				History						
	Ty	/pe	Autho)r	Citation	Literature Cutoff Date				
	Full Ev	aluation P. K. Jo	oshi, B. Singh, S	. Singh, A. K. Jain	tory K. Jain NDS 138, 1 (2016) Literature Cutoff Date NDS 138, 1 (2016) I5-Oct-2016 12Wa38 Levels F $^{137}Ba(\alpha,2n\gamma),^{138}Ba(\alpha,3n\gamma)$ G $^{138}Ce(n,\gamma)$ E=thermal H $^{139}La(p,n\gamma)$ I $^{140}Ce(d,t),(^{3}He,\alpha),(p,d),$ Comments (1991Mu06,2014StZZ) rom ABMR (1973In04), and $\gamma(\theta)$ in oriented nuclei a07, 1962Gr17,1961Kn02); π from L=2 and analyzing po , ghted average (internal) of 137.5 d 3 (1965An07), 137.2 d m01), 137.66 d 4 (1976Va30), 137.59 d 4 (1978La21; out), 137.66 d 3 (1982RuZY), 137.8 d 2 yZX), and 137.73 d 20 (2014Un01). The value of 137.73 992Un01 is superseded by 137.73 d 20 from 2014Un01. IZV replaced earlier measurements by 1973MeYE, 1976M S0RuZY and 1982HoZJ. Others: 1.0 2 (nuclear tion with γ detection, 1963Ha07); 0.85 <i>15</i> (1962Gr17, san l as in 1963Ha07). n ε decay. und analyzing powers in pickup reactions. n time variation of 754-keV γ from ^{139}Ce IT decay o09). Others: 54.8 s <i>10</i> (1967Ge09), 56.44 s 48 (1967Yu0 : <i>13</i> (quoted in 2012Au07 from S. Itoh et al (1994), Conf. n pickup reactions and A(θ) in (pol p,d). 1988Ch23 note t f excit in (p,ny) not consistent with 5/2 ⁺ . n pickup reactions and A(θ) in (pol p,d). 1988Ch23 note t f excit in (p,ny) not consistent with 5/2 ⁺ . $^{72+}$ and 11/2 ⁻ . $^{72+}$ from L=2 in pickup reactions. $J^{\pi}=3/2$ from excit in (L=2 in pickup reactions; E2 γ to 3/2 ⁺ . to 1/2 ⁺ . S/2 from excit in (L=2) in pickup reactions; M1(+E2) γ to 1/2 ⁺ . S/2 from excit in (L=2 in pickup reactions; E2 γ to 1/2 ⁺ .	15-Oct-2016				
$Q(\beta^{-}) = -2129.1$ S(2n)=17174 7,	<i>30</i> ; S(n)= S(2p)=1	=7453 <i>12</i> ; S(p)=77 3807 7 (2012Wa38	17 7; $Q(\alpha) = -15$	524 7 2012Wa38						
				¹³⁹ Ce Levels						
			Cro	oss Reference (XRE	F) Flags					
		A 1: B 1: C 1: D 1: E 1:	³⁹ Ce IT decay (39 Pr ε decay ($^{4.}$ 30 Te(12 C,3ηγ):E 30 Te(12 C,3ηγ):E 30 Te(12 C,3ηγ):E 30 Te(14 C,5ηγ)	57.58 s) F 41 h) G =65 MeV H =50.5 MeV I	137 Ba(α ,2n γ), 138 Ba(α , 138 Ce(n, γ) E=thermal 139 La(p,n γ) 140 Ce(d,t),(3 He, α),(p,c)	,3nγ) I),				
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF		Comme	ents				
