History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	P. K. Joshi, B. Singh, S. Singh, A. K. Jain	NDS 138, 1 (2016)	15-Oct-2016

 $Q(\beta^{-})=-5120 \ 17$; S(n)=10630 30; S(p)=2771 18; Q(α)=1010 18 2012Wa38 S(2n)=19570 19, S(2p)=8877 16 (2012Wa38).

While band structures here are adopted from 2011Zh47, differences between the studies by 2011Zh47 and 2009Dh01 carried out using identical reactions and similar γ -ray counting systems are pointed out as follows:

1. The yrast band reported by 2011Zh47 consisting of $E\gamma s 966.3 - 800.7 - 874.8 - 942.6 - 663.0 - 781.3 - 916.8$ is reported in 2009Dh01 as $E\gamma s 967 - 876 - 801 - 663 - 781 - 943 - 1036$. In addition, $E\gamma 1036$ keV at the top of the band is not observed by 2011Zh47.

2. The sequence of Eys 237.8 - 139.0 - 212.0 - 268.6 - 228.0 in 2011Zh47, is observed as 238 - 212 - 138 - 268 - 228 by 2009Dh01.

3. The band number 9 of 2011Zh47 consisting of Eys 244.3 – 274.4 – 320.2 – 369.5 – 432.4 – 497.0 which was found not connected to any other level of ¹³⁹Pm, was observed to be connected to band number 1 in 2009Dh01.

- 4. Band 4 of 2011Zh47 of Eys 104.2 329.6 316.7 473.0 533.0 657.7 is reported by 2009Dh01 as 104.0 329 316 473 454 1009 533.
- 5. Band 5 of 2011Zh47 consisting of Eys: 224.4 262.1 454.3 394.5 602.1 313.3 has been reported by 2009Dh01 as 262 224 394 313.

139Pm Levels

Bands: adopted from 2011Zh47.

Levels 188.7, 654.7, 1405.8, 2352.4 have been assigned the configuration $\pi 3/2[541]$, $\alpha = -1/2$ in 1987Xu01. Levels 778.9, 1375.9,1405.8,2190.9 have been assigned configuration $\pi 3/2[541]$, $\alpha = +1/2$ in 1987Xu01.

Cross Reference (XREF) Flags

		A ¹³⁹ F B ¹³⁹ S C ¹³⁹ S	Pm IT deca Sm ε decay Sm ε decay	y (180 ms) D $^{116}Cd(^{27}Al,4n\gamma)$ E=110-142 MeV (2.57 min) E $^{116}Cd(^{27}Al,4n\gamma)$:ciae (10.7 s) F $^{116}Cd(^{27}Al,4n\gamma)$:iuac
E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$	XREF	Comments
0.0	(5/2)+	4.15 min 5	ABCDEF	$%ε+%β^+=100$ J ^π : allowed ε decay to 3/2 ⁺ . 5/2 ⁺ from systematics of Z=61, N<86 nuclei. T _{1/2} : from 1977De06 (γ's). Other: 4.0 min 2 (1968Bl14).
188.7 [#] 3	(11/2) ⁻	180 ms 20	A CDEF	%IT=100; %ε+%β ⁺ <0.05 J ^π : E3 γ to (5/2) ⁺ . T _{1/2} : from 10.7-s ε decay. Upper limit for %ε+%β ⁺ deduced from systematics of log <i>ft</i> values in 1998Si17: for ΔJ=0, Δπ=no, centroid log <i>ft</i> =6.1 with a width of 0.9 for 352 cases of odd-A nuclei. Minimum log <i>ft</i> =4.1 for such transitions gives %ε+%β ⁺ <0.7.
227.96 12	$(5/2^+, 7/2^+)$		В	J^{π} : $\geq 5/2$ from lack of direct ε feeding from (1/2 ⁺). Probably 5/2,7/2 since the level is fed by γ 's from other low-spin levels, π =+ from syst of N=78 nuclei.
273.73 9	$(3/2)^+$		В	J^{π} : E2(+M1) γ to (5/2) ⁺ . log ft=6.4 via 1/2 ⁺ .
306.69 9	$(1/2,3/2)^+$		В	J^{π} : E2 γ to $(5/2)^+$. log ft=5.6 via $1/2^+$.
462.66 11	$(1/2,3/2)^+$		В	J^{π} : M1(+E2) γ to (3/2) ⁺ . log ft=6.8 via 1/2 ⁺ .
589.48 <i>14</i>			В	
596.31 <i>12</i>	$(1/2,3/2)^+$		В	J^{π} : M1,E2 γ to (5/2) ⁺ . log ft=6.1 via 1/2 ⁺ .
654.6 [#] 4 655.30 <i>17</i>	(15/2 ⁻)		DEF B	
721.36 18	$(1/2, 3/2)^+$		В	J^{π} : M1(+E2) γ to (3/2) ⁺ . log <i>ft</i> =6.5 via 1/2 ⁺ .

