¹³⁹La($\mathbf{n}, \mathbf{n}' \gamma$),(\mathbf{n}, \mathbf{n}') **1987Ab17**

History								
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	P. K. Joshi, B. Singh, S. Singh, A. K. Jain	NDS 138, 1 (2016)	15-Oct-2016					

1987Ab17: E=1.3-2.7 MeV. Measured γ 's and γ -excitation functions at 90°; tof, 0.1 MeV steps. Compared compound-nucleus calculations to γ -ray excitation functions. Only gammas which have been placed were listed by 1987Ab17.

Others:

1968Da14: E=2.9 MeV. Measured γ 's and $\gamma\gamma$ -coincidences (Ge(Li),NaI).

1969Ma05: E=2320-2580, Δ E=3. Measured $\sigma(\theta=30^{\circ}-135^{\circ})$; tof, scin. Hauser-Feshbach.

1969Va03: E=0.5-2.3 MeV. Measured γ' s; tof. No attempt was made to observe crossover transitions between levels above 1 MeV and a threshold of 200 keV.

1978AhZX: fast reactor spectrum. Measured γ' s at 90° for 0.12 MeV \leq E γ \leq 3.4 MeV.

Decay scheme is based on that proposed by 1987Ab17, except as noted. Other: 1989Sc07.

¹³⁹La Levels

1310 level proposed by 1968Da14 not confirmed.

E(level)	$J^{\pi\dagger}$	Comments
0.0	7/2+‡	
165.86 8	5/2 ^{+‡}	
1209.0 4	1/2+‡#	
1219.12 <i>10</i>	9/2+‡#	
1256.82 <i>13</i>	5/2+	
1381.30 11	9/2+	
1420.57 [@] 10	5/2+,7/2+‡&	J^{π} : 11/2 ⁺ proposed by 1987Ab17 based on excitation functions is inconsistent.
1476.45 <i>16</i>	9/2+	
1536.72 ^a 18	$7/2^{+ \ddagger a}$	
1537.70 ^a 10	7/2 ^{+‡a} 11/2 ^{+a} 3/2 ⁺	
1558.39 <i>15</i>	3/2+	
1578.03 <i>10</i>	$(11/2^+)^{\&}$	
1683.11 20	9/2+&	
1716.12 <i>10</i>	9/2+&	
1761.2 <i>13</i>	3/2+	
1766.30 25	$(5/2)^{+\ddagger}$	J^{π} : $3/2^{+}$ proposed from excitation function in $(n,n'\gamma)$.
1856.4 <i>4</i>	$(9/2^+)$	
1894.0 5		
1920.74 18	$(7/2^+)$	
1940.85 <i>18</i>	7/2+	
1963.0 4	$(3/2^+)^{\ddagger\#}$	
2035? ^b 7		
2060.9 5		
2161.19 25		

 $^{^\}dagger$ From comparison of compound-nucleus calculations to γ -ray excitation functions, except as noted.

[‡] From the Adopted Levels.

[#] Compound-nucleus calculations consistent with adopted J^{π} .

[@] No indication of a doublet with J^{π} =(11/2)⁻ for a second component found by 1987Ab17. 1439 10 level observed by 1969Ma05 may correspond to this level.

[&]amp; Compound-nucleus calculations not consistent with adopted J^{π} .

¹³⁹La(**n**,**n**'γ),(**n**,**n**') **1987Ab17** (continued)

¹³⁹La Levels (continued)

 $\gamma(^{139}\text{La})$

The $\gamma\gamma$ -coincidence data are from 1968Da14.

1968Da14 reported a 270.6 10γ which has not been observed by the other experimental groups.

1969Va03 reported 1820.0 15 and 1835.0 15 gammas which have not been observed by the other experimental groups.