0.0	3/2+	137.63 d 3	ABCDEFGHI	%ε=100 μ=1.06 4 (1991M J ^π : spin from AB (1963Ha07, 190 in (p,d). T _{1/2} : weighted av (1972Em01), 1: ΔT _{1/2} =0.12 at 3 (1982RyZX), a from 1992Un01 1982RuZV repl and 1980RuZY also 1982HoZF μ: NMR on orien orientation with method as in 19	(u06,2014StZZ) MR (1973In04), and γ(62Gr17,1961Kn02); π f (rerage (internal) of 137. 37.66 d 4 (1976Va30), 3σ level), 137.65 d 3 (1 nd 137.73 d 20 (2014U 1 is superseded by 137. laced earlier measuremed and 1982HoZJ. Others and 1999BeZS evaluat ted nuclei (1991Mu06). 1 γ detection, 1963Ha07 963Ha07).	 θ) in oriented nuclei from L=2 and analyzing powers 5 d 3 (1965An07), 137.2 d 4 137.59 d 4 (1978La21; 1982RuZY), 137.8 d 2 In01). The value of 137.73 d 90 73 d 20 from 2014Un01. ents by 1973MeYE, 1976MeZK, a: 1987ChZD, 1988DaZS. See tions. Others: 1.0 2 (nuclear 7); 0.85 15 (1962Gr17, same 				
255.075 16	1/2+	110 ps 20	B HI	$T_{1/2}$: from ε deca	y. wzing powers in pickup	reactions				
754.24 ^{&} 8	11/2-	57.58 s <i>32</i>	ABCDEF HI	$J^{\pi}: L=0 \text{ and analyzing powers in pickup reactions.}$ $I \%IT=100$ $J^{\pi}: L=5 \text{ and analyzing powers in pickup reactions.}$ $T_{1/2}: \text{ from time variation of 754-keV } \gamma \text{ from } ^{139}\text{Ce IT decay}$ $(2012To09). \text{ Others: 54.8 s } 10 \text{ (1967Ge09), 56.44 s } 48 \text{ (1967Yu01)}$ $56.54 \text{ s } 13 \text{ (quoted in 2012Au07 from S. Itoh et al (1994), Conf.}$						
1320.248 20	5/2+	<1.0 ps	B HI	J^{π} : L=2 in pickup slope of excit i	p reactions and $A(\theta)$ in $(p, n\gamma)$ not consistent	(pol p,d). 1988Ch23 note that with $5/2^+$.				
1347.338 10	7/2+		B HI	J^{π} : L=4 in pickup	p reactions. E2 γ to 3/2	+				
1578.24 22	7/2-		B H	J^{π} : E2 γ to $11/2^{-1}$; $\log f^{1u}t = 8.3$ from 5/2	+.				
1579.11 79	$(1/2)^+$	<0.0 ps	Н р ит	J^{π} : γ s to $5/2^{+}$ and I^{π} : $3/2^{+}$ $5/2^{+}$ from	1 1 /2 . n I = 2 in nickun reactio	$I^{\pi} = 3/2$ from excit in (p pa)				
1630.674 18	$3/2^+$	<3.8 ps	B HI	J^{π} : from L=2 in g	pickup reactions; M1(+)	E2) γ to $1/2^+$. $5/2$ from excit in				
1790	$(1/2^+)$		I	(p,n γ) discrepand J ^{π} : from energy s (1971Jo05).	nt. ystematics of second 1/	2 ⁺ level in N=81 nuclei				
1818.434 22	5/2+	0.45 ps +11-8	B HI	J^{π} : L=2 in pickup	p reactions; E2 γ to 1/2	+.				
1842.94? 13	(7/2 ⁻)	-A	В	J^{π} : γ to $11/2^{-}$ and	d $\log f^{1u}t = 7.7$ from 5/2	⁺ parent.				
1889 1907.657 <i>23</i>	$\frac{1}{2^+}$ $(3/2)^+$	1.2 ps 6	I B HI	J^{π} : L=2 and analy	yzing powers in pickup	reactions; excit in (p,ny).				

