¹¹⁶Cd(²⁷Al,4nγ) E=110-142 MeV 1987Xu01,1990XuZW

History

TypeAuthorCitationLiterature Cutoff DateFull EvaluationP. K. Joshi, B. Singh, S. Singh, A. K. JainNDS 138, 1 (2016)15-Oct-2016

Includes ¹⁴¹Pr(α ,6n γ) from 1973VaYZ and 1973HaWF.

1987Xu01, 1990XuZW (thesis): ¹¹⁶Cd(²⁷Al,4n γ),E(²⁷Al)=110-142 MeV. Measured excitation functions, E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, and $\gamma(t)$ using 4-n type BGO Compton-suppressed Ge(Li) detector at Stony Brook accelerator facility.

1986Lu07: 106 Pd(37 Cl,4n γ),E=148 MeV; observed 466 and 751 γ rays.

1973VaYZ, 1973HaWF: ¹⁴¹Pr(α ,6n γ),E α =104 MeV. Measured E γ , $\gamma(\theta)$, and $\gamma\gamma$ -coin.

All data are from 1987Xu01 and 1990XuZW, except as noted. The gamma-ray energy uncertainties, relative I γ values and $\gamma(\theta)$ data are from 1990XuZW thesis. Ordering of the higher transitions in the π [541]3/2⁻, α =-1/2, band was made from intensity arguments for the various $\gamma\gamma$ -coincidence gates and corroborated by dipole transitions to the π h_{11/2} \otimes vh_{11/2}² band.

¹³⁹Pm Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	$(5/2)^+$		J^{π} : from Adopted Levels.
188.5 [@] 10	$11/2^{-}$	180 ms 20	%IT=100; % ε +% β ⁺ <0.05
			$T_{1/2}$ and decay mode from Adopted Levels.
227.6?	$(7/2^+)$		
654.4 [@] 11	15/2-		
778.7? [×] 13	$13/2^{-}$		
1375.7 ^{x} 13	$17/2^{-}$		
1405.5 ^{^w} 12	19/2-		
1714.4 ^{<i>u</i>} 14	15/2		
1951.5° 14	1//2		
2106.4° 15	19/2		
2103.4 13 2100.1 $\frac{14}{2}$ 14	$\frac{19/2}{21/2}$		
$2301.6^{a}.14$	$\frac{21}{2}$		
$2351.9^{@}14$	23/2-		
2570.6^a 15	23/2		
2689.5 ^b 16	$23/2^{+}$		
2798.4 ^a 16	25/2		
2964.2 [°] 16	$25/2^+$		
3023.5 ^{<i>a</i>} 17			
3157.3 ^x 16	$25/2^{-}$		
3261.4 ^{<i>d</i>} 16	27/2-		
3279.6 ⁰ 19	$27/2^{+}$		
3416.8 [@] 17	27/2-		
3558.0 [°] 19	$29/2^{+}$		
3590.0 ^{<i>a</i>} 19	29/2-		
3906.3 ^{<i>a</i>} 21	31/2-		
4155.0 ^b 21	$31/2^{+}$		
4379.3 ^{<i>a</i>} 24	33/2-		
4383.2 ^{⁽⁰⁾} 20	31/2-		
4417.8° 21	33/2+		
4833 ⁴ 3	35/2-		
5258.5 ^w 23	35/2-		
5505.8° 23	$(37/2^{+})$		

¹¹⁶Cd(²⁷Al,4nγ) E=110-142 MeV 1987Xu01,1990XuZW (continued)

139Pm Levels (continued)

E(level) [†]	Jπ‡
6059.0 [@] 25	39/2-
6722 [@] 3	$43/2^{-}$
7503 [@] 3	$47/2^{-}$
8445 [@] 3	$51/2^{-}$
9480 [@] 4	$55/2^{-}$
10592? [@]	$(59/2^{-})$

[†] From least-squares fit to $E\gamma$ data.

[‡] From $\gamma(\theta)$ and membership in indicated band, except as noted. See the Adopted Levels for recommended assignments.

[#] For excited states above 650 keV, 1987Xu01 estimated $T_{1/2} \le 10$ ns from $\gamma \gamma(t)$.

