139 La(γ, γ'):E=1.2-4.1 MeV 2007Sc18

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	P. K. Joshi, B. Singh, S. Singh, A. K. Jain	NDS 138, 1 (2016)	15-Oct-2016	

2007Sc18: E(end-point)=4.1 MeV. Bremsstrahlung beam using 4.3 MV Stuttgart DYNAMITRON accelerator. Measured $E\gamma$, $I\gamma$ using three HPGe detectors at angles of 90°, 127° and 150°.

¹³⁹La Levels

E(level)	J ^{π @}	${\rm g}{\Gamma_0}^{\#}$	I _{S,0} (eV b) [‡]	Comments
0.0	7/2+			
165.9	$5/2^{+}$			
1216?†		0.41×10 ⁻³ eV 11	1.1 3	$B(E1)\uparrow=0.22\times10^{-5} 6; B(M1)\uparrow=0.020 6$
1219		0.85×10 ⁻³ eV 14	2.0 4	B(M1)↑=0.041 7
1381		0.68×10 ⁻³ eV 18	0	$B(E1)\uparrow=0.25\times10^{-5}$ 7; $B(M1)\uparrow=0.022$ 6
1420		1.67×10 ⁻³ eV 17	2.9 3	B(M1)↑=0.050 5
1538		0.0075 eV 4	8.2 6	B(M1)↑=0.179 9
				One peak likely consists of both transitions.
1578		0.0042 eV 3	6.4 5	B(E1) \uparrow =1.02×10 ⁻⁵ 8; B(M1) \uparrow =0.092 7
1(02		1 22. 10-3 14 20	102	Two states given in literature, peak is likely a combination of both.
1083		$1.33 \times 10^{-3} \text{ eV } 20$	1.8 3	B(M1) = 0.024.4
1740		$1.01 \times 10^{-3} \text{ eV } 10^{-3}$	0.85 21	B(MI) = 0.01 / 3 $P(E1) = 0.10 / 10^{-5} = 0.001 / 3$
1/40		$0.32 \times 10^{-3} \text{ eV} 15$	0.00 19	$D(E1) =0.10\times10^{-5}$; $D(M1) =0.009.2$ $D(E1)=0.12\times10^{-5}$; $D(M1)=0.011.2$
1021		$0.64 \times 10^{-1} \text{ eV} 10^{-1}$	0.94 18	$D(E1) =0.13 \times 10^{-2}$; $D(M1) =0.0112$ $D(E1)\uparrow=0.26\times 10^{-5}$ d; $D(M1)\uparrow=0.0222$
1921		0.0027 eV 3 0.65×10 ⁻³ eV 18	0.90 19	$B(E1) =0.30\times10^{-4}$, $B(M1) =0.035.5$ $B(E1)\uparrow=0.08\times10^{-5}$ 2; $B(M1)\uparrow=0.007.2$
2050		$0.03 \times 10^{\circ}$ CV 10	0.81 15	$B(E1)\uparrow = 0.00\times10^{-5} 2; B(M1)\uparrow = 0.007 2$ B(E1) $\uparrow = 0.30\times10^{-5} 3; B(M1)\uparrow = 0.035 3$
2039		$0.0050 \text{ eV} \text{ s}^{-3}$	0.72 18	$B(E1)^{+}=0.05\times10^{-5}$ 2; $B(M1)^{+}=0.008$ 2
2150		$0.83 \times 10^{-3} \text{ eV} 17$	0.72.14	$B(E1)^{+}=0.08\times10^{-5} 2; B(M1)^{+}=0.008 2$
2152		1.19×10^{-3} eV 18	0.88.13	$B(E1)^{+}=0.00\times10^{-5} 2; B(M1)^{+}=0.009 1$
2313		1.00×10^{-3} eV 18	0.72.13	$B(E1)\uparrow=0.08\times10^{-5}$ <i>J</i> : $B(M1)\uparrow=0.007$ <i>J</i>