Continued on next page (footnotes at end of table)

¹³⁹Ce Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	XF	REF	Comments
1965.36 24	$(3/2, 5/2^+)$		В	q	J^{π} : γ to $1/2^+$ and log $t^{1u}t=6.8$ from $5/2^+$.
1984.83 7	$(3/2, 5/2^+)$		В	gH	J^{π} : γ to $1/2^+$ and log $f^{1u}t=5.5$ from $5/2^+$.
2016.26 4	$(3/2^+)$	≤4.3 ps	В	Hi	J^{π} : 3/2,5/2,7/2 ⁺ from γ to 3/2 ⁺ and log $f^{1u}t=5.3$ from 5/2 ⁺ .
		-			$3/2^+$ from excit in (p,n γ). "Non-standard" angular
					distribution in pickup reactions.
2017.6 5				Hi	
2028.6 5	$(11/2^{-}, 13/2)$			F	J^{n} : γ to $11/2^{-}$ and possible γ from $(15/2^{-})$.
2063.84 20	$11/2^{(-)}$		CD	E	J^{n} : $\Delta J=0$, dipole γ to $11/2^{-}$.
2069.7 4	2/2+ 5/2+	> 0 9 mg		H	I_{A} , I_{-2} in minimum respections
2088.0 5	5/2, 5/2	>0.8 ps			J^{+} : L=2 in pickup reactions.
2105 1 3				н	
2138.7 4	$3/2^+.5/2^+$			нт	J^{π} : L=2 in pickup reactions.
2164.1 5	$(13/2^{-})$			E	
2183.4 <i>3</i>				Н	
2195.7 4				Н	
2208.7 4				Н	
2219.5 5				Н	
2220.8 3				H	
2228.0 4	$(7/2)^{+}$			H	$I\pi$, I – 4 in picture respectively at the $(2/2)^+$
2243.9 5	(1/2) $(5/2^+)$			п1 ц	J : L=4 III pickup reaction; γ to $(5/2)$. I^{π_1} gammas to $1/2^+$ $7/2^-$ and $7/2^+$
2279.8 5	$(3/2^{-})$ 11/2 ⁻			т	I^{π} : L=5 and analyzing power in pickup reaction
2287.7 3	$(3/2^+, 5/2, 7/2^+)$			н	J^{π} : γ ravs to $(3/2)^+$ and $7/2^+$.
2354.5 4	(-1)-1)-1)			н	
2361.23 ^{&} 20	$(15/2^{-})$		CD	EF	J^{π} : stretched O γ to 11/2 ⁻ ; stretched (E2) to 11/2 ⁽⁻⁾ .
2363 [@]	$(7/2^+, 9/2^+)^{@}$			т	I^{π} : L=4 in pickup reactions.
2364.0 3	$(3/2^+, 5/2^+)$			н	J^{π} : gammas to $3/2^+$ and $7/2^+$: possible γ to $1/2^+$.
2392.0 5	(-1)-1)			н	
2400.4 3				Н	
2421.0 4	$3/2^+, 5/2^+$	0.43 ps +37-15		HI	J^{π} : L=2 in pickup reactions.
2441.5 3				H_	-77
2455	7/2+,9/2+			. I	J^{n} : L=4 in pickup reactions.
2484.9 0				H UT	
2409.5 5				н	
2541.2.5				н	
2551.4 5				Н	
2553.5 <i>3</i>	$(3/2^+, 5/2, 7/2^+)$	0.50 ps +37-15		Н	J^{π} : γ s to $(3/2)^+$ and $7/2^+$.
2556 [@]	$(9/2)^+$			I	J^{π} : L=4 in pickup reactions; $9/2^+$ preferred from A(θ) in (pol
					p,d).
2568.84 21				Н	
2598.2 5				Н	
2606.4 5				HI	XREF: I(?).
2631.9 ^x 3	$(19/2^{-})$	70 ns 5	CD	EF H	μ =+3.99 6 (1980Ba68,2014StZZ)
					J^{n} : J(2632)>J(2362) from excit; $T_{1/2} \le \approx 100$ ns suggests
					mult(269 γ)=Q (19//Lu04). π =- from comparison of $\alpha(\alpha m) = +0.405$ 8 to $\alpha(\alpha m) = +0.405$ 8 to $\alpha(\alpha m) = +0.40$
					$g(exp)=+0.405 \ 8 \ 10 \ g(meory)=+0.40 \ 5 \ assuming$
					Configuration = $V \ln_{11/2} \otimes (4 - \ln^{-1} Ce) (1964 V012)$. Two: from $v(t)$ in $(\alpha, 3n_2)$
					μ : TDPAD method in (α ,3n γ) (1980Ba68). Other: +3.85.8
					(TDPAD,1984Vo12).
2634.3 <i>3</i>				н	
2700.8 3				HI	
2752.69 23				Н	

Continued on next page (footnotes at end of table)

