¹⁴⁰Ce(α,5nγ) **1980Mu10,1977Lu04**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	P. K. Joshi, B. Singh, S. Singh, A. K. Jain	NDS 138, 1 (2016)	15-Oct-2016

Includes $^{140}Ce(^{3}He, 4n\gamma)$ from 1977Lu04.

1980Mu10: E α =85 MeV. Measured γ 's, $\gamma\gamma$ -coincidences, $\gamma(\theta)$, and $\gamma(t)$.

1977Lu04: E(³He)=38 and 42 MeV, E α =45-59 MeV. Measured excitation functions, γ 's, $\gamma\gamma(\theta)$.

Others: 1977Lu04, 1973HaWA.

All data are from 1980Mu10, except as noted.

139Nd Levels

$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$	Comments
3/2+ [#]		
11/2 ^{-#}	5.50 h 20	$T_{1/2}$: from Adopted Levels.
$15/2^{-}$		
$(13/2^{-})$		
$(17/2^{-})$		
19/2-		
$(19/2^{-})$		
	≥141 ns	Additional information 1.
(21/2)		
$(21/2^+)$		
$(23/2^+)$		
(25/2)		
(27/2)		
(29/2)		
	$\begin{array}{c} J^{\pi^{\dagger}} \\ \hline 3/2^{+\#} \\ 11/2^{-\#} \\ 15/2^{-} \\ (13/2^{-}) \\ (17/2^{-}) \\ 19/2^{-} \\ (19/2^{-}) \\ (21/2) \\ (21/2) \\ (21/2^{+}) \\ (23/2^{+}) \\ (25/2) \\ (27/2) \\ (29/2) \\ \end{array}$	$\begin{array}{ccc} J^{\pi^{\dagger}} & T_{1/2}^{\ddagger} \\ \hline 3/2^{+\#} \\ 11/2^{-\#} & 5.50 \text{ h } 20 \\ 15/2^{-} \\ (13/2^{-}) \\ (17/2^{-}) \\ 19/2^{-} \\ \hline (19/2^{-}) \\ (21/2) \\ \hline (21/2^{+}) \\ (23/2^{+}) \\ (25/2) \\ (27/2) \\ (29/2) \\ \hline \end{array}$

[†] From 1980Mu10 based on $\gamma(\theta)$ data and the assumption that $(\alpha, 5n\gamma)$ primarily populates yrast type states, except as noted.

[‡] From off-beam delayed coincidence spectrum of the 665γ .

From the Adopted Levels.

$\gamma(^{139}\text{Nd})$

205.5 γ (I $\gamma(\alpha,5n\gamma)$)=5.5 *11*, not observed in (³He,4n γ); placement from possible 1102 level not confirmed by later work), 871.6 γ (I $\gamma(\alpha,5n\gamma)$)=13 *4*, I γ (³He,4n γ)=10 *3*; placement from 896 level not confirmed by later work), and 1291.0 γ (I $\gamma(\alpha,5n\gamma)$)=15 *4*, I γ (³He,4n γ)=12 *4*; placement from 1967 level not confirmed by later work) were observed by 1977Lu04 only.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.‡	Comments
(X)		2570.9+x		2570.9	(19/2 ⁻)		Off-beam delayed coin spectra of γ 's deexciting the 2571 show a weak delayed component.
^x 138.4 ^{&} 3	10.7 16						$A_2 = -0.28 \ 8; \ A_4 = +0.10 \ 12$
147.6 ^{&} 3	5.1 8	4037.4		3889.8	(29/2)		A ₂ =+0.26 13; A ₄ =-0.03 19
192.9 ^{#&} 3	7.0 [#] 10	2763.8		2570.9	$(19/2^{-})$		A ₂ =-0.04 11; A ₄ =+0.05 17
221.8 [@] 3	42 [@] 5	3024.7	$(23/2^+)$	2802.9	$(21/2^+)$	D	A ₂ =-0.38 7; A ₄ =+0.04 11
229.0 [#] 3	31 [#] 60	3253.7	(25/2)	3024.7	$(23/2^+)$	D	$A_2 = -0.25 \ 10; \ A_4 = +0.04 \ 15$
(231.15 15)		231.15	11/2-	0.0	3/2+	M4	A ₂ = -0.25 10; A ₄ = $+0.04$ 15 E _{γ} ,Mult.: from Adopted Gammas.

Continued on next page (footnotes at end of table)

140 Ce(α ,5n γ)					1980Mu10,1977Lu04 (continued)				
γ ⁽¹³⁹ Nd) (continued)									
Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	δ	Comments	
232.0 [@] 3 270.3 3 x311.6 ^{#&} 3 x327.5 ^{@&} 3	50 [@] 8 30.0 <i>13</i> 6.5 [#] 65 15 [@] 9	2802.9 3524.0	(21/2 ⁺) (27/2)	2570.9 3253.7	(19/2 ⁻) (25/2)	D D		$A_{2}=-0.27 \ 6; \ A_{4}=+0.05 \ 9$ $A_{2}=-0.33 \ 8; \ A_{4}=+0.06 \ 12$ $A_{2}=-0.39 \ 7; \ A_{4}=+0.04 \ 11$ $A_{2}=-0.25 \ 7; \ A_{4}=+0.14 \ 12$	
365.8 ^{&} 3 435.5 [@] & 4	14.7 <i>18</i> 8.9 22	3889.8 2570.9	(29/2) (19/2 ⁻)	3524.0 2134.8	(27/2)	D D		$A_2 = -0.40 \ 10; A_4 = +0.07 \ 15$ $A_2 = -0.48 \ 8; A_4 = +0.02 \ 12$ I_{γ} : corrected for contamination.	
520.1 & 3 568.8 & 3 604.4 4 622.9 3 665.0 3 1070.9 4 1112.1 3 1157.4 3	44 5 40 4 6.9 10 100 10 61 6 10.0 12 54 7	2622.2 2570.9 1966.5 896.0 1966.5 1343.4 2053.4	(21/2) (19/2 ⁻) (17/2 ⁻) 15/2 ⁻ (17/2 ⁻) (13/2 ⁻) 19/2 ⁻	2053.4 1966.5 1343.4 231.15 896.0 231.15 896.0	19/2 ⁻ (17/2 ⁻) (13/2 ⁻) 11/2 ⁻ 15/2 ⁻ 11/2 ⁻ 15/2 ⁻	D D+Q Q D(+Q) D+Q Q	<0	$A_{2}=-0.33 7; A_{4}=+0.05 11$ $A_{2}=-0.24 6; A_{4}=+0.09 9$ $A_{2}=+0.01 20; A_{4}=-0.10 30$ $A_{2}=+0.28 4; A_{4}=-0.03 6$ $A_{2}=-0.66 4; A_{4}=+0.02 6$ $A_{2}=-0.45 16; A_{4}=+0.24 24$ $A_{2}=+0.25 6; A_{4}=-0.04 9$ Mult.: stretched.	
1238.2 ^{&} 4	10.3 12	2134.8		896.0	15/2-			$A_2 = +0.47 \ 20; \ A_4 = -0.04 \ 30$	

[†] From 1980Mu10 renormalized to Iγ(665γ)=100 by evaluators.
[‡] From γ(θ) (theory of 1967Ya05 used for comparison).
[#] Unresolved from a line in ¹³⁸Nd.
[@] Contaminated.
[&] Placement of transition in the level scheme is uncertain.
^x γ ray not placed in level scheme.