2357		0.75×10^{-3} eV 18	0.52.13	$B(E1)\uparrow=0.06\times10^{-5}$ <i>I</i> ; $B(M1)\uparrow=0.005$ <i>I</i>
2385		1.38×10^{-3} eV 19	0.93 13	$B(E1)\uparrow=0.10\times10^{-5}$ <i>I</i> ; $B(M1)\uparrow=0.009$ <i>I</i>
2440		0.61×10^{-3} eV 17	0.40 11	$B(E1)\uparrow=0.04\times10^{-5}$ <i>I</i> ; $B(M1)\uparrow=0.004$ <i>I</i>
2448		0.88×10 ⁻³ eV 22	0.56 14	$B(E1)\uparrow=0.06\times10^{-5} 2; B(M1)\uparrow=0.005 1$
2573		0.68×10 ⁻³ eV 18	0.39 11	$B(E1)\uparrow=0.04\times10^{-5}$ 1; $B(M1)\uparrow=0.003$ 1
2600		0.79×10 ⁻³ eV 22	0.45 12	$B(E1)\uparrow=0.04\times10^{-5} I; B(M1)\uparrow=0.004 I$
2685		0.75×10 ⁻³ eV 19	0.40 10	$B(E1)\uparrow=0.04\times10^{-5} I; B(M1)\uparrow=0.003 I$
2705		0.88×10 ⁻³ eV 21	0.46 11	$B(E1)\uparrow=0.04\times10^{-5} I; B(M1)\uparrow=0.004 I$
2712?†		0.0012 eV 3	0.63 16	$B(E1)\uparrow=0.06\times10^{-5} 2; B(M1)\uparrow=0.005 1$
2724		1.23×10 ⁻³ eV 21	0.64 11	$B(E1)\uparrow=0.06\times10^{-5} l; B(M1)\uparrow=0.005 l$
2747		1.38×10 ⁻³ eV 22	0.70 11	$B(E1)\uparrow=0.06\times10^{-5} l; B(M1)\uparrow=0.006 l$
2774		0.0025 eV 3	1.25 14	$B(E1)\uparrow=0.11\times10^{-5} I; B(M1)\uparrow=0.010 I$
2800		0.0021 eV 3	0.48 10	$B(E1)\uparrow=0.09\times10^{-5} I; B(M1)\uparrow=0.008 I$
2811		0.96×10 ⁻³ eV 21	0.47 10	$B(E1)\uparrow=0.04\times10^{-5} I; B(M1)\uparrow=0.004 I$
2828		1.33×10^{-3} eV 21	0.64 10	$B(E1)\uparrow=0.06\times10^{-5}$ <i>I</i> ; $B(M1)\uparrow=0.005$ <i>I</i>
2862		17.7×10^{-3} eV 12	7.6 6	$B(E1)\uparrow=0.72\times10^{-5} 5; B(M1)\uparrow=0.065 5$
2868		0.94×10^{-3} eV 23	0.44 11	$B(E1)\uparrow=0.04\times10^{-5} I; B(M1)\uparrow=0.003 I$
2877?†		1.7×10 ⁻³ eV 3	0.40 12	$B(E1)\uparrow=0.07\times10^{-5} I; B(M1)\uparrow=0.006 I$
2928? [†]		1.13×10 ⁻³ eV 23	0.51 10	$B(E1)\uparrow=0.04\times10^{-5} I; B(M1)\uparrow=0.004 I$
2964		0.88×10 ⁻³ eV 21	0.38 9	$B(E1)\uparrow=0.03\times10^{-5} I; B(M1)\uparrow=0.003 I$
2972		0.0010 eV 3	0.42 12	$B(E1)\uparrow=0.04\times10^{-5}$ <i>I</i> ; $B(M1)\uparrow=0.003$ <i>I</i>
2990		0.0052 eV 4	2.24 19	$B(E1)\uparrow=0.19\times10^{-5}$ 2; $B(M1)\uparrow=0.017$ 1

Continued on next page (footnotes at end of table)

