¹³⁹Nd IT decay (5.50 h) 1971Bu22 Type Author Citation Literature Cutoff Date Full Evaluation P. K. Joshi, B. Singh, S. Singh, A. K. Jain NDS 138, 1 (2016) 15-Oct-2016 Parent: 139 Nd: E=231.15 5; $J^{\pi}=11/2^{-}$; $T_{1/2}=5.50$ h 20; %IT decay=13.0 10 ¹³⁹Nd-%IT decay: From I(γ +ce)(231 γ in IT decay)+ΣI(γ +ce)(to 113.9 level)+ ΣI(γ +ce)(822.1 γ +827.8 γ +852 γ)=100. It is assumed that there is no direct ε + β ⁺ feeding to the g.s. and the 113.87 level. Value of I(γ +ce) for 231 γ (in ¹³⁹Nd IT decay) is deduced in two ways: 1. from measured I γ (231 γ)=2.35 20 (average of values from 1971Bu22 and 1969Be64); 2. from I(ceK) data for 231 γ , I γ and I(ceK) data for five strong γ rays (1971Bu22) in ¹³⁹Pr were used to determine an average conversion factor of 43.1 25 to normalize the ce(K) and I γ data in 1971Bu22 on the same scale, which is then used to obtain I(γ +ce) for 231 γ . Values of branching ratios are: 87.2% 11 using measured I γ of 231 γ and 86.6% 15 from measured I(ceK) value of 231 γ . Weighted average of the two results is 87.0% 10 for %(ε + β ⁺), and 13.0 10 for IT decay. Other: 14.3% 14 (1971Bu22) from comparison of ce(K)(165.84 γ ; ¹³⁹Ce) to ce(K)(231.15 γ). Measured: Ey, Iy, and ce; ms, chem. See also $^{139}\mathrm{Nd}~\varepsilon$ decay (5.5 h). ## 139Nd Levels E(level) $J^{\pi \dagger}$ $T_{1/2}^{\dagger}$ Comments $0.0 \quad 3/2^{+}$ $\%\epsilon + \%\beta^{+} = 100$ 231.15 5 $11/2^{-}$ 5.50 h 20 $\%\epsilon + \%\beta^{+} = 87.0 \ 10$; %IT=13.0 10 γ (139Nd) [†] From the Adopted Levels. [†] For absolute intensity per 100 decays, multiply by 0.130 10. [‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. ## 139 Nd IT decay (5.50 h) 1971Bu22 ## Decay Scheme Intensities: $I_{(\gamma+ce)}$ per 100 parent decays %IT=13.0 10