Continued on next page (footnotes at end of table)

¹³⁹Pm Levels (continued)

E(level)	J^{π}	XREF	Comments
782.03 9	$(1/2,3/2)^+$	В	J^{π} : M1.E2 γ 's to $(3/2)^+$ and $(5/2)^+$, log ft=5.8 via $1/2^+$.
785.7 [@] 4	$(13/2^{-})$	DEF	E(level): level reported at 778.9 keV in 1987Xu01 and 2009Dh01 with reversed ordering of
85571		R	the $390-397 \gamma$ cascade.
862 10 18		B	
885 59 23		B	
925 85 18		B	
929 59 17		B	
1015.75 15		B	
1111.4 3		B	
1126.87 22		В	
1183.76 17		В	
1207.4 3		В	
1284.5 <mark>&</mark> 5	$(15/2^{-})$	Е	
1366.3 3	(10/=)	В	
1376 1 @ 4	$(17/2^{-})$	DFF	
1406 1# 4	$(10/2^{-})$	DEE	
1400.1 4	(19/2)	R	
1461 59 25		R	
1463.1.3		B	
1502.1 3		B	
1526.65 23		В	
1595.8 4		В	
1666.4 <i>3</i>		В	
1714.0 ^e 4	$(15/2^+)$	DEF	
1719.9 4		В	
1896.1 <i>11</i>		F	
1902.9 <mark>&</mark> 4	$(19/2^{-})$	E	
1951.9 ^e 4	$(17/2^+)$	DEF	
1981.8 <i>3</i>		В	
2043.7 3		В	
2074.6 4		В	
2090.7 ^e 4	$(19/2^+)$	E	Reported as 2163 keV level $(19/2^+)$ in 1987Xu01.
2107.7° 4	$(19/2^{+})$	DEF	
2190.8 ^{^w} 4	$(21/2^{-})$	DEF	
2210.01 19		В	
2302.6 ^e 4	$(21/2^+)$	DEF	
2352.5 [#] 4	$(23/2^{-})$	DEF	
2518.3 ^d 5	$(21/2^+)$	EF	
2571.3 ^e 4	$(23/2^+)$	DEF	
2614.7 6		E	
2691.3 [°] 4	$(23/2^+)$	DEF	
2768.4 ^{&} 5	$(23/2^{-})$	EF	
2799.3 ^e 5	$(25/2^+)$	DEF	
2964.8 ^d 4	$(25/2^+)$	DEF	
3024.5 5		DE	
3158.0 ^a 4	$(25/2^{-})$	DEF	
3200.2 [@] 4	$(25/2^{-})$	Е	
3236.1 <i>3</i>		В	
3262.4 ^{<i>a</i>} 4	$(27/2^{-})$	DEF	
3281.4 ^C 4	$(27/2^+)$	DEF	
3307.6 11		F	
3390.6 6		EF	

¹³⁹Pm Levels (continued)

E(level)	$J^{\pi \dagger}$	XREF	Comments
3417.0 [#] 4	$(27/2^{-})$	DEF	
3417.0+x		F	
3459.9 6		E	
3488.4 5		E	
3526.5 11		F	
5551.8 U	$(20/2^{\pm})$	L	
$3559.1^{\circ} 4$	$(29/2^+)$	DEF	
3611.3.7	(29/2)	DEF	
3679.5.5		F	
3749 5 6 5	$(27/2^{-})$	- F	
3863.7 5	(21/2)	F	
3908.7 ^{<i>a</i>} 4	$(31/2^{-})$	DEF	
3987.0 11		F	
4056.4 [°] 5	$(31/2^+)$	EF	Reported as 4155.3 keV (31/2 ⁺) in 1987Xu01.
4083.3 6		EF	
4086.0+x		r F	
4089.0 5		г F	
4279.6 6		E	
4336.5 4		F	
4381.7 ^{<i>a</i>} 4	$(33/2^{-})$	DEF	
4383.3 [#] 4	$(31/2^{-})$	DEF	
4409.5 4		F	
4418.4 ^d 5	$(33/2^+)$	DEF	
4467.5 5		F	
4487.1 5		F	
4503.6 5		E	
4342.5 0 4878 3±x		E F	
$4914.6^{a}.5$	$(35/2^{-})$	EF	Reported as 4833.3 keV $(35/2^{-})$ in 1987Xu01.
4923.2 7	(00/2)	EF	
4932.2 [°] 6	$(35/2^+)$	EF	Reported as 5259.3 in 2009Dh01.
5039.7 5		F	
5092.3 8		E	
5105.9 5	(0.5./0.)	F _	
5183.20 5	$(35/2^{-})$	E	Reported as $5258.8 \text{ keV} (35/2^{-})$ in $198/Xu01$.
5184.0" 4	$(35/2^{-})$	E	
5236.1 0		E FF	
5249.1.7		E	
5306.2 5		F	
5336.9 7		Е	
5407.5 <mark>b</mark> 5	$(37/2^{-})$	Е	
5442.0+x		F	
5505.5 ^d 6	$(37/2^+)$	DEF	
5516.7 5		F	
5572.3 ^{<i>a</i>} 7	$(37/2^{-})$	E	
5635.8 7	(20)	E	
5669.6° 6	(39/2 ⁻)	E	
5128.2 5 5992 8 12		ין ד	
5996.8 [°] 8	$(39/2^+)$	Ē	Reported as $5874.8 (39/2^+)$ in 2009Dh01.
	/		