¹³⁹La(γ,γ'):E=1.2-4.1 MeV 2007Sc18 (continued)

¹³⁹La Levels (continued)

E(level)	$g\Gamma_0^{\#}$	$I_{S,0} (eV b)^{\ddagger}$	Comments
3043	0.0027 eV 4	0.72 12	$B(E1)\uparrow=0.09\times10^{-5}$ <i>I</i> ; $B(M1)\uparrow=0.008$ <i>I</i>
			$g\Gamma_0$: 0.0017 eV 3 for alternative assignments.
			or B(E1)= 0.06×10^{-5} <i>I</i> , B(M1)= 0.005 <i>I</i> , depending on alternative placement of γ rays.
3053	0.0059 eV 5	2.41 20	$B(E1)\uparrow=0.20\times10^{-5}$ 2; $B(M1)\uparrow=0.018$ 2
3077	1.17×10 ⁻³ eV 25	0.48 10	$B(E1)\uparrow=0.04\times10^{-5}$ 1; $B(M1)\uparrow=0.004$ 1
3095?†	3.1×10 ⁻³ eV 4	0.65 11	$B(E1)\uparrow=0.10\times10^{-5}$ 1; $B(M1)\uparrow=0.009$ 1
			$g\Gamma_0$: 0.003 eV 4 for alternative assignments.
3114	0.0085 eV 7	2.69 23	$B(E1)\uparrow=0.27\times10^{-5} 2; B(M1)\uparrow=0.024 2$
3196?†	0.0016 eV 3	0.61 11	$B(E1)\uparrow=0.05\times10^{-5}$ 1; $B(M1)\uparrow=0.004$ 1
3221	27.0×10 ⁻³ eV 20	10.0 7	$B(E1)\uparrow=0.77\times10^{-5}$ 6; $B(M1)\uparrow=0.070$ 5
3252	0.0011 eV 3	0.40 12	$B(E1)\uparrow=0.03\times10^{-5}$ 1; $B(M1)\uparrow=0.003$ 1
3262	0.0060 eV 5	1.38 15	$B(E1)\uparrow=0.16\times10^{-5}$ 2; $B(M1)\uparrow=0.015$ 1
			$g\Gamma_0$: 0.0038 eV 4 for alternative assignments.
			or B(E1)=0.11×10 ⁻⁵ <i>I</i> , B(M1)=0.10 <i>I</i> , depending on alternative placements of γ rays.
3275	0.0019 eV 4	0.69 15	$B(E1)\uparrow=0.05\times10^{-5} l; B(M1)\uparrow=0.005 l$
3303	0.0017 eV 3	0.59 11	$B(E1)\uparrow = 0.04 \times 10^{-5} I; B(M1)\uparrow = 0.004 I$
3351	0.0015 eV 4	0.50 12	$B(E1)\uparrow=0.04\times10^{-5}$ 1; $B(M1)\uparrow=0.004$ 1
3361?†	4.1×10 ⁻³ eV 5	1.38 15	$B(E1)\uparrow=0.10\times10^{-5}$ 1; $B(M1)\uparrow=0.009$ 1
			$I_{S,0}$ (eV b): 0.64 12 for alternative assignments.
3370	13.9×10 ⁻³ eV 11	4.7 4	$B(E1)\uparrow=0.35\times10^{-5}$ 3; $B(M1)\uparrow=0.032$ 3
3401	0.0043 eV 6	0.83 15	$B(E1)\uparrow=0.011\times10^{-5} I; B(M1)\uparrow=0.001 I$
3445	0.0016 eV 5	0.52 15	$B(E1)\uparrow=0.04\times10^{-5}$ <i>I</i> ; $B(M1)\uparrow=0.003$ <i>I</i>
3458	0.0062 eV 6	0.80 12	$B(E1)\uparrow=0.14\times10^{-5}$ 2; $B(M1)\uparrow=0.013$ 1
3475	0.0015 eV 4	0.47 14	$B(E1)\uparrow=0.03\times10^{-5}$ 1; $B(M1)\uparrow=0.003$ 1
3483	$14.9 \times 10^{-3} \text{ eV } 11$	3.8 <i>3</i>	$B(E1)\uparrow=0.34\times10^{-5}$ 3; $B(M1)\uparrow=0.030$ 2