[@] Band(A): $\pi 3/2[541], \alpha = -1/2$.

& Band(a): $\pi 3/2[541], \alpha = +1/2$ (?).

^a Band(B): ΔJ=1 band based on 15/2. Positive parity given in Table 4.4 of 1990XuZW.

^b Band(C): $\pi g_{7/2} \otimes \nu h_{11/2}^2, \alpha = -1/2$ (?).

^c Band(c): $\pi g_{7/2} \otimes \nu h_{11/2}^2, \alpha = +1/2$ (?).

^d Band(D): $\pi h_{11/2} \otimes \nu h_{11/2}^2$ (?).

 $\gamma(^{139}\mathrm{Pm})$

Dipole transitions from members of the $\pi 3/2[541]$, $\alpha = -1/2$, band to members of the $(\pi h_{11/2})(\nu h_{11/2}^2)$ band mentioned by 1987Xu01 but not shown.

All the γ rays are seen in $\gamma\gamma$ -coin data of 1987Xu01, 1990XuZW.

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α ^{<i>a</i>}	Comments
104.1 2	4.6 1	3261.4	27/2-	3157.3	25/2-	D		$A_2 = -0.23 \ 3; \ A_4 = +0.03 \ 4$
^x 132.0 2	2.0 [#] 5							
138.1 2	14.7 <i>1</i>	2301.6	21/2	2163.4	19/2	D+Q		$A_2 = -0.283 \ 14; \ A_4 = +0.074 \ 19$
^x 148.0 ^{&}								
^x 149.9 2	1.9 [#] 5							
188.5		188.5	$11/2^{-}$	0.0	$(5/2)^+$	E3	1.501	$\alpha(K)=0.671 \ 10; \ \alpha(L)=0.642 \ 9; \ \alpha(M)=0.1512 \ 22$
								$\alpha(N)=0.03315; \alpha(O)=0.004236; \alpha(P)=3.38\times10^{-3}$
								$F_{\rm eff}$: from (α 6n γ) $I\gamma$ =60
212.1 2	21.2 2	2163.4	19/2	1951.3	17/2	D		$A_2 = -0.294 \ 13; \ A_4 = -0.017 \ 19$
^x 224.4 2	6.8 [#] 5					D+Q		$A_2 = -0.271 \ 18; \ A_4 = +0.090 \ 25$
225.1 5	≤1	3023.5		2798.4	25/2			
x227.2 2	1.7 [#] 5							
227.6 <mark>b</mark>		227.6?	$(7/2^+)$	0.0	$(5/2)^+$			E_{γ} : unresolved doublet.
227.6 2	10.8 [#] 5	2798.4	25/2	2570.6	23/2	D+Q		A ₂ =-0.213 9; A ₄ =+0.129 13
^x 236.5 2	1.2 [#] 5							
236.9 2	8.3 2	1951.3	17/2	1714.4	15/2	D+Q		$A_2 = -0.31 \ 3; \ A_4 = +0.10 \ 4$
x260.8 5	≤l # -							
^x 262.0 2	2.9" 4	2570 6	22/2	2201.6	21/2	D+Q		$A_2 = -0.153 \ 8; \ A_4 = +0.119 \ 11$
208.72	19.02	2010.0	23/2	2501.0	21/2	D+Q		$A_2 = -0.395 \ 10; \ A_4 = +0.036 \ 22$
310.3 2	10.3" 5	3900.3	31/2	3390.0	29/2	D+Q		$A_2 = -0.539 16; A_4 = +0.128 23$

Continued on next page (footnotes at end of table)

¹¹⁶Cd(²⁷Al,4nγ) E=110-142 MeV 1987Xu01,1990XuZW (continued)

