History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	P. K. Joshi, B. Singh, S. Singh, A. K. Jain	NDS 138, 1 (2016)	15-Oct-2016	

2009Dh01: E=120 MeV; measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO) using Gamma Detector Array consisting of twelve 23% Compton-suppressed n-type HPGe detectors and a multiplicity filter consisting of 14 hexagonal BGO detectors at IUAC, New Delhi. Comparison with tilted axis cranking calculations.

¹³⁹Pm Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2}	Comments
0.0‡	$(5/2^+)^{\ddagger}$		
188 7 ^{‡C} 3	(3/2)	180 ms 20	$\%$ IT-100: $\%$ s+ $\%$ R^{+} <0.05
100.7* 5	11/2	100 1115 20	$T_{1/2}$ and decay mode from Adopted Levels.
654.6 ^C 4	$15/2^{-}$		
779.3 ^d 4	$13/2^{-}$		
1376.2 ^d 4	$17/2^{-}$		
1405.9 ^C 4	$19/2^{-}$		
1714.4 <mark>&</mark> 4	$15/2^{(+)}$		
1895.9 <i>11</i>			
1952.3 <mark>&</mark> 4	$17/2^{(+)}$		
2107.5 ^b 4	$19/2^{+}$		
2164.1 ^{&} 4	$19/2^{(+)}$		
2190.9 ^d 4	$21/2^{-}$		
2242.0 4			
2302.6 ^{&} 4	$21/2^{(+)}$		
2352.4 [°] 4	23/2-		
2518.4 4	21/2+		
2571.1 ^{<i>x</i>} 4	$23/2^{(+)}$		
2691.2 ⁰ 4	$23/2^{+}$		
2768.7 5	a = (a(1))		
2799.0 4	$25/2^{(+)}$		
2904.7^{4} 4	$25/2^{+}$		
3119.1° 4	21/2(*)		
$3158.1^{\circ} 4$ 3262.08 4	25/2		
3202.08 4	27/2		
3201.5 4	21/2		
3367.5 5			
3393.5 <mark>&</mark> 4	$29/2^{(+)}$		
3402.6 5	,		
3416.9 ^c 4	$27/2^{-}$		
3416.9+x ^f			Additional information 1.
3491.8 4			
3526.0° 11	20/2+		
3591 5 <u>8</u> 4	29/2-		
3679.4 5	27/2		
3763.0 <mark>&</mark> 5	$31/2^{(+)}$		
3863.3 5	,		
3908.0 ^g 4	$31/2^{-}$		
3986.9 11			

		¹³⁹ Pm Levels (continued)							
E(level) [†]	J ^{π#}	E(level) [†]	J ^{π#}	E(level) [†]	J ^{π#}	E(level) [†]	J ^{π#}		
4056.4 ^b 4	31/2+	4834.4 <i>8</i> 4	35/2-	5505.6 ^a 5	37/2+	6561.8 ^h 5	45/2(-)		
4082.3 4		4878.24+x ^f 23		5516.0 5		6704.6 ^a 5	$(41/2^+)$		
4085.94+x ^f 10		4922.9 4		5681.6 ^h 4	$39/2^{(-)}$	6722.9 ^c 4	43/2-		
4089.5 5		4932.0 ^b 4	35/2+	5727.7 ^e 5		6724.9 ^e 5			
4123.2 ^{&} 5	$33/2^{(+)}$	4956.6 ^{&} 6	$37/2^{(+)}$	5843.7 <mark>8</mark> 4	$(37/2^{-})$	6875.2 ^h 5	$47/2^{(-)}$		
4336.0 4		5038.7 5		5874.8 ^b 5	$(39/2^+)$	6939.1 <mark>b</mark> 6	$(43/2^+)$		
4380.7 <mark>8</mark> 4	33/2-	5105.4 ^e 5		5943.5 ^h 4	$41/2^{(-)}$	7504.2 [°] 4	$47/2^{-}$		
4383.8 ^c 4	31/2-	5162.0 11		5971.8 4		7918.6 ^a 11	$(45/2^+)$		
4409.0 ^e 4		5248.8 5		6060.1 [°] 4	39/2-	8447.0 ^C 5	$51/2^{-}$		
4417.9 ^{<i>a</i>} 4	33/2+	5259.4 ^c 4	35/2-	6109.2 5		9179.1 [@] 5			
4467.4 5		5283.9 5		6167.6 ^h 5	$43/2^{(-)}$	9363.4 [@] 6			
4486.6 5		5306.7 5		6340.8+x ^f 5		9482.8 ^c 5	55/2-		
4555.9 ^{&} 5	$35/2^{(+)}$	5441.9+x ^f 3		6376.6 <mark>8</mark> 5	(39/2 ⁻)				