3523	0.0058 eV 7	1.81 22	$B(E1)\uparrow=0.13\times10^{-5} 2; B(M1)\uparrow=0.012 1$
3527	0.0057 eV 7	0.95 17	$B(E1)\uparrow=0.12\times10^{-5}$ 2; $B(M1)\uparrow=0.011$ 2
			or B(E1)= 0.07×10^{-5} <i>I</i> , B(M1)= 0.006 <i>I</i> , depending on alternative placements of γ rays.
			$g\Gamma_0$: or 3.1×10^{-3} eV 6 for alternative assignments.
3544	0.0084 eV 7	1.39 16	$B(E1)\uparrow=0.18\times10^{-5} 2; B(M1)\uparrow=0.016 1$
3557	0.034 eV 3	9.8 8	$B(E1)\uparrow=0.73\times10^{-5} 5; B(M1)\uparrow=0.066 5$
3561	$20.3 \times 10^{-3} \text{ eV } 19$	1.5 3	$B(E1)\uparrow=0.43\times10^{-5}$ 4; $B(M1)\uparrow=0.039$ 4
3573	0.050 eV 3	14.1 10	$B(E1)\uparrow=1.04\times10^{-5}$ /; $B(M1)\uparrow=0.094$ /
3586	0.0083 eV 8	2.49 23	$B(E1)^{+}=0.1/\times 10^{-5} 2; B(M1)^{+}=0.016 T$
3631	0.040 eV 3	11./9	$B(E1)^{+}=0.80\times10^{-5}$ 6; $B(M1)^{+}=0.0/3$ 5 $D(E1)^{+}=0.04\times10^{-5}$ k $D(M1)^{+}=0.002$ k
3004	0.0018 eV 5	0.52 15	$B(E1) = 0.04 \times 10^{-5} I; B(M1) = 0.003 I$ $D(E1) = 0.04 \times 10^{-5} I; D(M1) = 0.002 I$
3732	0.0021 eV /	0.57 19	$B(E1) = 0.04 \times 10^{-5} I; B(M1) = 0.005 I$ $D(E1) = 0.00 \times 10^{-5} I; D(M1) = 0.008 I$
3790	0.0030 eV 8	1.55 20	$D(E1) = 0.09 \times 10^{-5} I; D(M1) = 0.008 I$ $B(E1) = 0.05 \times 10^{-5} I; B(M1) = 0.005 I$
3837	0.0031 eV 7	1 12 20	$B(E1) = 0.05 \times 10^{-5} I$; $B(M1) = 0.005 I$ $B(E1) = 0.07 \times 10^{-5} I$; $B(M1) = 0.007 I$
3854	$7.8 \times 10^{-3} \text{ eV} 10^{-3}$	2.0.3	$B(E1)=0.07\times10^{-1}$, $B(M1)=0.007$ $B(E1)=0.07\times10^{-5}$ 2: $B(M1)=0.012$ 2
3878	0.0032 eV 9	0.81 22	$B(E1)^{-0.15\times10^{-5}}$ /: $B(M1)^{+0.012}$ /
3886	2.8×10^{-3} eV 10	0.7.3	$B(E1)^{+}=0.05 \times 10^{-5} 2$; $B(M1)^{+}=0.004 2$
3919	4.7×10^{-3} eV 11	1.2 3	$B(E1)^{+}=0.07 \times 10^{-5} 2; B(M1)^{+}=0.007 2$
3931	15.4×10 ⁻³ eV 20	3.8 5	$B(E1)\uparrow=0.24\times10^{-5} 3; B(M1)\uparrow=0.022 3$
3941	5.6×10 ⁻³ eV 14	1.4 3	$B(E1)\uparrow=0.09\times10^{-5} 2; B(M1)\uparrow=0.008 2$
3963	7.6×10 ⁻³ eV 19	1.9 5	$B(E1)\uparrow=0.12\times10^{-5} 3; B(M1)\uparrow=0.011 3$

Continued on next page (footnotes at end of table)

139 La(γ, γ'):E=1.2-4.1 MeV 2007Sc18 (continued)

¹³⁹La Levels (continued)

[†] Alternative assignments possible for γ transition(s).

