### <sup>92</sup>Mo(<sup>50</sup>Cr,3pγ) 1995Va22

|                 | History                                     |                   |                        |
|-----------------|---------------------------------------------|-------------------|------------------------|
| Туре            | Author                                      | Citation          | Literature Cutoff Date |
| Full Evaluation | P. K. Joshi, B. Singh, S. Singh, A. K. Jain | NDS 138, 1 (2016) | 15-Oct-2016            |

1995Va22: E=220 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma\gamma(\theta)$ (DCO) using TESSA3 array of 16 Compton-suppressed HPGe detectors with a 50-element BGO multiplicity filter. Deduced high-spin levels,  $J^{\pi}$ , bands, alignments. Total routhian surface calculations.

| E(level)                       | $J^{\pi}$  | E(level)                       | $J^{\pi}$  | E(level)                       | $J^{\pi}$            | E(level)                     | $J^{\pi \dagger}$ |
|--------------------------------|------------|--------------------------------|------------|--------------------------------|----------------------|------------------------------|-------------------|
| 0.0 <sup>&amp;</sup>           | $11/2^{-}$ | 1811.99 <sup>d</sup> 24        | $21/2^{-}$ | 3142.1 <sup>c</sup> 4          | 27/2-                | 4787.1 <sup>‡</sup> <i>3</i> | $(37/2^+)$        |
| 116.19 8                       | $13/2^{-}$ | 1890.66 <sup>#</sup> 17        | $19/2^{+}$ | 3266.70 <sup>‡</sup> 17        | $29/2^+$             | 5209.84 <sup>#</sup> 25      | $(39/2^+)$        |
| 322.83 <mark>&amp;</mark> 7    | $15/2^{-}$ | 2212.61 <sup>c</sup> 15        | $23/2^{-}$ | 3338.35 <sup>b</sup> 25        | 29/2-                | 5211.3 <sup>@</sup> 3        | $(37/2^{-})$      |
| 426.69 7                       | $13/2^{-}$ | 2227.86 <sup>‡</sup> 25        | $21/2^+$   | 3358.32 <sup>@</sup> 18        | 29/2-                | 5701.3 <sup>‡</sup> 4        | $(41/2^+)$        |
| 530.29 <sup>b</sup> 8          | 13/2-      | 2344.96 <sup>#</sup> 16        | $23/2^+$   | 3561.33 <sup>#</sup> 20        | $31/2^+$             | 5937.1 <sup>a</sup> 3        | $(43/2^{-})$      |
| 865.41 <sup>°</sup> 10         | $15/2^{-}$ | 2406.10 <sup>&amp;</sup> 16    | $27/2^{-}$ | 3809.52 <sup>a</sup> 20        | 35/2-                | 6149.3 <sup>#</sup> 4        | $(43/2^+)$        |
| 876.85 <sup>&amp;</sup> 12     | 19/2-      | 2431.44 <sup>b</sup> 14        | $25/2^{-}$ | 3969.70 <sup>‡</sup> 20        | $33/2^+$             | 6222.3 <sup>@</sup> 5        | $(41/2^{-})$      |
| 969.31 <sup>b</sup> 9          | $17/2^{-}$ | 2611.7 <sup>d</sup> 4          | $25/2^{-}$ | 4117.5 4                       | $(33/2^{-})$         | 6715.4 <sup>‡</sup> 5        | $(45/2^+)$        |
| 1039.89 <sup>d</sup> 12        | $17/2^{-}$ | 2693.74 <sup>a</sup> 17        | $27/2^{-}$ | 4281.92 <sup>@</sup> 21        | (33/2 <sup>-</sup> ) | 7190.1 <sup>#</sup> 4        | $(47/2^+)$        |
| 1438.01 <sup><i>c</i></sup> 11 | 19/2-      | 2699.69 <sup>‡</sup> 18        | $25/2^+$   | 4351.93 <sup>#</sup> 23        | $35/2^+$             | 7265.3 <sup>a</sup> 10       | $(47/2^{-})$      |
| 1589.19 <sup>&amp;</sup> 14    | $23/2^{-}$ | 2878.03 <sup>#</sup> 18        | $27/2^+$   | 4722.2 4                       | 37/2-                |                              |                   |
| 1623.39 <sup>b</sup> 12        | $21/2^{-}$ | 3097.12 <sup><i>a</i></sup> 17 | 31/2-      | 4765.03 <sup><i>a</i></sup> 22 | (39/2-)              |                              |                   |

<sup>139</sup>Eu Levels

<sup>†</sup> As proposed by 1995Va22 from DCO ratios and systematics of odd-proton, even-neutron nuclides in this mass region. See the footnotes on the individual bands for additional details. The assignments in Adopted Levels differ only in their being placed under parentheses due to lack of strong arguments even for the g.s.

