	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	P. K. Joshi, B. Singh, S. Singh, A. K. Jain	NDS 138,1 (2016)	15-Oct-2016

 $Q(\beta^{-}) = -278$ 7; S(n) = 8778.0 26; S(p) = 6255.7 23; $Q(\alpha) = -2071.7$ 25 2012Wa38

S(2n)=16230.3 28, S(2p)=15260.7 23 (2012Wa38).

Other reactions: 2015Kh02: 139 La(3 He,X) 138 La/ 139 La, E=38 MeV; measured E γ , I γ ; deduced γ -ray strength functions, and nuclear level densities. 1997Sa05: ¹³⁹La(pol n,n'), E=0.5-1 eV. Measured parity-violating spin rotation angle near p-wave resonance and deduced parity

mixing matrix element.

1996Ha05: ¹³⁹La(π^+, K^+)¹³⁹La E=1.06 GeV/c. measured hypernuclei mass spectra. Deduced Λ hypernuclei spectroscopic properties.

1996Ha47: ¹³⁹La(π^+ ,K⁺)¹³⁹La E=1.06 GeV/c. measured Λ hypernuclei excitation energy spectra. Deduced binding energy mass

number dependence. 1995Aj01: ¹³⁹La(π^+, K^+)¹³⁹La E=1.06 GeV/c. measured $\sigma(\theta)$; superconducting kaon spectrometer. FWHM=2 MeV. Deduced $s_\Lambda,\,p_\Lambda,\,d_\Lambda,\,f_\Lambda,$ and g_Λ binding energies.

1994Al35: polarized La(pol n,X), E=0.5-10 eV; measured transmission; deduced J(3 eV res)=11/2 from sign of $\varepsilon = (N_+ - N_-)/(N_+ + N_-).$

2006MuZX: evaluation of neutron resonances.

¹³⁹La Levels

Cross Reference (XREF) Flags

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments
0.0 ^g	7/2+	stable	AB DE GHIJKL	MNOP	$μ=+2.7830455 \ 9 \ (1977Kr12,2014StZZ)$ Q=+0.200 6 (2007Ja16,2016St14) RMS charge radius <r<sup>2>^{1/2}=4.8550 fm 49 (2013An02 evaluation). J^π: spin from ABMR (1971Ch02) and optical spectroscopy (1934An02); π from L(³He,d)=L(d,³He)=4. μ: NMR, optical spectroscopy using ²H standard (1977Kr12). Others: 2.7832 2 (NMR,1951Sh33), 2.7780 9 (1949Di13), +2.76 (1940Wi08). Q: 2007Ja16 carried out a theoretical calculation of electric field gradients using relativistic model and measured nuclear quadrupole coupling constants from molecular beam magnetic resonance (D.S. Rudinoff et al., Jour. Mol. Spectr. 218, 169 (2003)). Others: +0.20 <i>I</i> (collinear fast beam laser spectroscopy (1982Ho02,1982Ba08); +0.26 or +0.28 (1971Ch02), +0.229 (1962Ko22), +0.21 <i>I</i> (1958Mu08), +0.23 <i>I</i> (1957Ti30), +0.3 <i>I</i> (1955Lu59). Recent hyperfine structure studies: 1994Wa31, 1990Pr03, and 1990Sh13.</r<sup>
165.8577 ^h 11	5/2+	1.50 ns <i>3</i>	AB DE HI KL	.MNOP	J^{π} : M1 γ to 7/2 ⁺ . L=2 in (³ He,d) or (d, ³ He). T _{1/2} : weighted av of β^- decay (1.48 ns 3 (1966Be42), 1.50 ns 10 (1956De57), 1.50 ns 10 (1955Ge38)) and ε decay (1.60 ns 4 (1970Ko38), 1.48 ns 3 (1967Ma07), 1.47 ns 6 (1965Ge04), 1.47 ns 5 (1962Be31)). See β^- and ε decay for details.