¹¹⁶Cd(²⁷Al,4n γ):iuac

2009Dh01 (continued)

120-

[†] From least-squares fit to $E\gamma$ data. Reduced $\chi^2=2.9$ as compared to critical $\chi^2=2.0$.

[‡] From Adopted Levels, as also the decay modes for the 180-ms isomer.

[#] As proposed in 2009Dh01 based on yrast population of levels, $\gamma\gamma(\theta)$ (DCO) measurements, and band associations.

[@] Level connected with yrast band based on $11/2^-$ isomer.

& Band(A): 3-qp, $\Delta J=1$ band based on $15/2^{(+)}$. Possible Configuration= $\pi h_{11/2} \otimes v s_{1/2} \otimes v h_{11/2}$ or $\pi h_{11/2} \otimes v d_{3/2} \otimes v h_{11/2}$.

- ^{*a*} Band(B): 3-qp $\Delta J=2$ band based on 25/2⁺. Possible configuration= $\pi g_{7/2} \otimes \pi h_{11/2}^2$ or $\pi d_{5/2} \otimes \pi h_{11/2}^2$.
- ^b Band(C): 3-qp $\Delta J=2$ band based on 19/2⁺. Possible configuration= $\pi g_{7/2} \otimes \pi h_{11/2}^2$ or $\pi d_{5/2} \otimes \pi h_{11/2}^2$.

^{*c*} Band(D): Yrast band based on $11/2^{-}$ isomer.

^d Band(E): Band based on $13/2^{-}$.

^{*e*} Band(F): γ cascade-1.

^{*f*} Band(G): γ cascade-2.

^g Band(H): Magnetic-dipole rotational band-1. Probable configuration= $\pi h_{11/2} \otimes v h_{11/2}^{-2}$.

^{*h*} Band(I): Magnetic-dipole rotational band-2. Probable configuration= $\pi h_{11/2}^3 \otimes \nu h_{11/2}^{-2}$

$\gamma(^{139}\text{Pm})$

DCO ratios are for $153^{\circ}-99^{\circ}$ geometry and gates are on $\Delta J=2$, quadrupole transitions, unless otherwise indicated.

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [†]	Comments
103.8 <i>1</i>	3.1 4	3262.0	$27/2^{-}$	3158.1	25/2-	D	DCO=0.9 3
							DCO for $\Delta J=1$, dipole gate.
138.5 <i>1</i>	8.9 2	2302.6	$21/2^{(+)}$	2164.1	$19/2^{(+)}$	D	DCO=0.55 10
188.7 <i>3</i>		188.7	$11/2^{-}$	0.0	$(5/2^+)$	E3	E_{γ} ,Mult.: from Adopted Gammas.
211.8 1	13.2 6	2164.1	$19/2^{(+)}$	1952.3	$17/2^{(+)}$	D	DCO=0.61 11
224.1 <i>1</i>	4.2 3	6167.6	$43/2^{(-)}$	5943.5	$41/2^{(-)}$	D	DCO=1.25 21
							DCO for $\Delta J=1$, dipole gate.
227.8 1	4.9 <i>3</i>	2799.0	$25/2^{(+)}$	2571.1	$23/2^{(+)}$	(D)	DCO=0.7 3
237.8 1	1.9 <i>3</i>	1952.3	$17/2^{(+)}$	1714.4	$15/2^{(+)}$	(D)	DCO=0.7 4
261.9 <i>1</i>	4.76	5943.5	$41/2^{(-)}$	5681.6	$39/2^{(-)}$	D	DCO=1.2 3
							DCO for $\Delta J=1$, dipole gate.
268.4 1	14.1 9	2571.1	$23/2^{(+)}$	2302.6	$21/2^{(+)}$	D	DCO=0.62 9