<sup>‡</sup> Band(A):  $\Delta J=2$  band based on  $21/2^+$ ,  $\alpha = +1/2$ . DCO ratios of in-band  $\gamma$  rays through spin 33/2 are consistent with stretched Q transitions. Average DCO ratio of 0.41 4 for  $\gamma$  rays feeding the yrast band are consistent with a pure dipole character implying a band starting at 21/2.

<sup>#</sup> Band(a):  $\Delta J=2$  band based on  $19/2^+$ ,  $\alpha = -1/2$ . DCO ratios of in-band  $\gamma$  rays through spin 33/2 are consistent with stretched Q transitions. DCO ratios of the three  $\gamma$ 's feeding out of this band suggest either  $\Delta J=2$  or  $\Delta J=0$ . The energy spacings and comparable I $\gamma$  values of this band and the  $\Delta J=2$  band with  $J=21/2^+$  bandhead suggests the two bands are signature partners with a relatively small signature splitting. If this is true, this band most likely feeds out with a  $\Delta J=0 \gamma$  and, therefore, has a bandhead J=19/2 since  $\Delta J=2$  would imply a very large signature splitting.  $\pi=+$  is most likely for these two bands since stretched  $\Delta J=2 \gamma$ 's were not observed in the decay out of the band based on  $21/2^+$ .

- <sup>@</sup> Band(B):  $\Delta J=2$  band based on 29/2<sup>-</sup>. Feeds out mainly into the yrast band through the 952 $\gamma$ . A weak 927 $\gamma$  from the first member of this band to 25/2<sup>-</sup> rules out  $\Delta J=2$  for the 952 $\gamma$  and requires  $\pi=-$  for this band if the 952 $\gamma$  is  $\Delta J=1$ . From the DCO ratio for 952 $\gamma$ +956 $\gamma$  and the expected stretched E2 character of the 956 $\gamma$ , the 952 $\gamma$  is not stretched E2 in character and, most likely, is not pure dipole. This implies a mixed  $\Delta J=1$  transition and  $J^{\pi}=29/2^{-}$ . If the 952 $\gamma$  were of a strongly mixed  $\Delta J=0$  character, a bandhead  $J^{\pi}=27/2^{-}$  would be implied, placing the band too far above the yrast band to explain its considerable intensity.
- <sup>&</sup> Band(C): Yrast band based on g.s. This band was established by 1985Lu06 and 1988Bi03 up to  $31/2^{-}$ . 1995Va22 extend the  $\gamma$  cascade to  $(47/2)^{-}$ , with the interpretation that the yrast band undergoes backbend at 691-keV transition. DCO ratios of in-band  $\gamma$  rays through the  $35/2^{-}$  state are consistent with stretched quadrupole transitions. A separate band is defined by 1995Va22 above the  $31/2^{-}$  state.
- <sup>a</sup> Band(D):  $\Delta J=2$  band based on  $27/2^{-}$ . This band is an extension of the yrast band based on g.s.
- <sup>b</sup> Band(E):  $\Delta J=2$  band based on 13/2<sup>-</sup>. DCO ratios of in-band  $\gamma$  rays are consistent with stretched Q transitions. DCO ratios of  $\gamma$  rays feeding the yrast band suggest (M1+E2) admixture, implying a band starting at  $J^{\pi}=13/2^{-}$ .
- <sup>*c*</sup> Band(F):  $\Delta J=2$  band based on 15/2<sup>-</sup>. This band decays by several transitions into the yrast band and a  $\Delta J=2$  band based on 13/2<sup>-</sup>. The 865 $\gamma$  (to g.s.) DCO ratio suggests stretched Q and 335 $\gamma$  and 469 $\gamma$  to  $\Delta J=2$  band based on 13/2<sup>-</sup> are consistent with

## <sup>92</sup>Mo(<sup>50</sup>Cr,3pγ) 1995Va22 (continued)

### <sup>139</sup>Eu Levels (continued)

 $\Delta J=1$ . This decay structure implies a band starting at  $J^{\pi}=15/2^{-}$ .

