⁹⁹Ru(⁴⁸Ti,A2P2NG) 2008Pa36

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	P. K. Joshi, B. Singh, S. Singh, A. K. Jain	NDS 138, 1 (2016)	15-Oct-2016			

2008Pa36: E=240 MeV beam provided by ALPI accelerator at Legnaro. 114 Sn(32 S, α 2pn), E=160 MeV reaction also performed. Measured Ey, Iy, yy-coin using EUROBALL III array. Detected charged particles using ISIS array. Measured lifetimes using Doppler-Shift Attenuation method. Comparisons with Tilted-Axis Cranking (TAC) model.

2008Pa36 give B(M1) and B(E2) values. See Adopted dataset for these values deduced by the evaluators.

¹³⁹Sm Levels

E(level) [†]	J ^{π#}	T _{1/2} ‡	Comments
0.0 [@]	1/2+		
112.0 [@] 10	$3/2^{+}$		
267.6 [@] 15	5/2+		
457.8 ^{&} 18	$11/2^{-}$	10.7 s 6	$\%\varepsilon + \%\beta^+ = 6.3 5; \%$ IT=93.7 5
0			$T_{1/2}$ and decay modes from Adopted Levels.
1047.5 ^{&} 20	$15/2^{-}$		
1869.9 ^{&} 23	19/2-		
2819.5 ^{&} 24	$23/2^{-}$		
3253.4 ^{<i>a</i>} 24	$23/2^{-}$		
3325.6 ^{<i>a</i>} 25	25/2-		
3443.8 ^a 25	$\frac{27}{2}^{-}$	$0.60 m_{\odot} + 42 - 21$	
$3708.5^{a} 23$	29/2 31/2 ⁻	0.09 ps + 42 - 21 0.59 ps + 15 - 12	
4455^a 3	$33/2^{-}$	0.59 ps + 10 - 12 0.54 ps + 10 - 7	
4927 ^{<i>a</i>} 3	35/2-	0.34 ps + 8 - 6	
5440 ^a 3	37/2-	0.62 ps +42-21	
5931 ^a 3	(39/2-)	>0.7 ps	

[†] From least-squares fit to $E\gamma$ data, assuming an uncertainty of 0.3 keV when not stated.

[‡] From Doppler-shift attenuation method (2008Pa36).

[#] Proposed from band structure given in 2008Pa36. For low-lying levels, the assignments are from the Adopted Levels.

[@] Band(A): The g.s. band.

& Band(B): $11/2^{-}$ band. ^{*a*} Band(C): $\pi h_{11/2}^2 \otimes \nu h_{11/2}^{-1}$. Possibly a magnetic-rotational band with prolate or triaxial deformation.

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
72.0		3325.6	$25/2^{-}$	3253.4 23/2-			
112.0		112.0	$3/2^{+}$	$0.0 \ 1/2^+$			
118.4		3443.8	$27/2^{-}$	3325.6 25/2-			
155.6		267.6	$5/2^{+}$	112.0 3/2+			
190.2		457.8	$11/2^{-}$	267.6 5/2+	E3		Mult.: from Adopted Gammas.
264.7 2	24.5 2	3708.5	$29/2^{-}$	3443.8 27/2-	[M1]	0.1129	
337.0 2	17.9 17	4045.5	31/2-	3708.5 29/2-	[M1]	0.0595	
382.9 5	0.9 5	3708.5	$29/2^{-}$	3325.6 25/2-	[E2]	0.0270	
409.1 2	11.6 11	4455	33/2-	4045.5 31/2-	[M1]	0.0359	
433.9		3253.4	$23/2^{-}$	2819.5 23/2-			
472.4 2	7.09	4927	35/2-	4455 33/2-	[M1]	0.0249	

 $\gamma(^{139}\text{Sm})$

Continued on next page (footnotes at end of table)

				⁹⁹ Ru(⁴⁸ Ti,A2P2NG)		2P2NG)	2008Pa36 (continued)	
				$\gamma(^{139}\text{Sm})$ (continued)				
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	$lpha^{\dagger}$	
490.4 4	1.1 4	5931	$(39/2^{-})$	5440	$37/2^{-}$	[M1]	0.0226	
506.2		3325.6	$25/2^{-1}$	2819.5	$\frac{23}{2^{-}}$			
513.5 5	3.1 7	5440	37/2-	4927	$35/2^{-}$	[M1]	0.0201	
589.7	100	1047.5	$15/2^{-}$	457.8	$11/2^{-}$			
601.7 4	3.0 5	4045.5	$31/2^{-}$	3443.8	$27/2^{-}$	[E2]		
746.3 7	3.4 9	4455	$33/2^{-}$	3708.5	$29/2^{-}$	[E2]		
822.4		1869.9	$19/2^{-}$	1047.5	$15/2^{-}$			
881.8 4	4.1 8	4927	$35/2^{-}$	4045.5	$31/2^{-}$	[E2]		
949.8		2819.5	$23/2^{-}$	1869.9	$19/2^{-}$			
985.76	2.8 7	5440	37/2-	4455	$33/2^{-}$	[E2]		
1003.2 6	2.3 5	5931	$(39/2^{-})$	4927	$35/2^{-}$	[E2]		
1383.3		3253.4	$23/2^{-}$	1869.9	$19/2^{-}$			

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

2

 $^{139}_{62}\mathrm{Sm}_{77}$

⁹⁹**Ru**(⁴⁸**Ti,A2P2NG**) 2008Pa36

¹³⁹₆₂Sm₇₇

5/2+

<u>3/2</u>+

1/2+