## <sup>92</sup>Mo(<sup>54</sup>Fe,5p2nγ) 2011Cu01

|                 | History                                     |                   |                        |
|-----------------|---------------------------------------------|-------------------|------------------------|
| Туре            | Author                                      | Citation          | Literature Cutoff Date |
| Full Evaluation | P. K. Joshi, B. Singh, S. Singh, A. K. Jain | NDS 138, 1 (2016) | 15-Oct-2016            |

2011Cu01: Measured E $\gamma$ , I $\gamma$ , (recoil) $\gamma$  coin, isomer half-life using JUROGAM array of 40 HPGe detectors for prompt  $\gamma$  rays and GREAT planar and clover Ge detectors for delayed  $\gamma$  rays. Recoil-decay tagging method. Recoil products were transported to the focal plane of the gas-filled recoil-ion transport unit (RITU) and implanted into a 500– $\mu$ m thick Al foil. Multiwire Proportional Counter (MWPC) used to detect recoils.

## <sup>139</sup>Eu Levels

| E(level) <sup>†</sup>  | $J^{\pi \ddagger}$ | T <sub>1/2</sub> | Comments                                                                              |
|------------------------|--------------------|------------------|---------------------------------------------------------------------------------------|
| 0.0                    | $(11/2^{-})$       |                  |                                                                                       |
| 117.20 10              | $(13/2^{-})$       |                  |                                                                                       |
| 121.80 10              | $(9/2^{-})$        |                  |                                                                                       |
| 148.20 <sup>#</sup> 23 | $(7/2^+)$          | 10 µs 2          | $T_{1/2}$ : from time difference of the recoils and delayed $\gamma$ rays (2011Cu01). |
| 346.4 <sup>#</sup> 3   | $(11/2^+)$         |                  |                                                                                       |
| 835.3 <sup>#</sup> 4   | $(15/2^+)$         |                  |                                                                                       |
| 1417.6 <sup>#</sup> 8  | $(19/2^+)$         |                  |                                                                                       |
| 2011.5 <sup>#</sup> 9  | $(23/2^+)$         |                  |                                                                                       |
| 2482.2 <sup>#</sup> 10 | $(27/2^+)$         |                  |                                                                                       |
| 3137.4 <sup>#</sup> 11 | $(31/2^+)$         |                  |                                                                                       |

<sup>†</sup> From  $E\gamma$  data.

<sup>‡</sup> As proposed by 2011Cu01 based on multipolarities determined from experimental conversion coefficient and band structure.

<sup>#</sup> Band(A): Band based on (7/2<sup>+</sup>). The ordering of the transitions is based on intensities, since no  $\gamma\gamma$  coin data are available due to limited statistics. Gain in alignment at  $\hbar\omega\approx 0.27$  MeV, most likely configuration is  $\pi g_{7/2}$  orbital.

|                                                   |                   |               |                                                            |        |                        | $\gamma(1)$        | <sup>39</sup> Eu) |                                                                                                                                                                                                                                                                                                 |  |
|---------------------------------------------------|-------------------|---------------|------------------------------------------------------------|--------|------------------------|--------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Intensity of x rays in the delayed spectrum       |                   |               |                                                            |        |                        |                    |                   |                                                                                                                                                                                                                                                                                                 |  |
| E(x ray) Intensity<br>40.9 2 87 11<br>47.2 2 20 4 |                   | D<br>K<br>K   | Designation $\mathtt{K}_lpha$ x-ray $\mathtt{K}_eta$ x-ray |        |                        |                    |                   |                                                                                                                                                                                                                                                                                                 |  |
| Eγ                                                | $I_{\gamma}$      | $E_i$ (level) | $\mathbf{J}_i^\pi$                                         | $E_f$  | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>#</sup> | α <sup>@</sup>    | Comments                                                                                                                                                                                                                                                                                        |  |
| (4.6)                                             |                   | 121.80        | (9/2 <sup>-</sup> )                                        | 117.20 | (13/2 <sup>-</sup> )   |                    |                   | $E_{\gamma}$ : possible transition which could explain observation of 117 $\gamma$ in the delayed spectrum.                                                                                                                                                                                     |  |
| 26.4 2                                            | 34 <sup>†</sup> 6 | 148.20        | (7/2 <sup>+</sup> )                                        | 121.80 | (9/2 <sup>-</sup> )    | (E1)               | 1.91 5            | $\alpha(\exp)=5.5\ 14$<br>B(E1)(W.u.)=4.1×10 <sup>-6</sup> 8<br>Hindered E1 transition is probably due to difference<br>in nuclear shape between the isomeric $\pi g_{7/2}$ state<br>and $\pi h_{11/2}$ ground state.                                                                           |  |
| 117.2 <i>I</i>                                    | 21 <sup>†</sup> 3 | 117.20        | (13/2 <sup>-</sup> )                                       | 0.0    | (11/2 <sup>-</sup> )   | M1                 | 1.173             | <ul> <li>Mult.: from literature (1995Va22), but note that it is M1/E2 in 1995Va22.</li> <li>Observation of this γ in the delayed spectrum suggests a connecting transition between the 148-keV isomer and 117-keV level. There is no evidence of a 30-keV transition in recoil-decay</li> </ul> |  |