¹³⁹La Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments		
1209.0 <i>3</i> 1216? <i>1</i>	1/2 ^{+#}			DE	Н	K	0	
1219.047 10	9/2 ⁺ @	0.58 ps 9	A		HI	KL	MN	$T_{1/2}$: from B(E2) in Coulomb excitation and adopted J^{π}
1256.797 <i>10</i>	(5/2)+		A		I	KL	MN	J^{π} : $5/2^+$, $7/2^+$ from $\gamma(\theta)$ and excit in Coul. ex. $5/2^+$ from comparison of compound-nucleus calculation to γ excit in $(n, n'\gamma)$.
1381.408 ^h 12	(9/2+)		A		HI	K	ΝP	J ^{π} : γ to 5/2 ⁺ . 9/2 ⁺ from comparison of compound-nucleus calculation to γ excit in (n,n' γ). 1970Mo30 suggest 7/2 based on 5034 $\gamma(\theta)$ in (γ , γ'); however, $\gamma(\theta)$ also appears consistent with 9/2.
1420.3 3	(11/2)-			D	I		OP	J ^{π} : L=5 in (³ He,d) and (d, ³ He), where 11/2 was assumed for spectroscopic factors with possible involvement of h _{11/2} orbital; 291.3 γ from (13/2 ⁺) in ²³⁸ U(¹² C,F γ) unlikely to be M2 for 9/2 ⁻
1420.490 7	$(7/2)^+$		A	E	HI	KL	MN	J^{π} : M1+E2 γ to 7/2 ⁺ ; dipole γ from 9/2 ⁻ ; excit and $\gamma(\theta)$ in Coul. ex. Note that 11/2 ⁺ proposed in (n,n' γ) (1987Ab17) from excitation function data is inconsistent.
1476.489 7	(9/2+)		A		I	K		J^{π} : $5/2^+$, $7/2$, $9/2^+$ from γ 's from 9/2 resonance and to $5/2^+$. $9/2^+$ from comparison of compound-nucleus calculation to γ excit in $(n, n'\gamma)$.
1536.388 7	7/2+ @	0.044 ps 7	A		GHI	K		$T_{1/2}$: from B(E2) in Coulomb excitation and adopted J^{π}
1537.69 ^g 10	$(11/2^+)$					KL	M P	J^{π} : from comparison of compound-nucleus calculation to α excit in $(n n' \alpha)$
1558.72 3	3/2 ⁺ ,5/2 ⁺ #		A	DE		K	0	J^{π} : $3/2^+$ from comparison of compound-nucleus calculation to γ excit in $(n,n'\gamma)$. $5/2^+$ from comparison of DWBA to $\sigma(\theta)$ in $(^7\text{Li}, ^6\text{He})$.
1578.163 <i>14</i>	5/2+,7/2+@		A		HI	KL	М	J^{π} : 1987Ab17 suggest (11/2 ⁺) based on comparison of compound-nucleus calculation to γ excit in (n,n' γ); however, this is not consistent with γ excit in Coul. ex.
1683.146 <i>10</i>	7/2+		A		HI	KL.	M	J ^{π} : 7/2,11/2 from $\gamma(\theta)$ in (γ,γ') . 5/2 ⁺ ,7/2 ⁺ from $\gamma(\theta)$ and excit in Coul. ex. 1987Ab17 suggest 9/2 ⁺ based on comparison of compound-nucleus calculation to γ excit in $(n,n'\gamma)$.
1711.66 ^h 20	$(13/2^+)^f$						Р	
1716.12 10	5/21 0				HT	KL.	M	J [*] : 198/Ab1/ suggest 9/2 ⁺ based on comparison of compound-nucleus calculation to γ excit in $(n,n'\gamma)$; however, this is not consistent with γ excit in Coul. ex. Also suggested 9/2 ⁺ in (n,n') .
1740 <i>1</i> 1761.167 <i>10</i>			A		H I	K		J^{π} : 7/2 from $\gamma(\theta)$ in (γ, γ') . 3/2 from comparison of
1766.428 24	$(5/2)^+$		A		I	KL.	M	compound-nucleus calculation to γ excit in $(n,n'\gamma)$. J^{π} : from L=2 in (³ He,d). 3/2 from $\gamma(\theta)$ in Coul. ex. if 1767 γ assigned in Coul. ex. Same as 1765.5 γ in β^- decay. $\neq 3/2^+$ from γ from $9/2^{(+)}$ resonance.
1780 15	1/2+#			DE				, , _,,,,
1800.4 ^{<i>h</i>} 4	$(17/2^+)^{f}$	315 ns 35					Р	%IT=100 T _{1/2} : (fragment) γ (t) (2012As06).
1810				_		L		1/2 ("0""""), (") (""""""""""""""""""""""""""""
1837 4 1854 1				E	HI H			
1856.62 4	$(3/2^+, 5/2^+)^{\text{\#}}$		A	DE	I	KL		J ^{π} : γ from 9/2 ⁽⁻⁾ resonance. 3/2 ⁺ from comparison of

Continued on next page (footnotes at end of table)

¹³⁹La Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$			XREF		Comments
						DWBA to $\sigma(\theta)$ in (⁷ Li, ⁶ He).
1894.0 <i>5</i> 1920.43 <i>4</i>	(7/2 ⁺)	A		I K HI KL		J^{π} : 5/2 ⁻ ,7/2,9/2 ⁺ from γ 's from 9/2 ⁻ resonance and to 5/2 ⁺ . (7/2 ⁺) from comparison of compound-nucleus calculations to γ excit in (n.n' γ).
1940.83 <i>12</i> 1950 1954 <i>4</i>	$(7/2^+)$ $(3/2^+)$			KL I	0	J^{π} : comparison of compound-nucleus calculations to γ excit in $(n,n'\gamma)$.
1962.8 <i>3</i>	$(13/2^+)^{f}$				Р	
1962.84 11	(5/2)+	A	DE	KL		J^{π} : $3/2^+$, $5/2^+$ from L=2 in (³ He,d) or (d, ³ He). $\neq 3/2^+$ from $7/2^-$ resonance. (3/2 ⁺) from comparison of compound-nucleus calculations to γ excit in (n,n' γ).
1980 <i>1</i>				Н		
2032.75 ^g 25	$(15/2^+)^{f}$				Р	
2035 2059.73 <i>10</i> 2123 <i>3</i> 2136 <i>1</i>		A		KL HIK I H		XREF: K(?).
2152 1				H L		
2158.1 <i>11</i> 2232 <i>5</i>	(7/2,11/2)		e	I K I		XREF: K(?). J^{π} : (7/2,11/2) from $\gamma(\theta)$ in (γ, γ') . $3/2^+$ and $7/2^+$ from L=2+4 doublet in (⁷ Li, ⁶ He).
2240 ^{&} 12 2276 1 2291 5	3/2+,5/2+#		De	н		J^{π} : see comment for 2232 level.
2310 <i>19</i> 2313 <i>1</i> 2357 <i>1</i>	1/2+ #		DE	L H		E(level): from $({}^{3}\text{He,d}),(\alpha,t)$.
2385 ^{&} 1 2390 5				H L I		
2401 2440 <i>I</i> 2448 <i>I</i>	(11/2 ⁻ ,9/2 ⁻)		E	L H L H		$J^{\pi}: L(^{\prime}Li, {}^{o}He) = (5).$
2466 2573 <i>1</i> 2597 2600 <i>1</i>				L H L L H		
2685 <i>1</i> 2705.0 <i>10</i> 2712? <i>1</i>	-			H L H H		$\mathbf{J}^{\pi}: \mathbf{L}(\alpha, \alpha') = 3.$
2724 <i>1</i> 2747 <i>1</i> 2774 <i>1</i>				H H H		
2780	(-)			L		$J^{\pi}: L(\alpha, \alpha') = (3).$
2800 <i>I</i> 2811 <i>I</i> 2828 <i>I</i>	(*)			H L H		$\mathbf{J}^{\pi}: \mathbf{L}(\alpha, \alpha') = (2).$
2862 <i>I</i> 2868 <i>I</i> 2870	+			H H L		$\mathbf{J}^{\pi}: \mathbf{L}(\alpha, \alpha') = 2.$
2877? 1	£			Н		
2885.9 ⁸ 5 2890	$(19/2^+)^{J}$			L	Р	$\mathbf{J}^{\pi}: \mathbf{L}(\alpha, \alpha') = (3).$
2918.0 5	$(17/2^+)^f$			-	Р	
2928? 1				Н		