¹³⁹Ce Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XRE	F	Comments
2776.8 4				Н	
2797.4 4	$7/2^+$			HI	J^{π} : L=4 and analyzing powers in pickup reactions.
2819.54	$\frac{11}{2}$	< 2.0 ms	CDEE	нт	J^{π} : L=5 and analyzing powers in pickup reactions.
2019.0 5	(21/2)	≤5.0 lls	CDEF		T _{1/2} : from $\gamma(t)$ in $(\alpha, 3n\gamma)$.
2822.5	9/2-,11/2-			I	J^{π} : L=5 in pickup reactions.
2831.9 3		0.62 = +21.12		Н	
2849.2 5		0.03 ps + 21 - 13		н	
2908.6 4	(9/2)+,3/2+,5/2+			HI	E(level),J ^{π} : L=2+4 in pickup reactions for a possible doublet; 9/2 ⁺ preferred for L=4 from A(θ) in (pol p,d).
2951.6 4	2/2+ 5/2+			н	IA. I -2 in richum reactions
2904 3052.1 <i>4</i>	5/2 ,5/2			н	J ⁻ : L=2 in pickup reactions.
3082 [@]	$(7/2^+, 9/2^+)^{@}$			I	J^{π} : L=(4) in pickup reactions.
3114.0 5		0.79 ps +42-21		Н	
3144	$1/2^+$			I	IA. I -2 in richum reactions
3187.1.3	$(23/2^{-})$		CDEF	1	J ^{π} : from $\gamma(\theta)$ in $(\alpha, 3n\gamma)$ and γ -deexcitation pattern.
3189.2 4	$(7/2^+, 9/2^+)$			HI	J^{π} : L=(4) in pickup reactions.
3212.5 6				Н	
3282	$7/2^+.9/2^+$			т	J^{π} : L=4 in pickup reactions
3302	1/2+			ī	
3327	$5/2^+, 7/2^+$			I	J^{π} : L=2+(4) in pickup reactions.
3352 3405	$5/2^+, 1/2^+$ $(1/2^+)$			T	J^* : L=2+4 in pickup reactions.
3459.4 6	(1/2)			н	
3483.7 6	(25/2)		F		J ^{π} : from γ -deexcitation pattern.
3523.54	2/2+5/2+@			н	
3592	$3/2^+, 5/2^+$			Ť	J^{π} : L=2 in pickup reactions. J^{π} : L=2 in pickup reactions.
3655	$3/2^+, 5/2^+$			ī	J^{π} : L=2 in pickup reactions.
3703.9 6	(27/2)		F	-	J^{π} : from γ -deexcitation pattern.
3852	$3/2^{+}, 5/2^{+}$		CDE	1	J [*] : L=2 in pickup reactions.
$3877.0^{\circ} 4$ $4013.7^{\circ} 4$	(23/2) $(23/2^+)$		CDE		$I^{\pi} \cdot 23/2^{-}$ in $({}^{12}C \cdot 3n_{2})$
4083.8 ^{<i>a</i>} 4	$(25/2^+)$ $(25/2^+)$		CDE		$J^{\pi}: 25/2^{-1}$ in (¹² C,3n γ).
4098.9 <mark>b</mark> 4	(25/2-)		CDE		
4262.5	$(3/2^+, 5/2^+)$			I	J^{π} : L=(2) in pickup reactions.
4276.8^{u} 4	$(27/2^+)$		CDE		$J^{n}: 27/2^{-1}$ in $({}^{12}C, 3n\gamma)$.
4404.6° 4 4431 5 11	(27/2)		CDE F		
4570.8 6	(29/2 ⁻)		c		
4756.6 ^{<i>a</i>} 4	$(29/2^+)$		CDE		
4808.4 ^{<i>b</i>} 4	$(31/2^{-})$		CDE		J^{π} : 29/2 ⁻ in (¹² C,3n γ):E=65 MeV.
5211.8 8 5297 9 5	(31/2) $(29/2^+)$				$I^{\pi} \cdot 29/2^{-1}$ in $(12C 3n_{2})$
5532.6 ^{<i>a</i>} 4	$(29/2^{-})$ $(31/2^{+})$		CDE		$J^{\pi}: 31/2^{-1}$ in (12C,3ny).
5697.6 [°] 6	(31/2-)		E		
5737.1 6	$(31/2^+)$		E		
3822.1 Э 5001 л <mark>b</mark> 5	(33/2)		L CDE		I^{π} , 21/2 ⁻ in (12C 2nd)
J004.4 J	(33/2)		CDE		J = 31/2 III ($C, 317/2$).

¹³⁹Ce Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
5916.1 ^c 4	(33/2 ⁻)	CDE	J^{π} , E(level): two levels, one with $31/2^{-}$ and the other with $33/2^{-}$ are proposed in $({}^{12}C, 3n\gamma)$:E=65 MeV.
6030.8 7	$(33/2^+)$	E	
6077.2 5	$(35/2^{-})$	E	
6142.1 ^c 5	$(35/2^{-})$	E	
6155.1 ^{<i>d</i>} 4	$(35/2^{-})$	CE	
6331.8 ^d 5	$(37/2^{-})$	Е	
6487.9 [°] 5	(37/2-)	E	
6797.6 ^d 6	$(39/2^{-})$	Е	
6844.5 [°] 7	$(39/2^{-})$	Е	
6967.1 7		Е	
7165.3 7		Е	
7308.5 ^d 8	$(41/2^{-})$	Е	
7332.8 [°] 8	$(41/2^{-})$	E	
7449.8 11		E	
7571.8 11		E	
7856.0 ^d 9	$(43/2^{-})$	Е	
7987.1 ^c 9	$(43/2^{-})$	E	
8001.2 9		Е	

[†] From least-squares fit to E γ data, assuming 0.5 keV uncertainty for E γ , when not stated.

[‡] From angular momentum transfer in pickup reactions. For high-spins (J>13/2 or so), assignments are based on multipolarities from DCO and angular asymmetry ratios, γ cascades and yrast type of population. No separate arguments are given for these states.

[#] From DSA method in $(p,n\gamma)$ (2006Bu04), except as noted.

[@] Possible doublet in (d,t). Small L=0 component for second member of doublet.

& Band(A): γ cascade based on 11/2⁻.

^{*a*} Band(B): γ cascade based on (23/2⁺). Parity reversed in (¹²C,3n γ) data (2009Ch26,2006Bu04). Evaluators adopt positive parity for this band as discussed in detail by 2015Ka06 in their (¹⁴C,5n γ) study, based on comparison with shell-model calculations, and expected configuration= $\nu h_{11/2}^{-1}$ coupled to negative-parity states from $\pi h_{11/2}^1 \otimes \pi (d_{5/2}/g_{7/2})^1$ in the ¹⁴⁰Ce core.

^b Band(C): γ cascade based on (23/2⁻), 3876.7.

^c Band(D): Magnetic-dipole rotational band based on (31/2⁻).

^d Band(E): Band based on $(35/2^{-})$.

