271\gamma)(\theta)$: A ₂ =-0.08 3, A ₄ =-0.04 4 consistent with stretched quadrupole – stretched dipole cascade.
					Mult.: see comment for 436.4γ .
436.4	1063.9	(17/2 ⁻)	627.5 (13/2 ⁻)	Q	Mult.: $(436.4\gamma)(356.5\gamma)(\theta)$: A ₂ =+0.11 5, A ₄ =-0.05 5 consistent with stretched quadrupole – stretched quadrupole cascade.
534.8	1598.7	(21/2 ⁻)	1063.9 (17/2 ⁻)	Q	Mult.: $(534.8\gamma+436.4\gamma)(356\gamma)(\theta)$: $A_2 = +0.12$ 4, $A_4 = -0.04$ 4 consistent with stretched guadrupole – stretched guadrupole cascade.
611.8	2210.5		1598.7 (21/2-)		

²⁴⁸Cm SF decay 2000Ur06

Level Scheme

¹³⁹₅₂Te₈₇

¹³⁹₅₂Te₈₇