Continued on next page (footnotes at end of table)

¹³⁹Pm Levels (continued)

E(level)	$J^{\pi \dagger}$	XREF	Comments
6058.8 [#] 4	(39/2 ⁻)	DEF	The 874.8 – 800.7 cascade, decaying out of this level was reported in reverse order in 1987Xu01.
6123.9 <mark>b</mark> 7	$(41/2^{-})$	Е	
6220.3 7		E	
6340.9+x		F	
6518.4 <mark>6</mark> 8	$(43/2^{-})$	E	
6704.9 8		EF	
6719.3 8		E	Reported as 6722.9 (43/2 ⁻) in 2009Dh01.
7001.4 [#] 4	$(43/2^{-})$	E	Reported as 6722.4 (43/2 ⁻) in 1987Xu01.
7094.4 6		E	
7120.5 <mark>6</mark> 9	$(45/2^{-})$	E	
7433.8 <mark>b</mark> 10	$(47/2^{-})$	Е	
7664.4 [#] 4	$(47/2^{-})$	E	Reported as 7503 keV (47/2 ⁻) in 1987Xu01 and 2009Dh01.
8445.7 [#] 5	$(51/2^{-})$	DEF	
9177.5 6		EF	
9362.5 [#] 8	$(55/2^{-})$	Е	Reported as 9480 keV (55/2 ⁻) in 1987Xu01 and 2009Dh01.
9481.5 6		F	-
9901.0 8		E	
10592		D	1112 keV E γ , was observed in 1987Xu01 but authors were uncertain.
yf	J	E	
$244.3 + y^{f} 5$	J+1	Е	
518.7+y ^f 6	J+2	E	
838.9+y ^f 7	J+3	Е	
1208.4+y ^f 8	J+4	Е	
$1640.8 + v^{f} 8$	J+5	Е	
2137.8 + y f 0	I+6	F	
2157.01 y-)	010	-	

[†] For low-spin (J<11/2) states, assignments are from multipolarities deduced from ce data in 2.57-min ε decay, combined with log *ft* values. For high-spin (J≥11/2) data, the assignments are based on angular correlation (DCO) and angular distribution data (ADO ratios) from mainly (²⁷Al,4n γ) (2011Zh47), combined with band associations.

[‡] From γ (t) in (²⁷Al,4n γ), except as noted.

[#] Band(A): Yrast, $\Delta J=2$ band based on 11/2⁻. Two sharp band crossings are observed at $\hbar\omega=0.39$ and 0.45 MeV, first corresponding to alignment of h_{11/2} neutron pair and the second due to alignment of h_{11/2} proton pair.

- [@] Band(B): $\Delta J=2$ band based on $13/2^{-}$.
- & Band(C): $\Delta J=2$ band based on $15/2^-$.
- ^{*a*} Band(D): $\Delta J=1$ band based on 25/2⁻. Possible magnetic-dipole rotational band with tentative configuration $(\pi h_{11/2}) \otimes (\nu h_{11/2})^{-2}$ (2011Zh47).
- ^b Band(E): $\Delta J=1$ band based on 35/2⁻. Possible magnetic-dipole rotational band with tentative configuration $(\pi h_{11/2}) \otimes (\nu h_{11/2})^{-4}$ (2011Zh47).
- ^c Band(F): $\Delta J=2$ band based on $19/2^+$.
- ^d Band(G): $\Delta J=2$ band based on $21/2^+$.
- ^e Band(H): $\Delta J=1$ band based on $15/2^{(+)}$.
- ^{*f*} Band(I): γ sequence.