Continued on next page (footnotes at end of table)

¹³⁹La Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
2964 1		Н	
2972 1		Н	
2990 1		H	
3043 1		H	
3053 1	(10/2-)f	Н	
3061.2.5	$(19/2^{-})^{J}$		P
30// 1		H	
3114 1		н	
3147 4		G	
3150.3.6	$(19/2^+)^{f}$	-	Ρ
3175 3 5	$(1)/2^{-})^{2}$		D
3173.3 J	$(21/2)^{5}$		
3184.3° 3	$(23/2^{+})^{j}$	TT	P
3221 1		п	
3247.0.6	$(21/2^{-})f$	11	D
3247.90	$(21/2)^{3}$	н	r
32.62 1		Н	
3275 1		H	
3303 1		Н	
3305.6 6	$(23/2^{-})^{f}$		Р
3351 <i>I</i>		Н	
3355 2	-a	G	
3361? <i>1</i>		Н	
3364.5 6	$(21/2^+)^{f}$		Р
3370 1		Н	
3375 2	$(15/2)^{-}$	G	J^{π} : L(d,p)=3 from 5 ⁺ target and comparison of experimental σ with theory.
3401 1		Н	
3433 2		G	
3443 1		п	
3475 1		Н	
3483 1		Ĥ	
3485 2	-a	G	
3517 2	-a	G	
3523 1		Н	
3527 1		Н	
3544 1	-0	Н	
3333 2	u	G	
3561 1		п	
3573 1		Н	
3586 1		Ĥ	
3611 2	-a	G	
3631 <i>1</i>		Н	
3664 1		Н	
3688 2	-a	G	
3732 1	-0	Н	
3/48 2	- <i>a</i>	G	
3700 1		ч	
3799 1		л Н	
3805 2	-a	G	
3832 1		Н	

¹³⁹La Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF		Comments
3841 2 3854 <i>1</i> 3868 2 3878 <i>1</i>			G H G		
3886 <i>I</i> 3905 2 3919 <i>I</i>	- <i>a</i>		H G		
3927 2 3931 <i>I</i>	(17/2) ^{-a}		G H		
3952 2 3963 1	-a -a		G H		
3980 2 4014 2 4095 2	- <i>a</i> - <i>a</i>		G G		
4116.2 <i>6</i> 4148 <i>2</i> 4230 <i>2</i>	$(25/2^+)^f$ -a -a		G G	Р	
4252.3 ^{<i>i</i>} 6 4336 2 4394 2	$(23/2^+)^f$ $(^-)^a$ $(^-)^a$		G	Р	
4628.0 7 4641.2 ^{<i>i</i>} 7	$(27/2^{-})^{f}$ $(25/2^{+})^{f}$, and the second s	P P	
4791.2 8 5217.6 ^{<i>i</i>} 8 5380.6 6	$(27/2^+)^{f}$		J	P P	
5389.8 <i>12</i> 5406.8 <i>13</i> 5423.1 7]]]		
5545.4 7 5552.7 9 5572.0 11]]]		
5582.1 <i>10</i> 5594.8 <i>7</i> 5620.4 <i>8</i>			נ נ י		
5688.1 5 5708.6 7 5716 5 6			J J J		
5723.0 <i>3</i> 5811.3 <i>8</i> 5830.9 <i>9</i>			3 3 1		
5848.9 6 5940.2 8 5984.1 20			J J J		
6015.9 8 6047.1 <i>14</i> 6077.9 <i>11</i>	7/2 ^{-b}	0.051 eV +14-8	IJ J		Γ from (γ, γ') :E=6.0-8.6 MeV.
6097.8 <i>12</i> 6112.0 <i>15</i> 6114.2 <i>4</i>	9/2 ⁽⁻⁾	0.068 eV <i>34</i>	J J I		J^{π} : 9/2 from $\gamma(\theta)$ in (γ, γ') . $\pi = (-)$ since E1 absorption is
	r	···· ·· - ·	_		generally two orders of magnitude larger than M1 for heavier nuclei.

Γ from (γ, γ') :E=6.0-8.6 MeV.

Continued on next page (footnotes at end of table)

¹³⁹La Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
6131.1 9			J	
6150.8 10			j	
6178.3			j	
6194.1.9			1	
6214.2.5			1	
6233.3.8			ĩ	
6249 2 20			1	
6260.2.20			ĩ	
6269 5 12			1	
6301.1 6			j	
6326.1 6			5	
6354.8.5			j	
6366.5 10			j	
6383.5.5			j	
6402.6 9			J	
6417.4 <i>23</i>	9/2- b	0.081 eV +13-7	I	Γ from (γ, γ') :E=6.0-8.6 MeV.
6435.2 20			J	
6441.9 <i>11</i>			J	
6450.9 <i>4</i>			J	
6465.3 7			J	
6483.8 16			J	
6491.3 8			J	
6501.4 6			J	
6526.7 6			J	
6539.6 5			J	
6549.6 8			J	
6619.4 6			J	
6651.3 7			J	
6674.8 8			J	
6713.0 6			J	
6723.8 15			J	
6755.8 7			J	
6758.8 16	7/2 ^d		I	E(level): this level may be the same as 6755.8 level, although, the decay patterns are different.
6767.6 18			J	
6875.4 8			J	
6889.9 8			J	
6901.1 <i>10</i>			J	
6926.3 8			J	
6969.06			J	
6983.4 7			J	
7019.7 <i>10</i>			J	
7036.1 9			J	
7052.4 7			J	
7154.0 11			J	
7158 3			J	
7272.8 15			J	
7278.3 22			I	E(level): this level may be the same as 7272.8 level, although, the decay patterns are different.
7320.0 8			J	
7327.2 8			J	
7370.0 8			J	
7400.0 7			J	
7414.0 7			J	
7444.9 12			J	
7451.1 9			J	

Continued on next page (footnotes at end of table)