					Adopte	ed Levels, Ga	mmas (co	ntinued)	
						$\gamma(^{139}$	Ce)		
E _i (level)	${ m J}^{\pi}_i$	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments
255.075	1/2+	255.11 2	100	0.0	3/2+	M1+E2	1.5 5	0.0840 18	$\alpha(K)=0.0680\ 24;\ \alpha(L)=0.0126\ 7;\ \alpha(M)=0.00270\ 17;$ $\alpha(N)=0.00059\ 4;\ \alpha(O)=9.0\times10^{-5}\ 5$ $\alpha(P)=4.7\times10^{-6}\ 4$ $P(M)(W_{W})=0.0024\ 17;\ P(E2)(W_{W})=71\ 20$
754.24	11/2-	754.24 8	100	0.0	3/2+	M4		0.0800	$\begin{array}{l} \alpha(\text{M1})(\text{w.u.}) = 0.0054 \ 17, \ \text{B(E2)}(\text{w.u.}) = 7120 \\ \alpha(\text{K}) = 0.0652 \ 10; \ \alpha(\text{L}) = 0.01161 \ 17; \ \alpha(\text{M}) = 0.00251 \ 4; \\ \alpha(\text{N}) = 0.000557 \ 8; \ \alpha(\text{O}) = 8.86 \times 10^{-5} \ 13 \\ \alpha(\text{P}) = 5.96 \times 10^{-6} \ 9 \\ \text{B(M4)}(\text{W.u.}) = 2.231 \ 13 \end{array}$
1320.248	5/2+	1065.32 20	6.1 <i>10</i>	255.075	$\frac{1}{2^{+}}$	M1 E2			
1347 338	7/2+	1320.24 2	100.0 14	0.0	3/2+	F2			
1578.24	7/2-	$824.0^{4}.2$	100	754.24	$\frac{3}{2}$	E2 E2			
1570.11	$(7/2^{-})$	024.0 Z	100	134.24	$\frac{11}{2}$	12			
1379.11	(1/2)	251.4	166.0	1347.338	5/2+				
		824.9	100.5	754.24	$\frac{3}{2}$ 11/2-				
1506 502	$(3/2)^+$	2/0 3	< 0.29	13/7 338	$\frac{11}{2}$				
1590.592	(3/2)	276.1	14.5.5	1320 248	5/2+				
		1341 50 9	14.5 5	255.075	$\frac{3}{2}$				
		1596 58 2	100.8	0.0	$\frac{1}{2}$				
1630 674	$3/2^{+}$	283.7	155	1347 338	$\frac{3}{2}^{+}$				
1050.071	5/2	310.7	<2.7	1320 248	$5/2^+$				
		1375 56 3	13 0 [#] 17	255.075	1/2+	(M1 + E2)	<12		$B(M1)(W_{11}) > 0.00027$
		1375.50 5	43.9 17	255.075	1/2	(M1+L2)	N1.2		B(1011)(W.u.) > 0.00027
1010 424	5/0+	1630.67 2	100.0" 25	0.0	$\frac{3}{2}$	E2			B(E2)(W.u.) > 0.21 D(E2)(W.u.) = 1.9 + 4.2
1818.434	5/2	1303.38 2	100 0	255.075	$1/2^{+}$	E2			B(E2)(W.U.)=1.8 + 4 - 3
1942 042	$(7/2^{-})$	1010.304 108870410	100	0.0 754 24	$\frac{5}{2}$				E_{γ} : slightly poor in, level-energy difference=1818.42.
1842.94?	(1/2)	1088.70" 10	100	734.24	11/2				
1907.657	$(3/2)^+$	587.37 ^a 15	18" 6	1320.248	5/2+				E_{γ} : γ from ε decay only, not seen in (p,n γ), treated as uncertain by evaluators.
		1652.58 2	100 # 6	255.075	$1/2^{+}$				
		1907.61 5	55.2 22	0.0	$3/2^{+}$				
1965.36	$(3/2, 5/2^+)$	1710.27 24	100 25	255.075	$1/2^{+}$				
		1965.66 ^a 44	≤42	0.0	$3/2^{+}$				
1984.83	$(3/2, 5/2^+)$	354.00 10	100 20	1630.674	$3/2^{+}$				
		664.60 ^a 15	≤24	1320.248	$5/2^{+}$				
		1729.89 9	76 12	255.075	$1/2^{+}$				
		1985.04 ^{<i>a</i>} 29	≤6	0.0	$3/2^{+}$				
2016.26	$(3/2^+)$	696.01 ^a 10	≤24 [#]	1320.248	$5/2^{+}$				
		2016.25 4	100 [#] 12	0.0	$3/2^{+}$				
2017.6		670.3	100	1347.338	$7/2^+$				
2028.6	$(11/2^{-}.13/2)$	1274.4	100	754.24	$11/2^{-}$				
	× 1 7 - 1 -7				,				

S

From ENSDF

 $^{139}_{58}\mathrm{Ce}_{81}$ -5

¹³⁹₅₈Ce₈₁-5

$\gamma(^{139}\text{Ce})$ (continued)