					Ad	opted Levels	, Gamma	s (continued)		
						<u> </u>	v(¹³⁹ Pm)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [†]	δ	α #	$I_{(\gamma+ce)}$	Comments
188.7	(11/2) ⁻	188.7 [‡] 3	100 [‡]	0.0	(5/2)+	E3 [‡]		1.494 24		$\alpha(K)=0.668 \ 10; \ \alpha(L)=0.638 \ 11; \ \alpha(M)=0.1503$ 25; \ \alpha(N)=0.0329 \ 6; \ \alpha(O)=0.00420 \ 7 \ \alpha(P)=3.37 \times 10^{-5} \ 5 P(F2)(W) = 0.27 \ 4
227.96	(5/2+,7/2+)	228.0 2	100	0.0	(5/2)+	[M1,E2]		0.143 <i>13</i>		$\begin{array}{l} \alpha(K)=0.115 \ 17; \ \alpha(L)=0.022 \ 4; \ \alpha(M)=0.0048 \ 9; \\ \alpha(N)=0.00106 \ 19; \ \alpha(O)=0.000151 \ 19 \\ \alpha(P)=6 \ 8\times 10^{-6} \ 17 \end{array}$
273.73	$(3/2)^+$	273.7 2	100	0.0	(5/2)+	E2(+M1)	≥0.94	0.078 6		$\alpha(K) = 0.063 \ 7; \ \alpha(L) = 0.0123 \ 5; \ \alpha(M) = 0.00270$ 13; \alpha(N) = 0.00060 \ 3; \alpha(O) = 8.48 \times 10^{-5} \ 19 \alpha(P) = 3.6 \times 10^{-6} \ 6
306.69	(1/2,3/2)+	33.0 1		273.73	(3/2)+	(M1)		6.00 10	8.9 12	$ce(L)/(\gamma+ce)=0.675 7; ce(M)/(\gamma+ce)=0.144 3;ce(N)/(\gamma+ce)=0.0325 7; ce(O)/(\gamma+ce)=0.00489 11; ce(P)/(\gamma+ce)=0.000306 7 \alpha(L)=4.73 8; \alpha(M)=1.010 4; \alpha(O)=0.0342 6;\alpha(P)=0.00214 4$
		306.7 2	100 7	0.0	(5/2)+	E2		0.0507		$\alpha(K) = 0.0399 \ 6; \ \alpha(L) = 0.00843 \ 12; \ \alpha(M) = 0.00186 3; \ \alpha(N) = 0.000412 \ 6; \ \alpha(O) = 5.74 \times 10^{-5} \ 9 \alpha(P) = 2.18 \times 10^{-6} \ 3$
462.66	(1/2,3/2)+	188.9 <i>1</i>	100 6	273.73	(3/2)+	M1(+E2)	≤1.0	0.256 5		$\alpha(K) = 0.209 \ 12; \ \alpha(L) = 0.036 \ 6; \ \alpha(M) = 0.0079 \ 14; \alpha(N) = 0.0018 \ 3; \ \alpha(O) = 0.00026 \ 4 \alpha(P) = 1.28 \times 10^{-5} \ 14$
589.48	(1/2 3/2)+	234.6 <i>3</i> 315.7 <i>2</i> 361.5 <i>3</i> 589.5 <i>2</i> 322 6 <i>3</i>	41 <i>14</i> 73 <i>12</i> 27 8 100 <i>12</i> 11 4 23	227.96 273.73 227.96 0.0 273.73	$(5/2^+,7/2^+)$ $(3/2)^+$ $(5/2^+,7/2^+)$ $(5/2)^+$ $(3/2)^+$					
570.51	(1/2,3/2)	368.4 <i>3</i> 596.3 <i>2</i>	3.6 <i>14</i> 100 <i>9</i>	2273.75 227.96 0.0	$(5/2)^{+}$ $(5/2^{+},7/2^{+})^{+}$ $(5/2)^{+}$	M1,E2		0.010 <i>3</i>		α (K)=0.0087 23; α (L)=0.00124 23; α (M)=0.00027 5; α (N)=6.0×10 ⁻⁵ 11; α (O)=8.9×10 ⁻⁶ 18 α (P)=5.3×10 ⁻⁷ 16
654.6 655.30	(15/2 ⁻)	465.9 <i>1</i> 381.4 <i>4</i> 427.5 <i>4</i> 655.3 <i>2</i>	100 3.0 <i>10</i> 5.0 <i>20</i> 100 <i>1</i> 5	188.7 273.73 227.96 0.0	$(11/2)^{-}$ $(3/2)^{+}$ $(5/2^{+},7/2^{+})$ $(5/2)^{+}$	Q				
721.36	(1/2,3/2)+	447.5 2	100	273.73	(3/2)+	M1(+E2)	≤0.84	0.0243 21		$\begin{array}{l} \alpha(\mathbf{K}) = 0.0206 \ I9; \ \alpha(\mathbf{L}) = 0.00290 \ I5; \\ \alpha(\mathbf{M}) = 0.00062 \ 3; \ \alpha(\mathbf{N}) = 0.000140 \ 7; \\ \alpha(\mathbf{O}) = 2.09 \times 10^{-5} \ I2 \\ \alpha(\mathbf{P}) = 1.29 \times 10^{-6} \ I4 \end{array}$
782.03	(1/2,3/2)+	319.2 <i>3</i> 475.3 <i>2</i> 508.5 <i>3</i>	9.0 27 36 4 68 16	462.66 306.69 273.73	$(1/2,3/2)^+$ $(1/2,3/2)^+$ $(3/2)^+$	M1,E2		0.015 4		$\alpha(K) = 0.013 \ 4; \ \alpha(L) = 0.0019 \ 3; \ \alpha(M) = 0.00041 \ 6;$