¹³⁹La Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}		XREF	Comments
7462.8 7 7472.0 9 7506.7 7 7552.7 8 7562.1 4 7570.2 11 7579.8 6 7591.6 11 7599.1 7)))))))))))	
7636.2 5 7661.3 18 7667 3 7678.6 16 7684.7 9 7692.4 12 7699 3 7765.1 13 7789.4 13 7905.2 6 7912.5 7 7922.2 9 7961 3 7972.3 7 8527.2 10 8551 5 6	7/2- ^b	0.17 eV <i>4</i>		I J J J J J J J J J J J J J J	Γ from (γ,γ'):E=6.0-8.6 MeV.
8581.3 <i>10</i> 8582.3 <i>10</i> 8595.7 <i>5</i> 8781.0 <i>1</i> 8798.9 <i>1</i> 8844.6 <i>3</i> 8867.5 <i>4</i> 8908.5 <i>7</i> 8996.4 <i>1</i> 9016.3 <i>2</i> 9037.1 <i>2</i> 9082.7 <i>3</i> 9131.4 <i>3</i>	(7/2,9/2) ^e			J J F F F F F F F F F	
16177.8 16808.2 17263.9 17482.3 17612.3 17752.3 17818.8 17869.4 17888.3 17957.8 18019.3 18120.6 18140.4 18293.3 18335.0 18358.9 18363.8	$\begin{array}{c} (7/2^{-}) \\ (3/2^{-}) \\ (1/2^{-}) \\ (9/2^{-}) \\ (5/2^{-}) \\ (13/2^{+}) \\ (9/2^{-}) \\ (7/2^{-}) \\ (5/2^{-}) \\ (3/2^{-}) \\ (7/2^{-}) \\ (5/2^{-}) \\ (7/2^{-}) \\ (3/2^{-}) \\ (3/2^{-}) \\ (5/2^{-}) \\ (1/2^{-}) \end{array}$	65.2^{c} keV 5 98^{c} keV 1 89^{c} keV 1 48^{c} keV 4 73^{c} keV 1 34^{c} keV 9 66^{c} keV 3 66^{c} keV 2 57^{c} keV 6 118^{c} keV 95^{c} keV 11 57^{c} keV 4 64^{c} keV 5 94^{c} keV 5 84^{c} keV 4	C C C C C C C C C C C C C C C C C C C		

¹³⁹La Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}		XREF	
18512.7? 18624.9?	(5/2 ⁻) (3/2 ⁻)	76 ^c keV 2 ^c keV	C C		

- [†] From least-squares fit to $E\gamma$ data, assuming 1 keV uncertainty when not stated. For levels populated in (γ, γ') :E=1.2-4.1 MeV, 1 keV uncertainty is assumed by the evaluators.
- [‡] From angular momentum transfer in inelastic scattering for levels between 2.6 and 3.0 MeV; angular momentum transfer in (d,p) for levels between 3.0 and 4.4 MeV, except as noted; and resonance analysis for unbound states above 16 MeV. For levels populated in (γ, γ') , J^{π} is limited to 5/2,7/2,9/2 from expected dipole excitation from $7/2^+$ g.s. of ¹³⁹La.
- [#] From angular momentum transfer in (³He,d) or (d,³He).
- [@] From $\gamma(\theta)$ and comparison of excitation function to theory in Coulomb excitation.
- [&] From inelastic scattering.
- ^a L(d,p) and/or comparison to theoretical calculations.
- ^b From $\gamma(\theta)$ and polarization of elastically scattered γ in (γ, γ') E=6.0-8.6 MeV.
- ^{*c*} Width from (pol p,p'):IAR.
- ^d From $\gamma(\theta)$ in (γ, γ') .
- e From γ -deexcitation pattern.
- f For high-spin levels from ($^{12}C,F\gamma$), tentative assignments are from yrast type of population, band structures and consistency of intensities of cascading and cross over transitions.
- ^{*g*} Band(A): γ cascade based on g.s.
- ^h Band(B): γ cascade based on 5/2⁺.
- ^{*i*} Band(C): Band based on $(23/2^+)$.

Adopted Levels, Gammas (continued)									
γ ⁽¹³⁹ La)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α #	Comments
165.8577	5/2+	165.8575 <i>11</i>	100	0.0	7/2+	M1		0.2516 7	B(M1)(W.u.)=0.00257 4 α : based on α (K)(exp)=0.2146 10 (recommended by 1985HaZA from several experimental values, see ¹³⁹ Ce ε decay). α (L)(exp)=0.0289 12 (1976Ha11). Corresponding value from BrIcc code is 0.261 4. δ : +0.034 34 from ε decay. <0.160 6 from adopted J^{π} , $T_{1/2}$, and α and B(E2) \uparrow in Coul. ex. B(E2)(W.u.)<2 from δ (E2/M1)=0.034 34.
1209.0 1216?	1/2+	1043.1 <i>3</i> 1216	100	165.8577 0.0	$5/2^+$ $7/2^+$				
1219.047	9/2+	1053.162 32	12.8 18	165.8577	5/2+	E2			B(E2)(W.u.)=1.76 24 E_{γ} : unweighted av of data from Coul. ex., β^{-} decay, and (n n' γ)
		1219.044 10	100 1	0.0	7/2+	E2+M1	-4.9 4		B(E2)(W.u.)=7.4 11; B(M1)(W.u.)=0.00076 17 E _{γ} : unweighted av of data from Coul. ex., β^- decay, (n,n' γ), (γ , γ'), and (μ^- , $\eta\gamma$).
1256.797	(5/2)+	1090.938 <i>10</i> 1256.772 <i>22</i>	100.0 24 39.9 11	165.8577 0.0	5/2+ 7/2+	M1+E2 M1+E2			δ: -0.28 δ or +3.5 7. I _γ : from β ⁻ decay. Others: 72.0 17 in Coulomb. ex. and 76 9 in (n,n'γ). δ: -0.28 δ or -2.3 5. B(E2)(W,u)(5/2 ⁺)=3.7 13 from B(E2)↑ in Coul. ex.
1381.408	(9/2+)	1215.542 <i>12</i> 1381.560 <i>93</i>	100.0 8 5.2 3	165.8577 0.0	5/2+ 7/2+				
1420.3	$(11/2)^{-}$	1420.0 5		0.0	7/2+	[M2]			
1420.490	(7/2)	1254.631 <i>10</i> 1420.478 <i>10</i>	11.5 <i>I</i> 100	0.0	5/2* 7/2*	M1+E2			δ: -0.15 2 or +5.3 9. B(E2)(W.u.)=3.5 4 from B(E2)↑ in Coul. ex.
1476.489	(9/2+)	1310.617 <i>10</i> 1476.488 <i>10</i>	100 <i>3</i> 11.5 <i>18</i>	165.8577 0.0	5/2+ 7/2+				
1536.388	7/2+	1370.509 10	100 4	165.8577	5/2+	M1+E2	-0.81 25		B(E2)(W.u.)=13 6; B(M1)(W.u.)=0.06 3 I _y : from Coulomb ex. Other: 102 7 in β^- decay is in agreement but somewhat less precise.
1537 69	$(11/2^+)$	1536.391 <i>10</i> 1537 69 <i>10</i>	100.0 <i>10</i> 100	0.0	$\frac{7}{2^+}$	M1+E2	-0.89 9		B(E2)(W.u.)=14.0 14; B(M1)(W.u.)=0.070 16
1558.72	3/2+,5/2+	1392.944 <i>75</i> 1558 697 <i>31</i>	47 <i>4</i> 100 5	165.8577	$5/2^+$ $7/2^+$				I_{γ} : other: 74 7 in (n,n' γ).
1578.163	5/2+,7/2+	1578.156 <i>14</i>	100	0.0	7/2+	M1+E2			δ: -0.29 3 or -2.2 2 for J(1578)=5/2, -0.17 2 or +1.6 2 for J(1578)=7/2. B(E2)(W.u.)=18.4 16 for J(1578)=5/2, B(E2)(W.u.)=13.8 /2 for J(1578)=7/2 from B(E2)↑ in Coul. ex.
1683.146	7/2+	1517.73 18	1.62 17	165.8577	5/2+				