E_{γ}^{\dagger} Mult.[‡] I_{γ} E_i (level) J_i^{π} \mathbf{E}_{f} J_f^{π} Comments 17.1[#] 5 A₂=-0.358 13; A₄=+0.077 18 328.6 2 3590.0 $29/2^{-}$ 3261.4 $27/2^{-}$ D+Q 337.5 2 6.3 2 2689.5 $23/2^{+}$ 2351.9 $23/2^{-}$ D+Q A₂=+0.43 5; A₄=+0.35 6 ^x393.6<mark>&</mark> 393.6 2 5.6 2 $25/2^{+}$ 2570.6 23/22964.2 D+Q A₂=-0.84 6; A₄=+0.66 7 x396.3 5 ≤ 1 453.0[@] 3023.5 2570.6 23/23.5[#] 4 453.7 2 4833 $35/2^{-}$ 4379.3 $33/2^{-}$ D+Q A₂=-0.37 3; A₄=+0.22 4 465.9 2 100.0 6 $15/2^{-}$ 188.5 $11/2^{-}$ 654.4 A2=+0.284 6; A4=-0.046 9 Q x468.5 5 ≤ 1 4.6[#] 4 473.0 2 4379.3 $33/2^{-}$ 3906.3 $31/2^{-1}$ (D+Q)A2=-0.075 26; A4=-0.32 4 Negative A_4 is inconsistence with $\Delta J=1$ transition. 497.1 2798.4 25/22301.6 21/2^x533 1 ≤ 1 Tentative placement from $(37/2^{-})$ to $(35/2^{-})$, only in Table 4.4 of 1990XuZW. x537 1 ≤1 x551 1 ≤1 583.1 2 9.1 2 2689.5 $23/2^{+}$ 2106.4 $19/2^{+}$ Q A₂=+0.36 4; A₄=-0.12 6 9.0[#] 4 $27/2^{+}$ $23/2^{+}$ 590.1 2 3279.6 2689.5 Q $A_2 = +0.12 \ 3; \ A_4 = -0.42 \ 4$ 590.2 5 778.7? $13/2^{-}$ 188.5 $11/2^{-}$ ≤ 1 x591 1 ≤ 1 593.8 2 10.3 2 3558.0 $29/2^{+}$ 2964.2 $25/2^{+}$ Q A₂=+0.42 3; A₄=-0.28 4 597.0 5 ≤ 1 1375.7 $17/2^{-}$ 778.7? 13/2-5.7[#] 4 612.4 2 $25/2^+$ 2964.2 2351.9 $23/2^{-}$ D+Q A₂=-0.809 34; A₄=+0.63 4 ^x618 *1* ≤ 1 663.1 2 4.5 1 6722 $43/2^{-}$ 6059.0 $39/2^{-}$ (Q) A₂=+0.30 5; A₄=-0.07 7 ^x672.6 5 ≤ 1 ^x693.0 5 ≤ 1 8.6[#] 5 701.0 2 2106.4 $19/2^{+}$ 1405.5 $19/2^{-}$ D+Q A₂=-0.112 13; A₄=+0.026 19 $\Delta J=0$ transition. 721.3 2 10.6 2 1375.7 $17/2^{-}$ 654.4 $15/2^{-}$ D+Q A₂=-0.92 4; A₄=+0.46 5 x732.2 2 A₂=+0.05 6; A₄=+0.20 9 4.0 2 57.2 4 $15/2^{-}$ A2=+0.274 10; A4=-0.001 13 751.3 2 1405.5 $19/2^{-}$ 654.4 (Q) x775.0 2 2.5 1 (Q) A₂=+0.19 9; A₄=+0.08 12 Placement from $35/2^+$ to $31/2^+$, only in Table 4.4 of 1990XuZW. 781.1 2 6.0 2 7503 $47/2^{-}$ 6722 $43/2^{-}$ A2=+0.16 5; A4=-0.43 7 Q 784.5 2 6.7 2 2190.1 $21/2^{-}$ 1405.5 $19/2^{-}$ D+O A₂=-0.73 5; A₄=+0.18 6 6.3 1 6059.0 $39/2^{-}$ 5258.5 $35/2^{-}$ A₂=+0.15 5; A₄=+0.07 7 800.5 2 (Q) Tentative placement from $(15/2^+)$ to $(11/2^+)$, only in Table ^x814.5 5 <1 4.4 of 1990XuZW. 814.5 2 8.0 2 2190.1 $21/2^{-}$ 1375.7 $17/2^{-}$ (Q) A₂=+0.29 5; A₄=+0.16 6 Sign of A₄ is inconsistent with stretched quadrupole. x847.3 2 2.6 1 A₂=-0.08 9; A₄=-0.01 13 D 3.4 1 $33/2^{+}$ 3558.0 $29/2^{+}$ 859.8 2 4417.8 (Q) A₂=+0.64 10; A₄=+0.13 14 8.6[#] 4 875.3 2 5258.5 $35/2^{-}$ 4383.2 $31/2^{-}$ A₂=+0.16 6; A₄=-0.03 9 (Q) 875.4 5 ≤ 1 4155.0 $31/2^{+}$ 3279.6 $27/2^{+}$ 5.2 2 896.0 2 2301.6 21/21405.5 $19/2^{-}$ D+Q A2=-0.47 6; A4=+0.17 8 6.3[#] 3 909.5 2 3261.4 $27/2^{-}$ 2351.9 $23/2^{-}$ A₂=+0.22 3; A₄=0.00 4 (Q) 3.5[#] 5 x938.5 2 942.0 5 ≤ 1 8445 $51/2^{-}$ 7503 $47/2^{-}$ 946.3 2 31.7 3 2351.9 $23/2^{-1}$ 1405.5 $19/2^{-}$ (Q) A₂=+0.279 16; A₄=+0.174 21 Sign of A₄ is inconsistent with stretched quadrupole. x954.5 2 3.9 2 A₂=+0.12 11; A₄=+0.36 15