S

Т

	Adopted Levels, Gammas (continued)									
	γ ⁽¹³⁹ Pm) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J^{π}_{f}	Mult. [†]	Comments			
	ι				J		$\alpha(N)=9.2\times10^{-5}$ 14; $\alpha(O)=1.36\times10^{-5}$ 24			
							$\alpha(P)=7.9\times10^{-7} 24$			
782.03	$(1/2, 3/2)^+$	554.2 <i>3</i>	10.5 21	227.96	$(5/2^+, 7/2^+)$					
		782.0 <i>1</i>	100 16	0.0	$(5/2)^+$	M1,E2				
785.7	$(13/2^{-})$	597.0 <i>3</i>	100	188.7	$(11/2)^{-}$	D				
855.7		582.0 3	100	273.73	$(3/2)^+$					
862.19		588.4 4	3.8 19	273.73	$(3/2)^+$					
005 50		862.2 2	100 12	0.0	$(5/2)^{+}$					
885.59		578.94	30 10 40 15	273 73	$(1/2, 5/2)^{+}$					
		886.0.5	100 20	273.73	$(5/2)^+$					
925.85		329 5 4	28 11	596 31	$(1/2, 3/2)^+$					
/20.00		463.1 3	89 22	462.66	$(1/2,3/2)^+$					
		619.2 3	100 22	306.69	$(1/2,3/2)^+$					
		652.2 <i>3</i>	72 22	273.73	$(3/2)^+$					
929.59		333.4 4	15 5	596.31	$(1/2, 3/2)^+$					
		467.0 <i>3</i>	19 5	462.66	$(1/2,3/2)^+$					
		622.9 4	6.3 25	306.69	$(1/2,3/2)^+$					
		655.8 2	100 15	273.73	$(3/2)^+$					
1015.75		419.7 3	15 4	596.31	$(1/2,3/2)^+$					
		709.0 4	83	306.69	$(1/2,3/2)^+$					
		/41.9.3	100 14	2/3./3	$(3/2)^{+}$					
1111 /		648.8.3	100 27	462.66	(3/2) $(1/2 3/2)^+$					
1111.4		837.6.4	27 7	273 73	$(3/2)^+$					
1126.87		853.1 3	21.5	273.73	$(3/2)^+$					
		1126.9 3	100 27	0.0	$(5/2)^+$					
1183.76		587.3 4	6.1 20	596.31	$(1/2,3/2)^+$					
		720.7 4	10 4	462.66	$(1/2,3/2)^+$					
		877.2 <i>3</i>	20 4	306.69	$(1/2,3/2)^+$					
		910.1 2	100 14	273.73	$(3/2)^+$					
1207.4		744.8 3	100 17	462.66	$(1/2,3/2)^+$					
1004.5	(15/2-)	933.6 4	67 17	273.73	$(3/2)^{+}$					
1284.5	(15/2)	498.9 5	100	/85./	(13/2)					
1300.3		1138 2 1	100 20 80 40	227.06	$(1/2,3/2)^{-1}$ (5/2+7/2+)					
1376 1	$(17/2^{-})$	590.4.3	23 7 20	785 7	(3/2, 7/2)	0				
1570.1	(1//2)	721 5 1	100.6	654.6	$(15/2^{-})$	х D				
1406.1	$(19/2^{-})$	751.4 1	100 0	654.6	$(15/2^{-})$	0				
1441.87	(720.4 4	14 5	721.36	$(1/2,3/2)^+$	¢				
		1135.2 2	100 18	306.69	$(1/2,3/2)^+$					
		1168.1 <i>3</i>	86 14	273.73	$(3/2)^+$					
		1441.9 <i>3</i>	64 18	0.0	$(5/2)^+$					