9

From ENSDF

					Adopted Le	evels, Gamma	as (contin	ued)		
γ ⁽¹³⁹ La) (continued)										
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α #	Comments		
1683.146	7/2+	1683.133 10	100.0 9	0.0	7/2+	M1+E2		B(E2)(W.u.)=11.9 <i>16</i> δ : -0.34 7 or -2.0 4 for J(1683)=7/2. B(E2)(W.u.) from B(E2)↑ in Coul. ex.		
1711.66	(13/2+)	174.0 <i>3</i> 291.3 <i>3</i> 330.3 <i>3</i>	53 9 19 6 100 <i>15</i>	1537.69 1420.3 1381.408	$(11/2^+)$ $(11/2)^-$ $(9/2^+)$					
1716.12	5/2+	1716.11 <i>10</i>	100	0.0	7/2+	M1+E2		B(E2)(W.u.)=19.3 22 δ : +0.42 7 or +3.8 6. B(E2)(W.u.) from B(E2)↑ in Coul. ex.		
1740 1761.167		1740 1595.299 <i>10</i> 1761.18 <i>13</i>	100 100.0 <i>10</i> 2.8 <i>11</i>	0.0 165.8577 0.0	7/2 ⁺ 5/2 ⁺ 7/2 ⁺					
1766.428	$(5/2)^+$	1600.577 26 1766.346 59	100 <i>4</i> 73 <i>3</i>	165.8577 0.0	$5/2^+$ $7/2^+$ $(12/2^+)$	[E2]	2.05.8	B(E2)(W.u.)=22 4		
1800.4 1854 1856.62	$(1/2^{+})$ $(3/2^{+}, 5/2^{+})$	1854 1690.750 <i>36</i>	100 100 100	0.0 165.8577	$(15/2^+)$ $7/2^+$ $5/2^+$	[E2]	5.05 8			
1894.0 1920.43	$(7/2^+)$	1894.0 ^{&} 5 1754.604 82	100 68 6	0.0 165.8577	7/2 ⁺ 5/2 ⁺					
1940.83	(7/2 ⁺)	1920.407 <i>42</i> 174.6 2 363.1 2 403 8 2	100 5 100 69 87	0.0 1766.428 1578.163 1536.388	$7/2^+$ (5/2) ⁺ 5/2 ⁺ ,7/2 ⁺ 7/2 ⁺			E : somewhat poor fit level energy difference-404.4		
1962.8 1962.84 1980	(13/2 ⁺) (5/2) ⁺	425.2 <i>3</i> 1796.97 <i>11</i> 1980	100 100 100	1530.588 1537.69 165.8577	$(11/2^+)$ $5/2^+$ $7/2^+$			L_{γ} . somewhat poor in, reverenergy unreferee -404.4 .		
2032.75	(15/2+)	70.0 <i>3</i> 232.3 <i>4</i> 495.0 <i>3</i>	6.3 26 100 13 37 7	1962.8 1800.4 1537.69	$(13/2^+)$ $(17/2^+)$ $(11/2^+)$	[M1+E2]	5.1 21			
2059.73		1894.28 ^{&} 13 2059.72 10	35 5 100 7	165.8577 0.0	5/2 ⁺ 7/2 ⁺					
2136 2152		2136 2152	100 100	0.0 0.0	7/2+ 7/2+					
2158.1		308.3 ^{&} 3 477.0 ^{&} 9	100 14	1856.62 1683.146	(3/2 ⁺ ,5/2 ⁺) 7/2 ⁺			All three γ rays are from $(n,n'\gamma)$.		
2276 2313 2357 2385		581.3°C 5 2276 2313 2357 2385	66 <i>19</i> 100 100 100 100	1578.163 0.0 0.0 0.0 0.0	5/2 ⁺ ,7/2 ⁺ 7/2 ⁺ 7/2 ⁺ 7/2 ⁺ 7/2 ⁺					

10

From ENSDF

 $^{139}_{57} La_{82}$ -10

 $^{139}_{57}\mathrm{La}_{82}$ -10

L.