γ (¹³⁹Pm) (continued)

Continued on next page (footnotes at end of table)

¹¹⁶Cd(²⁷Al,4nγ) E=110-142 MeV 1987Xu01,1990XuZW (continued)

E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	Comments
							Placement from $19/2^-$ to $15/2^-$, only in Table 4.4 of $1990XuZW$. Sign of A ₄ is inconsistent with stretched quadrupole.
966.4 2	11.4 3	4383.2	$31/2^{-}$	3416.8	$27/2^{-}$	Q	$A_2 = +0.374\ 25;\ A_4 = -0.15\ 4$
967.3 2	5.1 [#] 3	3157.3	$25/2^{-}$	2190.1	$21/2^{-}$		
^x 1008.6 2	7.7 2						$A_2 = +0.27 \ 41; \ A_4 = -0.06 \ 6$
1035.0 5	≤1	9480	55/2-	8445	$51/2^{-}$		
1060.0 2	4.0 1	1714.4	15/2	654.4	$15/2^{-}$	D+Q	$A_2 = +0.49 \ 12; A_4 = -0.54 \ 16$
							$\Delta J=0$ transition.
1064.9 2	13.2 3	3416.8	$27/2^{-}$	2351.9	$23/2^{-}$	(Q)	$A_2 = +0.13 \ 3; A_4 = +0.08 \ 5$
1088.0 5	≤ 1	5505.8	$(37/2^+)$	4417.8	$33/2^{+}$		
1112 ^b 1	≤1	10592?	$(59/2^{-})$	9480	$55/2^{-}$		
1296.9 2	12.8 3	1951.3	17/2	654.4	15/2-	D	$A_2 = -0.33 6; A_4 = +0.06 9$

γ (¹³⁹Pm) (continued)

[†] 1990XuZW state the energy accuracy to 0.2 keV, except 1 keV when $E\gamma$ is given to the nearest keV. Evaluators assign 0.5 keV for $E\gamma$ values listed to the nearest tenth of a keV and with $I\gamma \le 1$.

[‡] From the discussion of 1987Xu01 many of the transitions are apparently of a stretched quadrupole or dipole nature from $\gamma(\theta)$ data.

[#] From $\gamma\gamma$ -coin data (1990XuZW).

[@] From level schemes in 1987Xu01 and 1990XuZW, γ not listed in Table 4.4 of 1990XuZW.

[&] Unresolved doublet.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹³⁹₆₁Pm₇₈

116Cd(²⁷Al,4nγ) E=110-142 MeV 1987Xu01,1990XuZW Legend

¹³⁹₆₁Pm₇₈

 $^{139}_{61}{\rm Pm}_{78}$