6

From ENSDF

$\gamma(^{139}\text{Pm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [†]	Comments
1461.59		679.3 4	38 15	782.03	$(1/2,3/2)^+$		
		1188.0 3	100 23	273.73	$(3/2)^+$		
1463.1		741.4 4	38 13	721.36	$(1/2,3/2)^+$		
		1156.7 4	100 38	306.69	$(1/2,3/2)^+$		
1502.1		1228.3 4	50 17	273.73	$(3/2)^+$		
		1274.1 3	100 34	227.96	$(5/2^+, 7/2^+)$		
1526.65		930.1 <i>3</i>	100 16	596.31	$(1/2,3/2)^+$		
		1220.2 3	28 8	306.69	$(1/2,3/2)^+$		
1595.8		1322.1 <i>3</i>	100	273.73	$(3/2)^+$		
1666.4		1359.7 <i>3</i>	39 11	306.69	$(1/2, 3/2)^+$		
		1392.6 4	100 22	273.73	$(3/2)^+$		
1714.0	$(15/2^+)$	1059.4 <i>3</i>	100	654.6	$(15/2^{-})$	D	
1719.9		1446.2 <i>4</i>	100	273.73	$(3/2)^+$		
1896.1		490.0	100	1406.1	$(19/2^{-})$		
1902.9	$(19/2^{-})$	526.8 <i>3</i>	100 7	1376.1	$(17/2^{-})$	D	
		618.4 5	43 7	1284.5	$(15/2^{-})$	Q	
		1248.1 5	26.2 24	654.6	$(15/2^{-})$		
1951.9	$(17/2^+)$	237.8 5	11.4 <i>19</i>	1714.0	$(15/2^+)$	(D)	
		1297.3 <i>1</i>	100 3	654.6	$(15/2^{-})$	D	
1981.8		1392.2 5	3.1 11	589.48			
		1675.2 <i>3</i>	100 17	306.69	$(1/2,3/2)^+$		
2043.7		1322.3 4	27 9	721.36	$(1/2, 3/2)^+$		
		1770.0 <i>3</i>	100 27	273.73	$(3/2)^+$		
2074.6		1768.0 4	100 34	306.69	$(1/2, 3/2)^+$		
		1800.7 5	23 6	273.73	$(3/2)^+$		
2090.7	$(19/2^+)$	139.0 <i>3</i>	100 12	1951.9	$(17/2^+)$		
		714.6 5	20.7 24	1376.1	$(17/2^{-})$		
2107.7	$(19/2^+)$	701.6 <i>1</i>	100 4	1406.1	$(19/2^{-})$	D	
		731.5 5	10.1 15	1376.1	$(17/2^{-})$		
2190.8	$(21/2^{-})$	784.6 <i>1</i>	95 12	1406.1	$(19/2^{-})$	D	
		814.8 <i>1</i>	100 14	1376.1	$(17/2^{-})$	Q	
2210.01		1903.2 <i>3</i>	28 7	306.69	$(1/2,3/2)^+$		
		1936.6 5	21 7	273.73	$(3/2)^+$		
		1982.0 5	12 5	227.96	$(5/2^+, 7/2^+)$		
		2210.0 <i>3</i>	100 14	0.0	$(5/2)^+$		
2302.6	$(21/2^+)$	212.0 <i>1</i>	100 7	2090.7	$(19/2^+)$	(D)	γ transition observed only in 2011Zh47.
		896.0 <i>3</i>	52 4	1406.1	$(19/2^{-})$	D	
2352.5	$(23/2^{-})$	946.5 1	100	1406.1	$(19/2^{-})$	Q	
2518.3	$(21/2^+)$	1112.2 3	100	1406.1	$(19/2^{-})$	(D)	
2571.3	$(23/2^+)$	268.6 1	100	2302.6	$(21/2^+)$	D	
2614.7	(22) (21)	1208.6 5	100	1406.1	$(19/2^{-})$		
2691.3	$(23/2^+)$	338.5 5	22.2 15	2352.5	$(23/2^{-})$	D	
		583.7 1	100 5	2107.7	$(19/2^{+})$	Q	