¹¹⁶Cd(²⁷Al,4nγ):iuac **2009Dh01** (continued)

γ (¹³⁹Pm) (continued) Eγ E_i (level) \mathbf{J}_i^{π} \mathbf{E}_{f} \mathbf{J}_{f}^{π} Mult. Comments Iγ 27/2(+) 3.7 4 $29/2^{(+)}$ 3119.1 274.4 1 3393.5 D DCO=0.45 25 $47/2^{(-)}$ $45/2^{(-)}$ 313.4 1 1.4 2 6875.2 6561.8 DCO=0.6 3 (D) 316.5 1 12.7 8 3908.0 $31/2^{-}$ 3591.5 $29/2^{-}$ D DCO=1.10 9 DCO for $\Delta J=1$, dipole gate. $25/2^{(+)}$ $27/2^{(+)}$ 4.8 3 2799.0 320.1 I 3119.1 (D) DCO=0.6 3 18.5 9 $29/2^{-}$ $27/2^{-}$ DCO=0.45 5 329.4 1 3591.5 3262.0 D 23/2+ 338.5 2 1.9 7 2691.2 2352.4 $23/2^{-}$ $33/2^{(+)}$ $31/2^{(+)}$ 360.2 2 2.9 5 4123.2 3763.0 D DCO=0.4 3 $31/2^{(+)}$ $29/2^{(+)}$ 369.4 2 3.5 6 3763.0 3393.5 (D) DCO=0.5 4 $21/2^{(+)}$ $23/2^+$ 388.7 1 2.4 3 2691.2 2302.6 $23/2^{(+)}$ 393.7 1 5.3 4 2964.7 $25/2^{+}$ 2571.1 (D) DCO=0.7 3 $45/2^{(-)}$ $43/2^{(-)}$ 394.2 1 1.6 3 6561.8 6167.6 DCO=0.67 21 D $35/2^{(+)}$ 400.7 2 1.0 6 $37/2^{(+)}$ DCO=0.7 4 4956.6 4555.9 (D) $25/2^+$ 402.8 3 0.9 5 3367.5 2964.7 $33/2^{(+)}$ 432.7 2 2.5 9 4555.9 $35/2^{(+)}$ 4123.2 D DCO=0.5 3 $25/2^+$ $21/2^{+}$ 446.2 1 1.7 6 2964.7 2518.4 (Q) DCO=1.0 6 4.8 6 $35/2^{-}$ $33/2^{-}$ DCO=1.1 3 453.7 1 4834.4 4380.7 D DCO for $\Delta J=1$, dipole gate. 465.9 1 100 654.6 $15/2^{-}$ 188.7 $11/2^{-}$ Q DCO=0.96 6 472.7 1 8.3 3 4380.7 $33/2^{-}$ 3908.0 $31/2^{-}$ D DCO=0.85 12 DCO for $\Delta J=1$, dipole gate. 490.0 <1.0 1405.9 $19/2^{-}$ 1895.9 2.8 5 $25/2^{(+)}$ $21/2^{(+)}$ 497.1 2 2302.6 E_{γ} : poor fit, level energy difference=496.4. 