<sup>d</sup> Band(G):  $\Delta J=2$  band based on 17/2<sup>-</sup>. This band depopulates through the 613 $\gamma$  whose DCO ratio is consistent with stretched Q into a 13/2<sup>-</sup> state.

# $\gamma$ (<sup>139</sup>Eu)

DCO ratios are for 37° and 90° geometry. For gates on stretched quadrupole transitions, expected DCO is 1.0 for stretched quadrupole and 0.4 for stretched dipole.

| Eγ                   | $I_{\gamma}$       | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$ $J'$  | $f_{f}^{\pi}$ Mult. <sup>‡</sup> | $\alpha^{\dagger}$ | Comments                                     |
|----------------------|--------------------|---------------|----------------------|-------------|----------------------------------|--------------------|----------------------------------------------|
| 103.9.7              | 0.2.1              | 426.69        | $13/2^{-}$           | 322.83 15/  | (M1+E2)                          | 1.88.23            | DCO=0.27.13                                  |
| 116.2 1              | 0.7 /              | 116.19        | $13/2^{-}$           | 0.0 11/     | $'2^{-}$ (M1+E2)                 | 1.31 77            | DCO<1                                        |
| 207.5 1              | 0.6 1              | 530.29        | $13/2^{-}$           | 322.83 15/  | $^{2-}$ (M1+E2)                  | 0.214 24           | DCO=0.43 12                                  |
| 287.6 1              | 0.8 /              | 2693.74       | $27/2^{-}$           | 2406.10 27/ | 2 <sup>-</sup> D+O               |                    | DCO=0.70 20                                  |
| 310.5 /              | 0.4 /              | 426.69        | $\frac{13}{2^{-}}$   | 116.19 13/  | $^{-}$ (M1+E2)                   | 0.066 14           | DCO=0.80 14                                  |
| 322.8 1              | 100.0 7            | 322.83        | $15/2^{-}$           | 0.0 11/     | $(2^{-})$ (E2)                   | 0.0465             | DCO=1.00 /                                   |
| 335.1 <i>I</i>       | 1.4 <i>I</i>       | 865.41        | $15/2^{-}$           | 530.29 13/  | 2- D+O                           |                    | DCO=0.26 6                                   |
| 403.3 1              | 1.2 1              | 3097.12       | $31/2^{-}$           | 2693.74 27/ | $(2^{-})$ (E2)                   |                    | DCO=1.20 20                                  |
| 426.7 1              | 1.9 2              | 426.69        | $13/2^{-}$           | 0.0 11/     | 2- D+Q                           |                    | DCO=0.38 22                                  |
| 439.0 2              | 0.9 1              | 865.41        | $15/2^{-}$           | 426.69 13/  | ′2⁻ D+Ò                          |                    | DCO=1.6 8                                    |
| 439.1 <i>1</i>       | 3.9 1              | 969.31        | $17/2^{-}$           | 530.29 13/  | 2 <sup>-</sup> (E2)              |                    | DCO=1.30 <i>34</i>                           |
| 454.3 1              | 1.6 <i>1</i>       | 2344.96       | $23/2^{+}$           | 1890.66 19/ | $(2^{+})$ (E2)                   |                    | DCO=1.05 22                                  |
| 468.6 1              | 1.6 <i>1</i>       | 1438.01       | $19/2^{-}$           | 969.31 17/  | 2- D+Q                           |                    | DCO=0.27 7                                   |
| 471.8 <sup>#</sup> 2 | 1.0 <sup>#</sup> 1 | 2699.69       | 25/2+                | 2227.86 21/ | 2+                               |                    |                                              |
| 471.8 <sup>#</sup> 2 | 0.9 <sup>#</sup> / | 2878.03       | $27/2^{+}$           | 2406.10 27/ | 2 <sup>-</sup> D                 |                    | DCO=1.41 43                                  |
|                      |                    |               | ,_                   |             |                                  |                    | Mult.: $\Delta J=0$ transition. DCO value is |
|                      |                    |               |                      |             |                                  |                    | probably for the doublet.                    |
| 530.3 1              | 5.4 7              | 530.29        | $13/2^{-}$           | 0.0 11/     | 2 <sup>-</sup> D+Q               |                    | DCO=0.25 5                                   |
| 533.1 <i>I</i>       | 8.0 1              | 2878.03       | $27/2^{+}$           | 2344.96 23/ | (E2)                             |                    | DCO=0.99 10                                  |
| 542.8 2              | 1.6 <i>1</i>       | 865.41        | $15/2^{-}$           | 322.83 15/  | 2-                               |                    |                                              |