¹³⁹₆₁Pm₇₈-7

γ (¹³⁹Pm) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
2768.4	$(23/2^{-})$	865.4 3	100	1902.9	$(19/2^{-})$	Q	
2799.3	$(25/2^+)$	228.0 <i>3</i>	100 6	2571.3	$(23/2^+)$	D	
		497.1 2	57 10	2302.6	$(21/2^+)$		γ transition observed only in 1987Xu01.
2964.8	$(25/2^+)$	393.3 <i>3</i>	54 8	2571.3	$(23/2^+)$	D	
		446.4 5	22 3	2518.3	$(21/2^+)$	(Q)	
		612.3 <i>1</i>	100 6	2352.5	$(23/2^{-})$	D	
		661.8 5	<8.4	2302.6	$(21/2^+)$		
3024.5		225.1		2799.3	$(25/2^+)$		γ transition observed only in 1987Xu01.
		453.2 <i>3</i>		2571.3	$(23/2^+)$		
3158.0	$(25/2^{-})$	805.7 <i>3</i>	25 4	2352.5	$(23/2^{-})$	D	γ transition observed only in 2011Zh47.
		967.1 <i>1</i>	100 5	2190.8	$(21/2^{-})$	Q	
3200.2	$(25/2^{-})$	847.8 <i>5</i>	<48	2352.5	$(23/2^{-})$		
		1009.4 3	100 5	2190.8	(21/2 ⁻)	Q	
3236.1		2929.0 10	24 12	306.69	$(1/2,3/2)^+$		
		2962.4 <i>3</i>	100 24	273.73	$(3/2)^+$		
3262.4	$(27/2^{-})$	62.1 5		3200.2	$(25/2^{-})$	_	γ transition observed only in 2011Zh47.
		104.2 3	22 3	3158.0	$(25/2^{-})$	D	
		909.9 1	100 5	2352.5	$(23/2^{-})$	Q	
3281.4	$(27/2^+)$	590.1 <i>I</i>	100	2691.3	$(23/2^+)$	Q	
3307.6		955.1	100	2352.5	$(23/2^{-})$		
3390.6	(07/0-)	591.3 3	100	2799.3	$(25/2^{+})$	0	
3417.0	$(27/2^{-})$	1064.5 1	100	2352.5	$(23/2^{-})$	Q	
3459.9		1107.4 5	100	2352.5	(23/2)		
3488.4		523.5 5	100	2964.8	$(25/2^+)$		
3531.8	$(20/2^{\pm})$	732.5 3	100	2799.3	$(25/2^+)$		
3559.1	$(29/2^{+})$	277.9 5	< 6.2	3281.4	$(27/2^+)$	0	
2502.0	(20)(2-)	594.3 I	100 /	2964.8	$(25/2^{+})$	Q	
3592.0	(29/2)	329.0 I	100	3262.4	(27/2)	D	
2670.5		J00.0 J	100	3024.3 2252.5	$(22/2^{-})$		
30/9.5	$(27/2^{-1})$	1327.0 3	100	2352.5	(23/2)	0	
3749.5	(21/2)	981.0 3	100	2708.4	(23/2)	Q	
2008 7	$(21/2^{-})$	21671	100	3202.4	(21/2)	D	
3908.7	(31/2)	510.7 I 646 2 5	10.3.23	3392.0	(29/2)	0	
3987.0		570.0	10.5 25	3417.0	$(27/2^{-})$	V	
4056.4	$(31/2^+)$	497 4 5	50.5	3550 1	$(29/2^+)$	D	
+050.+	(31/2)	567.9.5	20 4	3488 4	$(2\eta_{2})$	D	
		775.0.3	100 7	3281.4	$(27/2^{+})$	0	
4083 3		551 4 5	31 3	3531.8	(21/2)	X	
1005.5		692.7.3	100 11	3390.6			
4086 0+x		669.0.1	100 11	3417 0+x		(0)	
4089.6		672.6.3	100	3417.0	$(27/2^{-})$		
4224.4		943.0.5	100	3281.4	$(27/2^+)$		
		21010 0	100	2201.1	(_,)		

 ∞

$\gamma(^{139}\text{Pm})$	(continued)
---------------------------	-------------

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [†]
4279.6		687.5 5	100	3592.0	$(29/2^{-})$	
4336.5		744.5 <i>1</i>	100	3592.0	$(29/2^{-})$	
4381.7	$(33/2^{-})$	473.0 <i>1</i>	100 4	3908.7	$(31/2^{-})$	D
		790	<12	3592.0	$(29/2^{-})$	
4383.3	$(31/2^{-})$	633.7 <i>3</i>	30.1 24	3749.5	$(27/2^{-})$	Q
		966.3 <i>1</i>	100 5	3417.0	$(27/2^{-})$	Q
4409.5		850.4 2	100 24	3559.1	$(29/2^+)$	
		883.0	<59	3526.5		
4418.4	$(33/2^+)$	859.3 <i>3</i>	100	3559.1	$(29/2^+)$	Q
4467.5		1050.5 <i>3</i>	100	3417.0	$(27/2^{-})$	
4487.1		928.0 <i>3</i>	100	3559.1	$(29/2^+)$	
4503.6		911.6 5		3592.0	$(29/2^{-})$	
		1086.7 5	100	3417.0	$(27/2^{-})$	
4542.3		1125.3 5	100	3417.0	$(27/2^{-})$	
4878.3+x		792.3 2	100	4086.0+x		
4914.6	$(35/2^{-})$	533.0 <i>3</i>	100 11	4381.7	$(33/2^{-})$	D
		1005.6 5	25 2	3908.7	$(31/2^{-})$	
4923.2		1014.5 <i>3</i>	100	3908.7	$(31/2^{-})$	D
4932.2	$(35/2^+)$	875.8 <i>3</i>	100	4056.4	$(31/2^+)$	Q
5039.7		658.0 <i>3</i>	100	4381.7	$(33/2^{-})$	
5092.3		1009.0 5	100	4083.3		
5105.9		696.4 <i>1</i>	100	4409.5		
5183.2	$(35/2^{-})$	800 1	>69	4383.3	$(31/2^{-})$	
		801.6 <i>3</i>	100 11	4381.7	$(33/2^{-})$	D
		903.5 5	15 2	4279.6		
		1274.3 5	31.5 19	3908.7	$(31/2^{-})$	Q
5184.0	$(35/2^{-})$	800.7 <i>1</i>	100	4383.3	$(31/2^{-})$	Q
5236.1		854.5 5	100 7	4381.7	$(33/2^{-})$	
		1327.4 5	60 <i>33</i>	3908.7	$(31/2^{-})$	
5248.8		745.2 5	100	4503.6		
5249.1		830.7 5	100	4418.4	$(33/2^+)$	
5306.2		922.9 <i>3</i>	100	4383.3	$(31/2^{-})$	
5336.9		955.2 5	100	4381.7	$(33/2^{-})$	
5407.5	$(37/2^{-})$	224.4 <i>3</i>	100 12	5183.2	$(35/2^{-})$	D
		492.9 5	12 7	4914.6	$(35/2^{-})$	
5442.0+x		563.7 2	100	4878.3+x		
5505.5	$(37/2^+)$	1087.1 <i>3</i>	100	4418.4	$(33/2^+)$	Q
5516.7		1608.0 <i>3</i>	100	3908.7	$(31/2^{-})$	
5572.3	$(37/2^{-})$	657.7 5	100	4914.6	$(35/2^{-})$	(D)
5635.8		1254.1 5	100	4381.7	$(33/2^{-})$	_
5669.6	$(39/2^{-})$	262.1 3	100	5407.5	$(37/2^{-})$	D
5728.2		622.3 2	100	5105.9		
5992.8		744 <i>1</i>	100	5248.8		