| $\frac{92}{\text{Mo}}(^{54}\text{Fe},5\text{p}2\text{n}\gamma) \qquad 2011\text{Cu01} \text{ (continued)}$ |                            |               |                      |        |                      |                    |                |                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------|----------------------------|---------------|----------------------|--------|----------------------|--------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                            |                            |               |                      |        |                      |                    |                |                                                                                                                                                                                                       |
| Eγ                                                                                                         | $I_{\gamma}$               | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | ${ m J}_f^\pi$       | Mult. <sup>#</sup> | α <sup>@</sup> | Comments                                                                                                                                                                                              |
|                                                                                                            |                            |               |                      |        |                      |                    |                | tagged $\gamma$ spectrum. There could be a link<br>through a 5-keV transition from the 122-keV<br>level to 117-keV level.                                                                             |
| 121.8 <i>I</i>                                                                                             | 100 <sup>†</sup> <i>11</i> | 121.80        | (9/2 <sup>-</sup> )  | 0.0    | (11/2 <sup>-</sup> ) | (E2)               | 1.192          | $\alpha$ (K)exp=0.66 14<br>Mult.: $\alpha$ (K)exp gives E2(+M1) with<br>$\delta$ (E2/M1)>0.85, 2011Cu01 assign E2 without<br>any further arguments. Evaluators treat this<br>assignment as tentative. |
| 198.2 2                                                                                                    | 86 <sup>‡</sup> 13         | 346.4         | $(11/2^+)$           | 148.20 | $(7/2^+)$            |                    |                |                                                                                                                                                                                                       |
| 470.7 4                                                                                                    | 39 <sup>‡</sup> 9          | 2482.2        | $(27/2^+)$           | 2011.5 | $(23/2^+)$           |                    |                |                                                                                                                                                                                                       |
| 488.9 2                                                                                                    | 100 <sup>‡</sup> <i>10</i> | 835.3         | $(15/2^+)$           | 346.4  | $(11/2^+)$           |                    |                |                                                                                                                                                                                                       |
| 582.3 7                                                                                                    | 86 <sup>‡</sup> 15         | 1417.6        | $(19/2^+)$           | 835.3  | $(15/2^+)$           |                    |                |                                                                                                                                                                                                       |
| 593.9 <i>3</i>                                                                                             | 66 <sup>‡</sup> 13         | 2011.5        | $(23/2^+)$           | 1417.6 | $(19/2^+)$           |                    |                |                                                                                                                                                                                                       |
| 655.2 4                                                                                                    | 17 <sup>‡</sup> 6          | 3137.4        | $(31/2^+)$           | 2482.2 | $(27/2^+)$           |                    |                |                                                                                                                                                                                                       |

 $^\dagger$  Delayed intensity normalized to 100 for 121.8 $\gamma.$ 

<sup>‡</sup> Prompt intensity normalized to 100 for  $488.9\gamma$ .

<sup>#</sup> Assigned from ce data with the consideration of 117.2-keV transition treated as pure M1, as known from 1995Va22.

<sup>@</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.



<sup>139</sup><sub>63</sub>Eu<sub>76</sub>





<sup>139</sup><sub>63</sub>Eu<sub>76</sub>