$\gamma(^{139}La)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #
2440		2440	100	0.0	7/2+		
2448		2448	100	0.0	$7/2^+$		
2573		2573	100	0.0	$7/2^+$		
2600		2600	100	0.0	7/2+		
2685	-	2685	100	0.0	$7/2^+$		
2705.0		2705	100	0.0	$7/2^+$		
2712?		2712	100	0.0	$7/2^+$		
2724		2724	100	0.0	7/2+		
2747		2747	100	0.0	$7/2^{+}$		
2774		2774	100	0.0	$7/2^+$		
2800		2634	100	165.8577	$5/2^+$		
		2800	85 26	0.0	$7/2^+$		
2811	(+)	2811	100	0.0	$7/2^+$		
2828		2828	100	0.0	$7/2^+$		
2862		2696	10	165.8577	$5/2^+$		
		2862	100 19	0.0	$7/2^+$		
2868		2868	100	0.0	$7/2^+$		
2877?		2712	100	165.8577	$5/2^+$		
		2877	109 21	0.0	$7/2^+$		
2885.9	$(19/2^+)$	853.2 4	100	2032.75	$(15/2^+)$		
2918.0	$(17/2^+)$	1206.3 5	100	1711.66	$(13/2^+)$		
2928?		2928	100	0.0	7/2+		
2964		2964	100	0.0	$7/2^+$		
2972		2972	100	0.0	$7/2^+$		
2990		2990	100	0.0	$7/2^+$		
3043		2877	59	165.8577	$5/2^+$		
		3043	100 15	0.0	$7/2^+$		
3053		3053	100	0.0	$7/2^+$		
3061.2	$(19/2^{-})$	1260.8 5	100	1800.4	$(17/2^+)$		
3077		3077	100	0.0	$7/2^{+}$		
3095?		2928	100	165.8577	$5/2^{+}$		
		3095	108 15	0.0	7/2+		
3114		2948	25	165.8577	$5/2^{+}$		
		3114	100 18	0.0	7/2+		
3150.3	$(19/2^+)$	232.3 4	100	2918.0	$(17/2^+)$		
3175.3	$(21/2^+)$	1374.9 <i>4</i>	100	1800.4	$(17/2^+)$		
3184.3	$(23/2^+)$	(9.0 8)	0.5.2	3175.3	$(21/2^+)$	[M1]	1.9×10^2 7
	(- , =)	298.4 3	100 15	2885.9	$(19/2^+)$	r -1	
3196?		3196	100	0.0	7/2+		
3221		3221	100	0.0	7/2+		
3247.9	$(21/2^{-})$	97.6 5	100 14	3150.3	$(19/2^+)$		
	(=-,=)	186.7 4	84 13	3061.2	$(19/2^{-})$		

11

$\gamma(^{139}La)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α #
3252		3252	100	0.0	7/2+		
3262		3095	56	165.8577	$5/2^+$		
		3262	100 20	0.0	$7/2^+$		
3275		3275	100	0.0	$7/2^+$		
3303		3303	100	0.0	$7/2^+$		
3305.6	$(23/2^{-})$	(57.7 8)	41 6	3247.9	$(21/2^{-})$	[M1]	5.29 24
		130.3 3	100 19	3175.3	$(21/2^+)$		
3351		3351	100	0.0	7/2+		
3361?		3196	100	165.8577	$5/2^{+}$		
		3361	85 11	0.0	$7/2^+$		
3364.5	$(21/2^+)$	478.6 <i>4</i>	100	2885.9	$(19/2^+)$		
3370		3370	100	0.0	7/2+		
3401		3235	100	165.8577	$5/2^+$		
		3401	138 38	0.0	$7/2^+$		
3445		3445	100	0.0	$7/2^+$		
3458		3292	100	165.8577	$5/2^+$		
		3458	67 13	0.0	$7/2^+$		
3475		3475	100	0.0	$7/2^+$		
3483		3317	23	165.8577	$5/2^+$		
		3483	100 19	0.0	$7/2^+$		
3523		3523	100	0.0	$7/2^+$		
3527		3361	100	165.8577	$5/2^+$		
		3527	117 30	0.0	$7/2^+$		
3544		3378	100	165.8577	$5/2^+$		
		3544	117 22	0.0	$7/2^+$		
3557		3391	6	165.8577	$5/2^+$		
		3557	100 32	0.0	$7/2^+$		
3561		3395	100	165.8577	$5/2^+$		
		3561	32 6	0.0	$7/2^+$		
3573		3407	6	165.8577	$5/2^+$		
		3573	100 20	0.0	$7/2^+$		
3586		3586	100	0.0	$7/2^{+}$		
3631		3631	100	0.0	$7/2^+$		
3664		3664	100	0.0	$7/2^+$		
3732		3732	100	0.0	$7/2^+$		
3790		3790	100	0.0	$7/2^+$		
3799		3799	100	0.0	$7/2^+$		
3832		3832	100	0.0	$7/2^+$		
3854		3854	100	0.0	$7/2^+$		
3878		3878	100	0.0	7/2+		
3886		3886	100	0.0	7/2+		
3919		3919	100	0.0	$7/2^+$		