$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	J_f^π
165.86	5/2+	165.85 10	100	0.0	7/2+
1209.0	1/2+	1043.1 3	100	165.86	5/2+
1219.12	9/2+	1054.2 8	10 [@] 4	165.86	5/2+
		1219.10 [@] <i>10</i>	100 [@] 13	0.0	$7/2^{+}$
1256.82	5/2+	1090.97 <i>10</i>	100 9	165.86	5/2+
		1256.0 ^{h&} 10	76 9	0.0	7/2+
1381.30	9/2+	1215.49 [@] 10	100 [@] 11	165.86	5/2+
		1381.1 2	4.8 ^{@} 5	0.0	$7/2^{+}$
1420.57	5/2+,7/2+	1256.0 ^{h&j} 10	9 ^c	165.86	5/2+
		1420.56 10	100 <i>c</i>	0.0	7/2+
1476.45	9/2+	1310.64 ^d 15	100 10	165.86	5/2+
		1476.1 <i>4</i>	13.6 <i>15</i>	0.0	$7/2^{+}$
1536.72	7/2+	1370.5 ^e 2	100 ^e 4	165.86	5/2+
		1537.3 ^{he} 10	100 <mark>e</mark> 4	0.0	7/2+
1537.70	11/2+	1537.69 ^h 10	100	0.0	7/2+
1558.39	3/2+	1392.4 2	74 <i>7</i>	165.86	5/2+
		1558.5 2	100 10	0.0	7/2+
1578.03	$(11/2^+)$	1578.09 10	100 ^c	0.0	7/2+
1683.11	9/2+	1520.0 ^c <i>j</i> 20	4 ^c	165.86	5/2+
		1683.1 2	100 12	0.0	7/2+
1716.12	9/2+	1716.11 <i>10</i>	100 ^c	0.0	7/2+
1761.2	3/2+	1595.3 ^a 13	100 ^a	165.86	5/2+
1766.30	$(5/2)^+$	291.3^{fj} 2	56 ^c f	1476.45	9/2 ⁺
		1600.9 6	100 20	165.86	5/2+
		1766.0 ^b <i>j</i> 4	100 12	0.0	7/2+
1856.4	$(9/2^+)$	1690.5 3	100	165.86	5/2+
1894.0		1894.0 ^{<i>ibj</i>} 5	100 ⁱ	0.0	7/2+
1920.74	$(7/2^+)$	1755.0 ^g 4	83 10	165.86	5/2+
		1920.7 2	100 12	0.0	7/2+
1940.85	7/2+	174.6^{f}_{f} 2	100 ^a	1766.30	$(5/2)^+$
		363.1^{f}_{f} 2	69^{af}	1578.03	$(11/2^+)$
		403.8^{f} 2	87 <i>af</i>	1536.72	7/2+
1963.0	$(3/2^+)$	1797.1 4	100	165.86	5/2+
2060.9		1894.0 ^{ibj} 5	71 ⁱ 9	165.86	5/2+
		2060.9 5	100 12	0.0	7/2+
2161.19		308.3^{fj} 3	100 14	1856.4	$(9/2^+)$
		477.0 ^a j 9		1683.11	9/2+
		581.3 ^f j 5	66 19	1578.03	$(11/2^+)$

^a 1987Ab17 propose a doublet based on their comparison of compound-nucleus calculations to the 1537 γ excitation function. The experimental excitation function is more than a factor of 10 larger than that calculated for 7/2⁺ by itself. See also footnote on 1537 γ doublet.

^b From 1969Ma05.

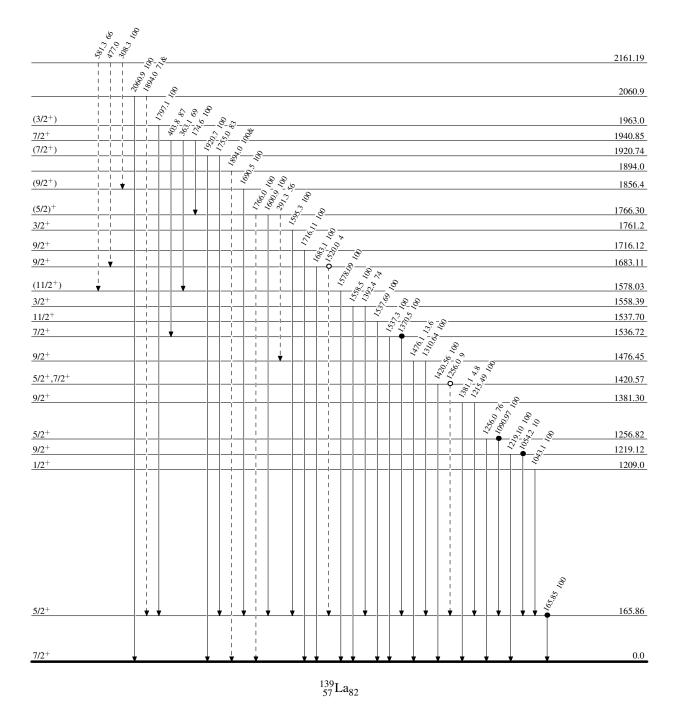
¹³⁹La(**n**,**n**'γ),(**n**,**n**') **1987Ab17** (continued)