[‡] Integrated cross section.
[#] g=statistical weight factor.
[@] From Adopted Levels.

γ ⁽¹³⁹La)

E _i (level)	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Comments
1216?	1216 ^{&}	100	0.0	$7/2^{+}$	
1219	1053	10	165.9	$5/2^{+}$	
	1219	90 [@] 15	0.0	$7/2^{+}$	
1381	1216 <mark>&#</mark>	95 [@]	165.9	$5/2^{+}$	
	1381	5@ 1	0.0	$7/2^+$	
1420	1254	9	165.9	$5/2^+$	
	1420	91 [@] 9	0.0	$7/2^+$	
1538	1372	33	165.9	$5/2^+$	
	1538	$67^{@}$ 3	0.0	$7/2^+$	L: transition width likely overestimated should be treated as upper limit. Note
	1000	07 5	0.0	1/2	that in 2001Bu16 evaluation. $\Gamma_0/\Gamma=0.50$ 7, not 0.67 3 as quoted by 2007Sc18.
1578	1578	100	0.0	$7/2^{+}$	
1683	1517	2	165.9	$5/2^{+}$	
	1683	98 [@] 15	0.0	$7/2^{+}$	
1714	294 <mark>a</mark>	36	1420	,	E_{γ} : questionable γ taken from $(n,n'\gamma)$; not included in Adopted Gammas.
	1714	64 [@] 10	0.0	$7/2^{+}$	
1740	1740	100	0.0	$7/2^{+}$	
1854	1854	100	0.0	$7/2^{+}$	
1921	1755	68	165.9	$5/2^{+}$	
	1921	32 [@] 13	0.0	7/2+	I _{γ} : note that in 2001Bu16 evaluation, $\Gamma_0/\Gamma=0.55$ 9, not 0.32 13 as quoted by 2007Sc18.
1980	1980	100	0.0	$7/2^{+}$	
2059	1893	75	165.9	$5/2^{+}$	
	2059	25 [@] 7	0.0	7/2+	I _{γ} : Note that in 2001Bu16 evaluation, $\Gamma_0/\Gamma=0.71$ 36 not 0.25 7 as quoted by 2007Sc18.
2136	2136	100	0.0	$7/2^{+}$	
2152	2152	100	0.0	$7/2^{+}$	
2276	2276	100	0.0	7/2+	
2313	2313	100	0.0	7/2+	
2357	2357	100	0.0	7/2'	
2385	2385	100	0.0	7/2*	
2440	2440	100	0.0	7/2+	
2573	2573	100	0.0	$7/2^+$	
2600	2600	100	0.0	$7/2^+$	
2685	2685	100	0.0	$7/2^+$	
2705	2705	100	0.0	$7/2^{+}$	
2712?	2712 ^{&}	100	0.0	$7/2^{+}$	
2724	2724	100	0.0	7/2 ⁺	
2747	2747	100	0.0	$7/2^{+}$	
2774	2774	100	0.0	7/2+	
2800	2634	54	165.9	5/2+	
0011	2800	46 14	0.0	7/2+	
2811	2811	100	0.0	1/2+	
2828	2828	100	0.0	1/21	

¹³⁹La(γ, γ'):E=1.2-4.1 MeV 2007Sc18 (continued)

$\gamma(^{139}$ La) (continued)

