Adopted Levels

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	P. K. Joshi, B. Singh, S. Singh, A. K. Jain	NDS 138, 1 (2016)	15-Oct-2016

 $Q(\beta^{-})=10420 SY; S(n)=3320 SY; S(p)=12220 SY; Q(\alpha)=-5690 SY$ 2012Wa38

Estimated uncertainties (2012Wa38): $\Delta Q(\beta^{-})=400$, $\Delta S(n)=500$, $\Delta S(p)=720$, $\Delta Q(\alpha)=570$ (2012Wa38).

S(2n)=5900 500, Q(β⁻n)=7840 400 (syst,2012Wa38). S(2p)=28230 (theory,1997Mo25).

1994Be24: ¹³⁹Sb produced and identified in Pb(²³⁸U,X) reaction at E=750 MeV/nucleon at GSI facility. Target thickness=1.25 g/cm². Measured projectile fission fragment yields, mass, charge, and velocity distributions, and production σ . Fragment separator, energy-loss, tof techniques.

1998Do08: $Pb(^{238}U,X)$ E=750 MeV/nucleon at GSI, measured fractional independent yield of the low-energy fission component. This work is from the same lab as 1994Be24.

2011Ar18: ¹³⁹Sb produced by bombardment of UC_x target with 1 GeV protons followed by selective ionization with the Resonance Ionization Laser Ion Source (RILIS) and high-resolution mass separator at ISOLDE-CERN facility. Measured delayed neutrons to deduce half-life and P_n (delayed neutron emission probability). Comparison with calculations for spherical and nonspherical shapes.

2015Le14: decay of ¹³⁹Sb to ¹³⁸Te through β^- n decay mode studied by γ -ray spectroscopy.

¹³⁹Sb Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0	(7/2 ⁺)	93 ms <i>13</i>	