| 554.0 <i>1</i>       | 69.6 5             | 876.85        | 19/2-                | 322.83 15/  | '2 <sup>-</sup> (E2)             |                    | DCO=1.06 1                                   |
| 567.0 <i>1</i>       | 3.1 1              | 3266.70       | 29/2+                | 2699.69 25/ | (E2)                             |                    | DCO=0.94 11                                  |
| 572.7 1              | 3.4 2              | 1438.01       | 19/2-                | 865.41 15/  | '2 <sup>-</sup> (E2)             |                    | DCO=1.07 17                                  |
| 613.2 <i>1</i>       | 4.3 2              | 1039.89       | $17/2^{-}$           | 426.69 13/  | '2- Q                            |                    | DCO=0.80 19                                  |
| 646.3 <i>1</i>       | 7.8 2              | 969.31        | $17/2^{-}$           | 322.83 15/  | 2 <sup>-</sup> D+Q               |                    | DCO=0.33 2                                   |
| 654.1 <i>1</i>       | 8.8 2              | 1623.39       | 21/2-                | 969.31 17/  | 2 <sup>-</sup> Q                 |                    | DCO=1.04 7                                   |
| 683.3 <i>1</i>       | 7.6 2              | 3561.33       | $31/2^{+}$           | 2878.03 27/ | '2+ Q                            |                    | DCO=0.99 9                                   |
| 691.1 <i>1</i>       | 15.1 2             | 3097.12       | 31/2-                | 2406.10 27/ | 2 <sup>-</sup> Q                 |                    | DCO=0.97 6                                   |
| 703.0 1              | 7.7 2              | 3969.70       | $33/2^{+}$           | 3266.70 29/ | '2+ Q                            |                    | DCO=0.93 8                                   |
| 712.3 <i>I</i>       | 60.0 5             | 1589.19       | $23/2^{-}$           | 876.85 19/  | '2- Q                            |                    | DCO=0.95 1                                   |
|                      |                    |               |                      |             |                                  |                    | DCO for 712.3+712.4.                         |
| 712.4 <i>I</i>       | 9.3 <i>3</i>       | 3809.52       | 35/2-                | 3097.12 31/ | 2 <sup>-</sup> Q                 |                    | DCO=0.95 1                                   |
|                      |                    |               |                      |             |                                  |                    | DCO for 712.4+712.3.                         |
| 746.9 <i>3</i>       | 1.7 2              | 1623.39       | 21/2-                | 876.85 19/  | 2 <sup>-</sup> D+Q               |                    | DCO=0.38 8                                   |
| 755.8 1              | 8.9 1              | 2344.96       | $23/2^{+}$           | 1589.19 23/ | 2- D                             |                    | DCO=0.98 8                                   |
|                      |                    |               |                      |             |                                  |                    | Mult.: $\Delta J=0$ transition.              |
| 772.1 2              | 3.3 2              | 1811.99       | $21/2^{-}$           | 1039.89 17/ | 2- Q                             |                    | DCO=1.16 33                                  |
| 774.6 1              | 5.6 3              | 2212.61       | 23/2-                | 1438.01 19/ | 2- Q                             |                    | DCO=0.85 15                                  |
| 779.1 3              | 1.6 2              | 4117.5        | $(33/2^{-})$         | 3338.35 29/ | 2-                               |                    |                                              |
| 790.6 1              | 5.7 2              | 4351.93       | 35/2+                | 3561.33 31/ | 2+ Q                             |                    | DCO=1.05 <i>15</i>                           |
| 799.7 3              | 1.9 2              | 2611.7        | $25/2^{-}$           | 1811.99 21/ | $2^{-}$ (Q)                      |                    | DCO=0.71 <i>19</i>                           |
| 808.1 <i>1</i>       | 7.9 2              | 2431.44       | $25/2^{-}$           | 1623.39 21/ | 2- Q                             |                    | DCO=0.90 11                                  |
| 816.9 <i>1</i>       | 38.9 4             | 2406.10       | $27/2^{-}$           | 1589.19 23/ | 2- Q                             |                    | DCO=0.88 2                                   |
| 817.4 2              | 3.2 3              | 4787.1        | $(37/2^+)$           | 3969.70 33/ | 2+                               |                    |                                              |

Continued on next page (footnotes at end of table)