E _i (level)	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_f J_f^{\pi}$	Comments
2862	2696	9	165.9 5/2+	
	2862	91 <i>17</i>	$0.0 \ 7/2^+$	
2868	2868	100	$0.0 \ 7/2^+$	
2877?	2712 ^{&}	48	165.9 5/2+	
	2877 <mark>&#</mark></td><td>52 10</td><td>0.0 7/2+</td><td></td></tr><tr><td>2928?</td><td>2928<mark>&</mark></td><td>100</td><td><math>0.0 \ 7/2^+</math></td><td></td></tr><tr><td>2964</td><td>2964</td><td>100</td><td><math>0.0 \ 7/2^+</math></td><td></td></tr><tr><td>2972</td><td>2972</td><td>100</td><td>0.0 7/2+</td><td></td></tr><tr><td>2990</td><td>2990</td><td>100</td><td><math>0.0 \ 7/2^+</math></td><td></td></tr><tr><td>3043</td><td>2877<mark>&</mark></td><td>37</td><td>165.9 5/2+</td><td></td></tr><tr><td></td><td>3043<sup>#</sup></td><td>63 9</td><td>0.0 7/2+</td><td><math>I_{\gamma}</math>: other: 100 if 2877 has alternate placement.</td></tr><tr><td>3053</td><td>3053</td><td>100</td><td><math>0.0 \ 7/2^+</math></td><td></td></tr><tr><td>3077</td><td>3077</td><td>100</td><td><math>0.0 \ 7/2^+</math></td><td></td></tr><tr><td>3095?</td><td>2928<mark>&</mark></td><td>48</td><td>165.9 5/2+</td><td></td></tr><tr><td></td><td>3095<mark>&</mark></td><td>52 7</td><td><math>0.0 \ 7/2^+</math></td><td></td></tr><tr><td>3114</td><td>2948</td><td>20</td><td>165.9 5/2+</td><td></td></tr><tr><td></td><td>3114</td><td>80 15</td><td><math>0.0 \ 7/2^+</math></td><td></td></tr><tr><td>3196?</td><td>3196<mark>&</mark></td><td>100</td><td><math>0.0 \ 7/2^+</math></td><td></td></tr><tr><td>3221</td><td>3221</td><td>100</td><td><math>0.0 \ 7/2^+</math></td><td></td></tr><tr><td>3252</td><td>3252</td><td>100</td><td><math>0.0 \ 7/2^+</math></td><td></td></tr><tr><td>3262</td><td>3095 &</td><td>36</td><td>165.9 5/2+</td><td></td></tr><tr><td></td><td>3262<sup>#</sup></td><td>64 <i>13</i></td><td><math>0.0 \ 7/2^+</math></td><td><math>I_{\gamma}</math>: other: 100 if 3096 has alternate placement.</td></tr><tr><td>3275</td><td>3275</td><td>100</td><td><math>0.0 \ 7/2^+</math></td><td></td></tr><tr><td>3303</td><td>3303</td><td>100</td><td><math>0.0 7/2^+</math></td><td></td></tr><tr><td>3351</td><td>3351</td><td>100</td><td>0.0 7/2+</td><td></td></tr><tr><td>3361?</td><td>3196<sup>a</sup></td><td>54</td><td><math>165.9 \ 5/2^+</math></td><td></td></tr><tr><td></td><td>3361<sup>x</sup></td><td>46 6</td><td><math>0.0 7/2^+</math></td><td></td></tr><tr><td>3370</td><td>3370</td><td>100</td><td><math>0.0 7/2^+</math></td><td></td></tr><tr><td>3401</td><td>3235</td><td>42</td><td><math>165.9 \ 5/2^+</math></td><td></td></tr><tr><td>3445</td><td>3401</td><td>100</td><td><math>0.0 7/2^+</math></td><td></td></tr><tr><td>3458</td><td>3292</td><td>60</td><td><math>165.9 5/2^+</math></td><td></td></tr><tr><td>0.00</td><td>3458</td><td>40 8</td><td><math>0.0 7/2^+</math></td><td></td></tr><tr><td>3475</td><td>3475</td><td>100</td><td><math>0.0 \ 7/2^+</math></td><td></td></tr><tr><td>3483</td><td>3317</td><td>19</td><td>165.9 5/2+</td><td></td></tr><tr><td>2522</td><td>3483</td><td>81 15</td><td><math>0.0 7/2^+</math></td><td></td></tr><tr><td>3523</td><td>3523</td><td>100</td><td>0.0 7/2+</td><td></td></tr><tr><td>3527</td><td>3361<sup>°°</sup></td><td>46</td><td>165.9 5/2+</td><td></td></tr><tr><td></td><td>3527#</td><td>54 14</td><td><math>0.0 \ 7/2^+</math></td><td><math>I_{\gamma}</math>: other: 100 if 3361 has alternate placement.</td></tr><tr><td>3544</td><td>3378</td><td>46</td><td><math>165.9 \ 5/2^+</math></td><td></td></tr><tr><td>2557</td><td>3544
2201</td><td>54 10</td><td><math>0.0 \ 1/2^{+}</math></td><td></td></tr><tr><td>5557</td><td>3557</td><td>94 30</td><td><math>007/2^+</math></td><td></td></tr><tr><td>3561</td><td>3395</td><td>76</td><td><math>165.9 5/2^+</math></td><td></td></tr><tr><td></td><td>3561</td><td>24 5</td><td><math>0.0 7/2^+</math></td><td></td></tr><tr><td>3573</td><td>3407</td><td>6</td><td>165.9 5/2+</td><td></td></tr><tr><td></td><td>3573</td><td>94 19</td><td>0.0 7/2+</td><td></td></tr><tr><td>3586</td><td>3586</td><td>100</td><td><math>0.0 7/2^+</math></td><td></td></tr><tr><td>3631</td><td>3631</td><td>100</td><td><math>0.0 7/2^+</math></td><td></td></tr><tr><td>3664
3732</td><td>3004
3732</td><td>100</td><td><math>0.0 7/2^+</math></td><td></td></tr><tr><td>3732
3700</td><td>3732
3790</td><td>100</td><td><math>0.0 7/2^+</math></td><td></td></tr><tr><td>5190</td><td>5190</td><td>100</td><td>0.0 1/2</td><td></td></tr></tbody></table></mark>			