12

	Adopted Levels, Gammas (continued)												
						γ (¹³⁹ I	La) (continued	<u>)</u>					
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments					
3931		3931	100	0.0	7/2+								
3941		3941	100	0.0	$7/2^{+}$								
3963		3963	100	0.0	$7/2^{+}$								
4116.2	$(25/2^+)$	940.9 <i>4</i>	100	3175.3	$(21/2^+)$								
4252.3	$(23/2^+)$	887.8 4	16 <i>3</i>	3364.5	$(21/2^+)$								
		1068.0 4	100 10	3184.3	$(23/2^+)$								
4628.0	$(27/2^{-})$	512 <i>1</i>	11 3	4116.2	$(25/2^+)$								
		1322.3 5	100 10	3305.6	$(23/2^{-})$								
4641.2	$(25/2^+)$	388.9 <i>3</i>	100	4252.3	$(23/2^+)$								
4791.2	(27/2+)	1485.6 6	100	3305.6	$(23/2^{-})$								
5217.6	$(2^{\prime}/2^{+})$	576.4 4	100	4641.2	$(25/2^+)$								
5380.6		5380.5 6	100	0.0	7/2								
5389.8		5389.7 12	100	0.0	7/2*								
5400.8		5400.7 15	100	0.0	$\frac{1}{2}$								
5545 4		554537	100	0.0	7/2+								
55527		555269	100	0.0	7/2 $7/2^+$								
5572.0		5571911	100	0.0	7/2 $7/2^+$								
5582.1		5582 0 10	100	0.0	7/2 $7/2^+$								
5594.8		5594.7 7	100	0.0	$7/2^+$								
5620.4		5620.3.8	100	0.0	$7/2^+$								
5658.8		5658.7 7	100	0.0	7/2+								
5688.1		5688.0 5	100	0.0	7/2+								
5708.6		5708.5 7	100	0.0	7/2+								
5716.5		5716.4 6	100	0.0	$7/2^{+}$								
5723.0		5722.9 <i>3</i>	100	0.0	$7/2^{+}$								
5811.3		5811.2 8	100	0.0	7/2+								
5830.9		5830.8 9	100	0.0	7/2+								
5848.9		5848.8 <i>6</i>	100	0.0	7/2+								
5940.2		5940.1 8	100	0.0	7/2+								
5984.1		5984 2	100	0.0	7/2+								
6015.9	7/2-	3895 4	1.1	2123									
		4062 4	1.1	1954	Z (2)+								
		4334 4	13.6	1683.146	1/2	$\mathbf{D}(\cdot, \mathbf{O})$	0.005.15						
		4458 4	21.9	15/8.163	5/2 ,1/2 7/2+	D(+Q)	+0.005 15						
		4481 4	J.8	1330.388	$\frac{1}{2}$								
		4338 4	4.ð	14/0.489	$(9/2^{+})$		0 15 10						
		4190 0	14.4	1219.04/	7/2 5/2+	D+Q	+0.13 10	$P(E_1)/W_{12} = 1.50 \times 10^{-5} + 25 \cdot 44$					
		3832 4	21.3	103.83//	5/2	(E1(+N12))	-0.02 0	Mult.: from $\gamma(\theta)$ and $I\gamma/E\gamma^3$ in (γ,γ') .					
		6015.4 8	100	0.0	7/2+	(E1(+M2))	-0.01 3	$B(E1)(W.u.) = 6.8 \times 10^{-5} + 11 - 19$					

13

From ENSDF

 $^{139}_{57} La_{82}$ -13

I.

$\gamma(^{139}La)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]
6047.1		6047.0 14	100	0.0	7/2+	
6077.9		6077.8 11	100	0.0	$7/2^+$	
6097.8		6097.7 12	100	0.0	$7/2^+$	
6112.0		6111.9 15	100	0.0	7/2+	
6114.2	$9/2^{(-)}$	3956	8.2	2158.1		
	~ 1 =	4055	42	2059.73		
		4221 2	4 1	1894.0		
		4259	4 1	1856.62	$(3/2^+, 5/2^+)$	[M2,E3]
		4345	21 <i>I</i>	1766.428	$(5/2)^+$. , ,
		4428	19 <i>I</i>	1683.146	7/2+	
		4534	71	1578.163	$5/2^+, 7/2^+$	
		4575	5 1	1536.388	$7/2^{+}$	
		4638	11 <i>I</i>	1476.489	$(9/2^+)$	
		4694 [@] &	22 [@] 1	1420.490	$(7/2)^+$	
		4734	91	1381.408	$(9/2^+)$	
		4858 <mark>&</mark>	<2	1256.797	$(5/2)^+$	
		4896	19 <i>I</i>	1219.047	$9/2^{+}$	
		5949	≈ 1	165.8577	$5/2^{+}$	
		6115 2	100 1	0.0	7/2+	
6131.1		6131.0 9	100	0.0	7/2+	
6150.8		6150.7 <i>10</i>	100	0.0	7/2+	
6178		6178 <i>3</i>	100	0.0	$7/2^{+}$	
6194.1		6194.0 9	100	0.0	$7/2^{+}$	
6214.2		6214.1 5	100	0.0	$7/2^{+}$	
6233.3		6233.1 8	100	0.0	7/2+	
6249.2		6249 2	100	0.0	7/2+	
6260.2		6260 2	100	0.0	7/2+	
6269.5		6269.3 12	100	0.0	7/2+	
6301.1		6300.9 6	100	0.0	7/2+	
6326.1		6325.9 6	100	0.0	7/2+	
6354.8		6354.6 5	100	0.0	7/2+	
6366.5		6366.3 10	100	0.0	$7/2^+$	
6383.5		6383.3 5	100	0.0	7/2+	
6402.6		6402.4 9	100	0.0	7/2*	
6417.4	9/2-	4186 ^{&} 4	3.0	2232	(7/2,11/2)	D(+Q)
		4356 [∞] 4	1.0	2059.73		
		4459 ^{&} 6	1.0	1954		
		4498 ^{&} 4	0.6	1920.43	$(7/2^+)$	
		4580 <mark>&</mark> 4	0.9	1837		