E _i (level)	\mathbf{J}^{π}_{i}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
2063.84	$11/2^{(-)}$	1309 7 2	100	754 24	$11/2^{-}$	D	Mult : $\Delta I=0$ transition from DCO data in $({}^{12}C 3nx)$: E=50.5 MeV
2069.7	11/2	722.4	100	1347.338	$7/2^+$	D	
		1814.5		255.075	$1/2^+$		
2088.6	$3/2^+, 5/2^+$	768.8		1320.248	$5/2^+$		
	, , ,	1833.2	96	255.075	$1/2^+$		
		2088.4	100 10	0.0	$3/2^{+}$		
2096.0		775.7		1320.248	5/2+		
		1840.9		255.075	$1/2^+$		
2105.1		758.0		1347.338	7/2+		
		785.3	21 5	1320.248	$5/2^{+}$		
		2104.9	100 8	0.0	$3/2^{+}$		
2138.7	3/2+,5/2+	508.0		1630.674	$3/2^{+}$		
		1883.6		255.075	$1/2^{+}$		
2164.1	$(13/2^{-})$	1409.4 10	100	754.24	$11/2^{-}$	(D+Q)	
2183.4		835.5	<10	1347.338	7/2+		
		863.5	100 11	1320.248	5/2+		
		1928.6	<10	255.075	$1/2^{+}$		
2195.7		600.2	100 13	1596.592	$(3/2)^+$		
		847.3		1347.338	7/2+		
2208.7		612.3	100 6	1596.592	$(3/2)^+$		
		861.1	16 <i>3</i>	1347.338	7/2+		
2219.5		899.2		1320.248	5/2+		
2220.8		589.9	100 8	1630.674	3/2+		
		624.2	74	1596.592	$(3/2)^+$		
		873.6	<1	1347.338	7/2+		
2228.0		907.5		1320.248	5/2+		
		1973.2	100 19	255.075	1/2+		
2245.9	$(1/2)^{+}$	650.0	29.5	1596.592	$(3/2)^{+}$		
		898.1	100.17	1347.338	7/2 ⁺		
2270.0	(5.0+)	925.4	100 17	1320.248	5/2*		
2279.8	$(5/2^{+})$	699.2	100 8	15/9.11	(1/2)		
		932.1	28.4	134/.338	1/2 · 5/0+		
		960.8	<1	1320.248	$\frac{5}{2}$		
2297 7	(210+510.710+)	2025.3	6 J 50 J 8	255.075	$\frac{1}{2}$		
2287.7	$(3/2^{+}, 3/2, 1/2^{+})$	5/9.9	50 18 25 22	1907.007	$(3/2)^+$		
		090.3	33 22 100 10	1390.392	$(3/2)^{+}$		
		941.2	100 10	1347.338	1/2* 5/2+		
2354 5		907.4 757 g	<220	1506 502	$\frac{3/2}{(3/2)^+}$		
2334.3		103/ 3	100 40	1320.392	(3/2) $5/2^+$		
2361 23	$(15/2^{-})$	1034.5	470	2164 1	$(13/2^{-})$		
2301.23	(13/2)	207.8 /	т. / Э 6 Л Э	2063.84	(13/2)	$(\mathbf{F2})$	E : unwaighted overage
		271.0 4	0.4 3	2003.04	11/2	$\left(\frac{1}{2} \right)$	by. unweighted average.
		1606.9.2	100 4	/54.24	$11/2^{-}$	Q	