Continued on next page (footnotes at end of table)

¹³⁹La(γ, γ'):E=1.2-4.1 MeV 2007Sc18 (continued)

$\gamma(^{139}$ La) (continued)

E _i (level)	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	E _i (level)	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	E _i (level)	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$
3799	3799	100	$0.0 \ 7/2^+$	3878	3878	100	$0.0 \ 7/2^+$	3931	3931	100	0.0 7/2+
3832	3832	100	$0.0 \ 7/2^+$	3886	3886	100	$0.0 \ 7/2^+$	3941	3941	100	$0.0 \ 7/2^+$
3854	3854	100	0.0 7/2+	3919	3919	100	0.0 7/2+	3963	3963	100	0.0 7/2+

[†] From level-energy differences.

[‡] Branching ratios. Evaluators assume transitions to only the ground state and the first excited state at 165.9 keV, when branching ratios are deduced from Γ_0/Γ values in 2007Sc18.

Alternative assignments possible.

[@] 2007Sc18 state that Γ_0/Γ is from 2001Bu16 evaluation (Nuclear Data Sheets for A=139), but the evaluators note that in some cases, as noted, values do not match.

[&] Multiply placed.

^{*a*} Placement of transition in the level scheme is uncertain.

¹³⁹La(γ,γ'):E=1.2-4.1 MeV 2007Sc18

Level Scheme

Intensities: % photon branching from each level

6

¹³⁹La(γ,γ'):E=1.2-4.1 MeV 2007Sc18

Level Scheme (continued)

Intensities: % photon branching from each level

139 La(γ, γ'):E=1.2-4.1 MeV 2007Sc18

Legend

Level Scheme (continued)

Intensities: % photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹³⁹₅₇La₈₂

8