2799.0 526.7 2 3.2 8 2768.7 2242.0 DCO=0.8 5 532.9 2 2.9 7 6376.6 $(39/2^{-})$ 5843.7 $(37/2^{-})$ (D) 563.7 2 2.7 5 5441.9+x 4878.24+x 570.0 <1.0 3986.9 3416.9 $27/2^{-}$ $23/2^+$ DCO=1.1 4 $19/2^{+}$ 583.7 1 7.3 4 2691.2 2107.5 (Q) $27/2^{+}$ $23/2^{+}$ 590.1 1 8.0 3 3281.3 2691.2 DCO=1.1 3 Q 1.6[‡] 3 590.5[‡] 2 779.3 $13/2^{-}$ 188.7 $11/2^{-}$ 590.5[‡] 2 1.6[‡] 3 4082.3 3491.8 593.9 1 11.4 4 $29/2^{+}$ $25/2^{+}$ 3558.6 2964.7 Q DCO=1.17 12 $13/2^{-}$ 1.4 3 $17/2^{-}$ 596.8 2 1376.2 779.3 601.3 3 2.2 9 3863.3 3262.0 $27/2^{-}$ 612.2 *1* 8.68 $25/2^+$ 2352.4 $23/2^{-}$ D DCO=0.6 3 2964.7 DCO for $\Delta J=1$, dipole gate. 622.3 2 2.045727.7 5105.4 633.9 1 2.5 6 3402.6 2768.7 1.9 5 646.2 2 3908.0 $31/2^{-}$ 3262.0 $27/2^{-}$ 658.0 *3* 0.9 4 5038.7 4380.7 $33/2^{-}$ $39/2^{-}$ DCO=0.8 3 662.8 1 7.1 5 6722.9 $43/2^{-}$ 6060.1 (Q) 669.0 1 4.4 6 4085.94 + x3416.9+x (Q) DCO=0.9 5 672.6 3 1.98 4089.5 3416.9 $27/2^{-}$ 687.9[@] 2 0.8 1 5971.8 5283.9 692.7 1 3.4 4 3491.8 2799.0 $25/2^{(+)}$ 2.7 5 696.4 1 5105.4 4409.0 DCO=0.9 4 701.6 1 7.46 2107.5 $19/2^{+}$ 1405.9 $19/2^{-}$ (D) 721.7 1 13.8 9 1376.2 $17/2^{-}$ 654.6 $15/2^{-}$ DCO=0.45 12 D $2.2 \ 1$ $51/2^{-}$ 732.1 1 9179.1 8447.0 (Q) DCO=0.8 5 744.5 1 29/2-2.3 4 4336.0 3591.5 65.4 8 1405.9 $19/2^{-}$ 654.6 $15/2^{-}$ Q DCO=1.02 6 751.3 1 $27/2^+$ $31/2^{+}$ 775.1 1 3.6 5 4056.4 3281.3 781.3 1 7.8 6 7504.2 $47/2^{-}$ 6722.9 $43/2^{-}$ (Q) DCO=0.9 4 7.4 5 2190.9 $21/2^{-}$ 1405.9 $19/2^{-}$ DCO=0.68 24 784.7 1 D