 $^{139}_{58}\text{Ce}_{81}$ -6

 $^{139}_{58}\mathrm{Ce}_{81}$ -6

	Adopted Levels, Gammas (continued)												
						$\gamma(^{139}$	Ce) (contin	ued)					
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α &	Comments					
2364.0	$(3/2^+, 5/2^+)$	1016.7	41 6	1347.338	7/2+								
		1043.7	37 5	1320.248	$5/2^{+}$								
		2109.0		255.075	$1/2^{+}$								
		2363.8	100 13	0.0	$3/2^{+}$								
2392.0		2136.9		255.075	$1/2^{+}$								
2400.4		769.8		1630.674	3/2+								
		804.0	43 4	1596.592	$(3/2)^+$								
		1052.9	52 12	1347.338	7/2+								
		1080.2	100 12	1320.248	5/2+								
2421.0	3/2+,5/2+	824.2	100 15	1596.592	$(3/2)^+$								
0444.5		10/3.8	100 15	1347.338	7/2*								
2441.5		336.9	42 13	2105.1	7/0+								
		1093.5	59 <i>12</i>	1347.338	1/2 ' 5/2+								
2484.0		1121.4	100 <i>11</i>	1320.248	$\frac{5}{2}$								
2484.9		888.1	55 4 100 4	1590.592	$(3/2)^{-}$								
2480 5		1142.2	100 4	13/7 338	(1/2) $7/2^+$								
2409.5		1142.2	371	2016.26	$(3/2^+)$								
2499.03		902.5	5.14	1596 592	$(3/2)^+$								
		1152.7	73	1347 338	(3/2) $7/2^+$								
		1180.0	< 0.5	1320.248	$5/2^+$								
		2244.9	100 7	255.075	$1/2^+$								
2541.2		1193.9	100	1347.338	$7/2^+$								
2551.4		2296.3	100	255.075	$1/2^{+}$								
2553.5	$(3/2^+, 5/2, 7/2^+)$	956.8	40 10	1596.592	$(3/2)^+$	[E2]		B(E2)(W.u.)=7 3					
		1206.3	100 13	1347.338	$7/2^{+}$								
		1233.2	50 10	1320.248	$5/2^{+}$								
2568.84		553.4	14 1	2016.26	$(3/2^+)$								
		938.3	48 6	1630.674	$3/2^{+}$								
		971.0	<91	1596.592	$(3/2)^+$								
		990.1	100 10	1579.11	$(7/2^{-})$								
		1221.4	48 5	1347.338	7/2+								
		1248.6	93	1320.248	5/2+								
2598.2		1250.9	100	1347.338	7/2+								
2606.4	(10/2-)	1259.1	100	1347.338	7/2+	5.0	0.0600						
2631.9	(19/2 ⁻)	270.7 2	100	2361.23	(15/2 ⁻)	E2	0.0688	$\alpha(K)=0.0546 \ 8; \ \alpha(L)=0.01120 \ 16; \ \alpha(M)=0.00242 \ 4; \ \alpha(N)=0.000526 \ 8; \\ \alpha(O)=7.94\times10^{-5} \ 12 \\ \alpha(P)=3.54\times10^{-6} \ 5 \\ B(E2)(W.u.)=0.122 \ 9$					
2634.3		727.7	6 1	1907.657	$(3/2)^+$								
		1037.2	69 4	1596.592	$(3/2)^+$								
		1313.6	100 14	1320.248	$5/2^{+}$								
2700.8		793.7	29 <i>3</i>	1907.657	$(3/2)^+$								

¹³⁹₅₈Ce₈₁-7

$\gamma(^{139}\text{Ce})$ (continued)

E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α ^{&}
2700.8		1104.1	100 6	1596.592	$(3/2)^+$		
		1353.3	46 11	1347.338	$7/2^+$		
		1380.4	55 9	1320.248	5/2+		
2752.69		768.4		1984.83	$(3/2, 5/2^+)$		
		845.7		1907.657	$(3/2)^+$		
		1155.5		1596.592	$(3/2)^+$		
		1173.5	100 17	1579.11	$(7/2^{-})$		
		1431.9		1320.248	5/2+		
2776.8		1429.7	100 14	1347.338	$7/2^{+}$		
		1456.3	71 <i>19</i>	1320.248	5/2+		
2797.4	7/2+	781.2	<9	2016.26	$(3/2^+)$		
		1449.9	100 27	1347.338	$7/2^{+}$		
2819.3	$11/2^{-}$	1240.1	100 6	1579.11	$(7/2^{-})$		
		1472.5 ^a		1347.338	$7/2^{+}$	[M2]	
		2065.1	14 <i>3</i>	754.24	$11/2^{-}$		
2819.6	$(21/2^{-})$	187.7 <i>1</i>	100	2631.9	$(19/2^{-})$	(M1+E2)	0.215 13
2831.9		1236.0		1596.592	$(3/2)^+$		
		1484.1	<11	1347.338	7/2+		
		1511.5	100 44	1320.248	5/2+		
2849.2		1270.6	16.4 <i>21</i>	1579.11	$(7/2^{-})$		
		1502.2		1347.338	7/2+		
		1528.0	100 5	1320.248	5/2+		
2908.6	$(9/2)^+, 3/2^+, 5/2^+$	1561.8		1347.338	7/2+		
		1587.8		1320.248	$5/2^{+}$		
2951.6		1604.2		1347.338	7/2+		
		1631.4		1320.248	$5/2^{+}$		
3052.1		1704.5		1347.338	$7/2^{+}$		
		1732.0		1320.248	5/2+		
3114.0		1793.7	100	1320.248	$5/2^{+}$		
3187.1	$(23/2^{-})$	367.4 1	100	2819.6	$(21/2^{-})$	D+Q	
3189.2	$(7/2^+, 9/2^+)$	1610.0	100 12	1579.11	$(7/2^{-})$		
		1841.9		1347.338	7/2+		
3212.5		1633.4	100	1579.11	$(7/2^{-})$		
3268.8		1948.5	100	1320.248	5/2+		
3459.4		1880.3	100	1579.11	$(7/2^{-})$		
3483.7	(25/2)	296.5	100 10	3187.1	$(23/2^{-})$		
		659.0 ^{<i>a</i>}		2819.6	$(21/2^{-})$		
3523.5		2175.5	100 12	1347.338	7/2+		
		2203.9	44 7	1320.248	5/2+		
3703.9	(2'/2)	220.1	86 10	3483.7	(25/2)		
2077.0	(22/2=)	517.0	100 34	3187.1	$(23/2^{-})$	D	
3877.0	(23/2)	1057.3 2	100	2819.6	(21/2)	D+Q	
4013.7	$(23/2^{+})$	1194.1 2	100	2819.6	(21/2)	D+Q	