### <sup>92</sup>Mo(<sup>50</sup>Cr,3pγ) 1995Va22 (continued)

### Mult.<sup>‡</sup> Eγ $I_{\gamma}$ E<sub>i</sub>(level) $J_i^{\pi}$ $\mathbf{E}_{f}$ $J_f^{\pi}$ Comments 842.1 2 3.0 2 2431.44 $25/2^{-}$ 1589.19 $23/2^{-1}$ 5209.84 857.9 1 4.2 2 $(39/2^+)$ 4351.93 35/2+ 860.6 1 3.2 2 3266.70 $29/2^{+}$ 2406.10 27/2-D DCO=0.40 5 865 1 0.8 2 865.41 $15/2^{-}$ 0.0 $11/2^{-1}$ Q DCO=1.06 24 5.1 2 906.9 2 3338.35 $29/2^{-}$ 2431.44 25/2-Q DCO=0.85 19 $1.8\ 2$ 912.7 3 4722.2 $37/2^{-}$ 3809.52 35/2-D+Q DCO=0.23 6 2.8 2 914.2 2 5701.3 $(41/2^+)$ 4787.1 $(37/2^+)$ 7.0 2 923.6 1 4281.92 $(33/2^{-})$ 3358.32 $29/2^{-1}$ 1.9 2 $29/2^{-}$ 927.1 4 3358.32 2431.44 $25/2^{-1}$ 929.4 2 3.5 2 5211.3 $(37/2^{-})$ 4281.92 (33/2-) 27/2-929.5 3 2.3 2 3142.1 2212.61 23/2-DCO=1.24 44 Q 5209.84 (39/2+) 939.5 2 2.9 1 6149.3 $(43/2^+)$ 14.2 3 952.2 1 3358.32 $29/2^{-}$ 2406.10 27/2-D+Q DCO=0.70 5 DCO for 952.2+955.5. 955.5 1 5.5 2 4765.03 $(39/2^{-})$ 3809.52 35/2-DCO=0.70 5 (Q) DCO for 955.5+952.2 doublet. 1011.0 3 2.1 2 6222.3 $(41/2^{-})$ 5211.3 $(37/2^{-})$ 3.9 3 19/2+ 1890.66 876.85 (D) DCO=0.73 10 1013.8 2 $19/2^{-}$ $(41/2^+)$ 1014.1 3 2.3 2 6715.4 $(45/2^+)$ 5701.3 (47/2+) 1040.8 2 2.1 1 7190.1 6149.3 $(43/2^+)$ 1104.4 2 2693.74 1589.19 DCO=1.00 15 6.1 3 $27/2^{-}$ $23/2^{-1}$ Q 1110.5 2 5.7 3 2699.69 $25/2^+$ 1589.19 23/2-D DCO=0.38 7 1172.1 2 2.6 1 5937.1 $(43/2^{-})$ 4765.03 (39/2-) 1328.2 9 7265.3 5937.1 0.7 1 $(47/2^{-})$ $(43/2^{-})$ 1350.8 5 2.0 2 2227.86 $21/2^{+}$ 876.85 19/2-D DCO=0.45 13

### $\gamma(^{139}\text{Eu})$ (continued)

 $^{\dagger}$  From BrIcc code. For M1+E2, value overlaps that for pure M1 and for pure E2.

<sup>‡</sup> Assigned by the evaluators according to the expected DCO values for  $\Delta J=2$  and  $\Delta J=1$  transitions. Below 600 keV, RUL for E2 and M2 transitions is used to assign (E2) for stretched quadrupoles and below 300 keV, (M1+E2) for  $\Delta J=1$  transitions, with the assumption that level half-lives are less than  $\approx 10$  ns. 1995Va22 assigned E2 for stretched quadrupoles, M1+E2 for  $\Delta J=1$ , mixed transitions, and E1 for  $\Delta J=1$ , dipole transitions. For  $\gamma$  rays where no DCO values were available, 1995Va22 assigned multipolarities as implied by their  $J^{\pi}$  values.

<sup>#</sup> Multiply placed with intensity suitably divided.

### <sup>92</sup>Mo(<sup>50</sup>Cr,3pγ) 1995Va22





<sup>139</sup><sub>63</sub>Eu<sub>76</sub>

### <sup>92</sup>Mo(<sup>50</sup>Cr,3pγ) 1995Va22



<sup>139</sup><sub>63</sub>Eu<sub>76</sub>





<sup>139</sup><sub>63</sub>Eu<sub>76</sub>