Adopted Levels, Gammas (continued)												
						$\gamma(^{139}$	La) (continued	1)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	Comments				
6417.4	9/2-	4661 ^{&} 4 4704 ^{&} 4 4838 ^{&} 4 4882 4	<1 2 4 <i>1</i> 6 <i>1</i>	1761.167 1716.12 1578.163 1536.388	5/2 ⁺ 5/2 ⁺ ,7/2 ⁺ 7/2 ⁺	D (E1)		B(E1)(W.u.)= $1.8 \times 10^{-5} + 4 - 5$				
		4999 ^{@&} 4 4999 ^{@&} 4 5034 4	4 [@] 1 4 [@] 1 2 1	1420.490 1420.3 1381.408	$(7/2)^+$ $(11/2)^-$ $(9/2^+)$	D(+Q) D(+Q) D(+Q)	-0.1 +3-2 -0.03 8	Mult.: dipole from $\gamma(\theta)$ in (γ, γ') . E1 from decay scheme.				
6435.2 6441.9 6450.9 6465.3 6483.8 6491.3 6501.4 6526.7 6539.6 6549.6 6619.4 6651.3 6674.8 6713.0 6723.8 6755.8 6755.8	70	$\begin{array}{c} 6418 \ 4\\ 6435 \ 2\\ 6441.7 \ 11\\ 6450.7 \ 4\\ 6465.1 \ 7\\ 6483.6 \ 16\\ 6491.1 \ 8\\ 6501.2 \ 6\\ 6526.5 \ 6\\ 6539.4 \ 5\\ 6549.4 \ 8\\ 6619.2 \ 6\\ 6651.1 \ 7\\ 6674.6 \ 8\\ 6712.8 \ 6\\ 6723.6 \ 15\\ 6755.6 \ 7\\ 4704 \ 8\\ \end{array}$	100 <i>1</i> 100 100 100 100 100 100 100 100 100 1	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	$7/2^+$ $7/2^+$	(E1(+M2))	-0.001 4	B(E1)(W.u.)=0.000134 +13–22				
6758.8 6767.6 6875.4 6889.9 6901.1 6926.3 6969.0	1/2	4704 5075 4 5180 4 5221 4 5375 4 5502 4 5500 4 6594 4 6760 4 6767.4 18 6875.2 8 6889.7 8 6900.9 10 6926.1 8 6968.8 6	$\begin{array}{c} 48 \ 9 \\ 10 \ 6 \\ 20 \ 6 \\ 14 \ 6 \\ 68 \ 6 \\ 60 \\ 13 \ 6 \\ 100 \ 7 \\ 48 \ 7 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \end{array}$	$\begin{array}{c} 2059.73 \\ 1683.146 \\ 1578.163 \\ 1536.388 \\ 1381.408 \\ 1256.797 \\ 1219.047 \\ 165.8577 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	$7/2^+$ $5/2^+, 7/2^+$ $7/2^+$ $9/2^+$) $(5/2)^+$ $9/2^+$ $5/2^+$ $7/2^+$	D						

15

From ENSDF

I.

$\gamma(^{139}La)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	Comments
6983.4		6983.2.7	100	0.0	$7/2^{+}$		
7019.7		7019.5 10	100	0.0	$7/2^+$		
7036.1		7035.9 9	100	0.0	$7/2^+$		
7052.4		7052.2 7	100	0.0	$7/2^+$		
7154.0		7153.8 11	100	0.0	$7/2^+$		
7158		7158.3	100	0.0	$7/2^+$		
7272.8		7272.6 15	100	0.0	$7/2^+$		
7278.3		5150 4	100	2123	• , =		
		5360 4	74	1920.43	$(7/2^+)$		
		5459 4	44	1837	(.,=)		
		5699 4	48	1578.163	$5/2^+, 7/2^+$		
		7279 4	70	0.0	7/2+		
7320.0		7319.8 8	100	0.0	$7/2^+$		
7327.2		7327.0 8	100	0.0	$7/2^+$		
7370.0		7369.8 8	100	0.0	7/2+		
7400.0		7399.8 7	100	0.0	$7/2^+$		
7414.0		7413.8 7	100	0.0	7/2+		
7444.9		7444.7 12	100	0.0	$7/2^+$		
7451.1		7450.9 9	100	0.0	$7/2^+$		
7462.8		7462.6 7	100	0.0	$7/2^+$		
7472.0		7471.8 9	100	0.0	$7/2^+$		
7506.7		7506.5 7	100	0.0	7/2+		
7552.7		7552.5 8	100	0.0	$7/2^{+}$		
7562.1		7561.9 4	100	0.0	7/2+		
7570.2		7570.0 11	100	0.0	7/2+		
7579.8		7579.6 6	100	0.0	7/2+		
7591.6		7591.4 <i>11</i>	100	0.0	$7/2^{+}$		
7599.1		7598.9 7	100	0.0	7/2+		
7636.2	$7/2^{-}$	5867 <mark>&</mark>	16 2	1766.428	$(5/2)^+$		
		7636.0 5	100 6	0.0	$7/2^{+}$	E1	B(E1)(W.u.)=0.00018 5
7661.3		7661.1 18	100	0.0	7/2+		
7667		7667 <i>3</i>	100	0.0	7/2+		
7678.6		7678.4 16	100	0.0	7/2+		
7684.7		7684.5 9	100	0.0	7/2+		
7692.4		7692.2 12	100	0.0	7/2+		
7699		7699 <i>3</i>	100	0.0	7/2+		
7765.1		7764.9 <i>13</i>	100	0.0	$7/2^{+}$		
7789.4		7789.2 13	100	0.0	7/2+		
7905.2		7905.0 6	100	0.0	7/2+		
7912.5		7912.3 7	100	0.0	$7/2^{+}$		
7922.2		7922.0 9	100	0.0	7/2+		

16

 γ ⁽¹³⁹La) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
7961	_	7961 <i>3</i>	100	0.0	7/2+	8551.5		8551.2 6	100	0.0	7/2+
7972.3		7972.1 7	100	0.0	$7/2^{+}$	8582.3	(7/2,9/2)	7002 ^{&}	96	1578.163	5/2+,7/2+
8527.2		6985 <i>5</i>	27 2	1536.388	$7/2^{+}$			7363	23 10	1219.047	9/2+
		7312 5	15 2	1219.047	9/2+			8582 <i>3</i>	100 2	0.0	7/2+
		8527	100 5	0.0	$7/2^{+}$	8595.7		8595.4 5	100	0.0	7/2+

[†] When available, values are from 139 Ba β^- decay. In other values are mostly independently known.

[‡] For low-lying (<2 MeV) levels, values are from $\gamma(\theta)$ data in Coulomb excitation from 7/2⁺ ground state in ¹³⁹La. Parity is considered as positive in such excitation. For gamma rays from levels above 6 MeV, values are from $\gamma(\theta)$ data in (γ,γ'):E=6.0-8.6 MeV.

Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with undivided intensity.

[&] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \sim \gamma$ Decay (Uncertain)

57 La₈₂

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{139}_{57} La_{82}$

¹³⁹₅₇La₈₂

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued) Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹³⁹₅₇La₈₂

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{139}_{57}$ La $_{82}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{139}_{57}$ La $_{82}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹³⁹₅₇La₈₂

¹³⁹₅₇La₈₂