$\gamma(^{139}\text{La})$ (continued)

- † Relative photon branching ratios from each level (from 1978AhZX, except as noted).
- ‡ 1987Ab17 assigned a 329.6 γ [I γ (329.6 γ)/I γ (1537)=24/52] to 1537, 7/2 $^{+}$; however, this would imply an M3 transition which is not consistent with RUL.
- # Assignment of 424.8 7 γ to 1683 and 1852.7 13 γ to 1856 by 1987Ab17 not consistent with β^- decay; I γ (424.8 γ)/I γ (1683 γ)=0.25 (1987Ab17) and I γ (425 γ)/I γ (1683 γ)=0.57 11 (1978AhZX) and I γ (1852.7 γ)/I γ (1690.1 γ)=2.5 and I γ (1853.64 γ)/I γ (1690.5)=2.1 4 (1987Ab17). Also, E γ 's differ from results of least-squares analysis by more than 5 σ .
- [@] 1987Ab17 observed a 1218.8 15 doublet and used the branching $I\gamma(1053\gamma)/I\gamma(1219\gamma)=10/90$ and $I\gamma(1219\gamma)/I\gamma(1381\gamma)=95/5$ from other work to resolve the doublet..
- & 1987Ab17 see no evidence for the multiple placement of the 1256y and place it as completely deexciting the 1256 level.
- ^a From 1987Ab17. Iγ renormalized by evaluators from percent branching ratios to branching ratios normalized by evaluators to 100 for strongest transition.
- ^b Not placed by 1987Ab17.
- ^c From 1968Da14.
- ^d Alternate placement as deexciting 1310 level suggested by 1978AhZX and 1968Da14 not confirmed by 1987Ab17.
- ^e E γ =1537.69 *10* (1978AhZX) differs significantly from 1536.11 *22* based on least-squares analysis. This suggests that in work of 1978AhZX the 1538, 11/2⁺, level is preferentially populated while in the work of 1987Ab17 there is more of an equal population (E γ =1537.3 *10*). I γ from Coul. ex.; 1987Ab17 obtained I γ (329.6 γ):I γ (1370 γ):I γ (1537 γ)=24:24:52; however, the decomposition of the intensity of the 1537 doublet depended on the assumption that the 329.6 γ deexcites the 1537, 7/2⁺ level.
- ^f Unplaced by 1978AhZX. I γ (291 γ)/I γ (1716 γ)=0.45 7, I γ (291 γ)/I γ (1601 γ)=1.6 4, I γ (363 γ)/I γ (175 γ)=0.45 12, I γ (404 γ)/I γ (175 γ)=0.49 14 (1978AhZX). Placement of 291.3 γ at 1716 is from 1968Da14. The energy of 291.3 2 is discrepant with results from least-squares analysis by more than 5 σ.
- ^g Alternative placement from 1756 level (1969Va03) not confirmed.
- ^h Multiply placed.
- i Multiply placed with undivided intensity.
- ^j Placement of transition in the level scheme is uncertain.
- x γ ray not placed in level scheme.

139 La(n,n' γ),(n,n') 1987Ab17

Legend


Level Scheme

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

- - - - - ► γ Decay (Uncertain)

Coincidence

o Coincidence (Uncertain)