Continued on next page (footnotes at end of table)

1112.3 2

1122.0 3

1199.0 2

1214.0

1254.0

1274.8 3

1297.7 1

1327.0 3

1608.0 3

2.5 4

3.6 10

1.0 6

1.1 5

14.5 5

0.8 3

2.5 9

<1.0

<1.0

				¹¹⁶ Cd(²⁷ Al,4	nγ):iuac	2009Dh	01 (continued)
					γ(¹³⁹ Pm)	(continued	<u>))</u>
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
789.0	<1.0	4380.7	33/2-	3591.5	29/2-		
792.3 2	3.0 7	4878.24+x	,	4085.94+x	,		
800.7 <i>1</i>	11.5 8	6060.1	$39/2^{-}$	5259.4	$35/2^{-}$	Q	DCO=1.2 4
805.8 2	1.8 6	3158.1	$25/2^{-}$	2352.4	$23/2^{-}$		
814.8 <i>1</i>	7.09	2190.9	$21/2^{-}$	1376.2	$17/2^{-}$	(Q)	DCO=0.9 3
830.9 <i>3</i>	0.6 3	5248.8		4417.9	$33/2^+$		
847.2 <i>1</i>	3.7 5	5681.6	$39/2^{(-)}$	4834.4	$35/2^{-}$	Q	DCO=1.1 4
850.4 2	1.7 4	4409.0		3558.6	$29/2^{+}$	-	
859.3 <i>1</i>	7.3 <i>3</i>	4417.9	$33/2^{+}$	3558.6	$29/2^{+}$	Q	DCO=1.30 24
865.8 2	3.8 8	2242.0	-	1376.2	$17/2^{-}$	-	
875.6 <i>1</i>	2.4 2	4932.0	$35/2^+$	4056.4	$31/2^+$		
875.6 <i>1</i>	8.7 4	5259.4	$35/2^{-}$	4383.8	$31/2^{-}$	(Q)	DCO=1.0 4
883.0	<1.0	4409.0		3526.0			
896.9 <i>1</i>	5.69	2302.6	$21/2^{(+)}$	1405.9	$19/2^{-}$		
898.9 <i>3</i>	0.9 6	6340.8+x	,	5441.9+x	,		
903.2 2	1.4 6	5283.9		4380.7	$33/2^{-}$		
909.8 1	16.7 9	3262.0	$27/2^{-}$	2352.4	$23/2^{-}$	Q	DCO=1.04 14
916.4 <i>3</i>	1.6 8	9363.4		8447.0	$51/2^{-}$	-	
922.9 <i>3</i>	2.2 8	5306.7		4383.8	$31/2^{-}$		
928.0 <i>3</i>	1.9 7	4486.6		3558.6	$29/2^{+}$		
942.8 [#] 2	1.7 [#] 4	5874.8	(39/2+)	4932.0	35/2+		
942.8 <mark>#</mark> 2	6.7 <mark>#</mark> 3	8447.0	$51/2^{-}$	7504.2	$47/2^{-}$	Q	DCO=0.90 14
946.5 <i>1</i>	45.9 7	2352.4	$23/2^{-}$	1405.9	$19/2^{-}$	Q	DCO=1.07 5
955.1	<1.0	3307.5		2352.4	$23/2^{-}$	-	
966.8 <i>1</i>	11.3 7	4383.8	$31/2^{-}$	3416.9	$27/2^{-}$	Q	DCO=1.1 4
967.0 <i>1</i>	4.3 <i>3</i>	3158.1	$25/2^{-}$	2190.9	$21/2^{-}$	Q	DCO=1.8 4
							DCO for $\Delta J=1$, dipole gate.
981.0	<1.0	4383.8	$31/2^{-}$	3402.6			
997.2 2	1.0 4	6724.9		5727.7			
1009.3 <i>1</i>	3.9 5	5843.7	$(37/2^{-})$	4834.4	$35/2^{-}$	(D)	DCO=0.7 3
1014.9 <i>1</i>	4.2 5	4922.9		3908.0	$31/2^{-}$	(Q)	DCO=1.0 5
1035.8 2	1.5 6	9482.8	$55/2^{-}$	8447.0	$51/2^{-}$		
1050.5 <i>3</i>	1.8 8	4467.4		3416.9	$27/2^{-}$		
1059.7 2	2.9 5	1714.4	$15/2^{(+)}$	654.6	$15/2^{-}$		
1064.2 3	0.8 <i>3</i>	6939.1	$(43/2^+)$	5874.8	$(39/2^+)$		
1064.5 <i>1</i>	12.6 9	3416.9	$27/2^{-1}$	2352.4	$23/2^{-1}$	Q	DCO=1.12 11
1087.7 2	2.8 4	5505.6	$37/2^{+}$	4417.9	$33/2^{+}$	-	

[†] From DCO ratios. Several multipolarities are assigned in 2009Dh01 without DCO ratios and many others are based on DCO ratios with large uncertainties so that it is difficult to distinguish between $\Delta J=2$, quadrupole and $\Delta J=1$, dipole transitions.

 $19/2^{-}$

 $27/2^{-}$

37/2+

 $31/2^{-}$

35/2-

 $15/2^{-}$

 $23/2^{-}$

 $31/2^{-}$

D

DCO=0.58 10

 $(41/2^+)$

[‡] Multiply placed with undivided intensity.

[#] Multiply placed with intensity suitably divided.

2518.4

4383.8

6704.6

7918.6

5162.0

6109.2

1952.3

3679.4

5516.0

[@] Placement of transition in the level scheme is uncertain.

 $21/2^+$

31/2-

 $(4\dot{1}/2^+)$

 $(45/2^+)$

 $17/2^{(+)}$

1405.9

3262.0

5505.6

6704.6

3908.0

4834.4

654.6

2352.4

3908.0

55/2-

51/2

 $(45/2^+)$

47/2-

¹¹⁶Cd(²⁷Al,4nγ):iuac 2009Dh01

$^{139}_{61} Pm_{78}$

Level Scheme (continued)

Level Scheme (continued)

 $^{139}_{61} Pm_{78}$

¹¹⁶Cd(²⁷Al,4nγ):iuac 2009Dh01 (continued)

¹³⁹₆₁Pm₇₈