9

						Adopte	d Levels, Gammas (continued)
							$\gamma(^{139}\text{Pm})$ (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [†]	Comments
5996.8	$(39/2^+)$	1064.6 5	100	4932.2	$(35/2^+)$	(Q)	
6058.8	$(39/2^{-})$	874.8 <i>1</i>	100	5184.0	$(35/2^{-})$	Q	
6123.9	$(41/2^{-})$	454.3 <i>3</i>	100	5669.6	$(39/2^{-})$	D	
6220.3		971.5 5	92 25	5248.8			
		1036 <i>1</i>	100 25	5184.0	$(35/2^{-})$		
6340.9+x		898.9 <i>3</i>	100	5442.0+x			
6518.4	$(43/2^{-})$	394.5 <i>3</i>	100	6123.9	$(41/2^{-})$	D	
6704.9		1199.4 5	100	5505.5	$(37/2^+)$		
6719.3		1213.8 5	100	5505.5	$(37/2^+)$		
7001.4	$(43/2^{-})$	781 <i>I</i>	37 <i>3</i>	6220.3			
		942.6 <i>1</i>	100 7	6058.8	$(39/2^{-})$	Q	
7094.4		1035.5 5	100	6058.8	$(39/2^{-})$		
7120.5	$(45/2^{-})$	602.1 5	100	6518.4	$(43/2^{-})$	(D)	
7433.8	$(47/2^{-})$	313.3 5	100	7120.5	$(45/2^{-})$	(D)	
7664.4	$(47/2^{-})$	569.8 5	<11.2	7094.4			
		663.0 <i>1</i>	100 6	7001.4	$(43/2^{-})$	Q	
8445.7	$(51/2^{-})$	781.3 <i>3</i>	100	7664.4	$(47/2^{-})$	Q	γ from 2011Zh47. In 1987Xu01, this level was shown to depopulate by a 942 γ .
9177.5		731.8 <i>3</i>	100	8445.7	$(51/2^{-})$		
9362.5	$(55/2^{-})$	916.8 5	100	8445.7	$(51/2^{-})$	(Q)	
9481.5		1035.8 2	100	8445.7	$(51/2^{-})$		
9901.0		723.5 5	100	9177.5			
244.3+y	J+1	244.3 5	100	У	J		
518.7+y	J+2	274.4 3	100	244.3+y	J+1	D	
838.9+y	J+3	320.2 <i>3</i>	100	518.7+y	J+2	D	
1208.4+y	J+4	369.5 <i>3</i>	100	838.9+y	J+3	D	
1640.8+y	J+5	432.4 <i>3</i>	100	1208.4+y	J+4	D	
2137.8+y	J+6	497.0 <i>3</i>	100	1640.8+y	J+5	(D)	

[†] For low-spin (J<11/2) levels, values are from 2.57-min ε decay. For high-spin (J \ge 11/2), values are from (²⁷Al,4n γ):CIAE, which is considered by the evaluators as more reliable as the authors, in response to evaluators' queries, have considered, in detail, differences between their previous publication 2010Zh12 and 2009Dh01, culminating in 2011Zh47 publications with data details sent as private communication to the evaluators.

[‡] From 10.7-s ε decay.

[#] Theoretical values from BrIcc code. If $\delta(M2/E1)$ not given, value overlaps those for M1 and E2.

From ENSDF

Level Scheme

¹³⁹₆₁Pm₇₈

Level Scheme (continued)

Level Scheme (continued)

¹³⁹₆₁Pm₇₈

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

 $^{139}_{61}{\rm Pm}_{78}$

Level Scheme (continued)

¹³⁹₆₁Pm₇₈

¹³⁹₆₁Pm₇₈

¹³⁹₆₁Pm₇₈