 ∞

$\gamma(^{139}Ce)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	\mathbf{J}_{f}^{π}	Mult. [‡]	α &	Comments
4083.8	(25/2+)	70.1 2	13.2 17	4013.7 (23	3/2+)	[M1]	3.29 9	$\alpha(K)=2.80\ 7;\ \alpha(L)=0.385\ 10;\ \alpha(M)=0.0807\ 21;\ \alpha(N)=0.0179\ 5;\ \alpha(O)=0.00289$
								$\alpha(P)=0.000217 6$
		206.7 2	13.0 13	3877.0 (23	3/2-)			
		896.7 <i>1</i>	100 5	3187.1 (23	3/2-)	D		
4098.9	$(25/2^{-})$	221.8 2	26 <i>3</i>	3877.0 (23	3/2-)	D		
		911.8 2	54 10	3187.1 (23	3/2-)	D+Q		I_{γ} : unweighted average.
		1279.4 2	100 10	2819.6 (21	$1/2^{-})$	Q		
4276.8	$(27/2^+)$	193.0 1	100 3	4083.8 (25	5/2+)	D+Q		12
		263.0^{a} 5	1.3 3	4013.7 (23	3/2+)			E_{γ} : from (¹² C,3n γ) only.
4404.6	$(27/2^{-})$	305.7 1	100 5	4098.9 (25	5/2-)	D+Q		10
		527.6 ^{<i>a</i>} 5	11 1	3877.0 (23	3/2-)			E_{γ} : from (¹² C,3n γ):E=65 MeV only.
		1217.5 2	54 5	3187.1 (23	3/2-)	Q		
4431.5		1244.4 10	100	3187.1 (23	3/2-)			
4570.8	$(29/2^{-})$	294.0 ⁴ 5	100 9	4276.8 (27	7/2+)	D+Q		
4756.6	$(29/2^+)$	479.8 1	100 10	4276.8 (27	7/2+)	D+Q		12
		672.7 ⁴ 5	14.7 12	4083.8 (25	$5/2^+$)	-		E_{γ} : from (¹² C,3n γ):E=65 MeV only.
4808.4	$(31/2^{-})$	403.9 1	100 11	4404.6 (27	7/2-)	Q		12
		709.3 ^{<i>a</i>} 5	8.1 8	4098.9 (25	5/2-)	[M3]		E_{γ} : from (¹² C,3n γ):E=65 MeV only, and unlikely as it requires mult=M3.
5211.8	$(31/2^{-})$	641.0 ^{<i>u</i>} 5	100	4570.8 (29	9/2-)			
5297.9	$(29/2^+)$	1021.3 5	100 11	4276.8 (27	$1/2^{+})$	D+Q		
5522 ($(21/2^{+})$	1213.9 5	59 9	4083.8 (25	$5/2^{+})$	D.O		
5532.6	$(31/2^{+})$	234.7 5	5/ 5	5297.9 (29	9/2')	D+Q		
		776.0 1	109 13	4/56.6 (29	$9/2^+)$	D+Q		I_{γ} : 41 9 from (¹² C, 3n γ):E=50.5 MeV seems discrepant.
5(07)	(21/2-)	1255.6 2	100 11	42/6.8 (2)	$1/2^{+})$	Q		
5697.6	(31/2)	100.04 5	1/6 53	5532.6 (3)	$1/2^{+}$)			
5727 1	(21/2+)	1293.3 10	100 10	4404.6 (2)	1/2)			
5757.1	$(51/2^{+})$	439.1 3	100 9	3297.9 (25	$\frac{9}{2}$	D+Q		
5822.7	$(33/2^{-})$	1013 6 5	100 14	4270.8 (2)	1/2) $1/2^{-}$	Q		
5884 4	$(35/2^{-})$	61.0.5	84	5822.7 (32	$3/2^{-}$			
5004.4	(33/2)	1076 3 3	100 10	4808.4 (31	$1/2^{-}$	0		
5916.1	$(33/2^{-})$	218.6.5	31.2	5697.6 (31	$1/2^{-}$	$\widetilde{D}+0$		
0,1011	(00/2)	383.4 2	93 19	5532.6 (31	$1/2^+$	D		L _u : unweighted average
		1108.1 5	100 10	4808.4 (31	$1/2^{-}$)	D+O		1), an organou a cragor
		1160.8 ^a 5	19 <i>3</i>	4756.6 (29	$9/2^{+})$			
6030.8	$(33/2^+)$	293.7 2	100	5737.1 (31	$1/2^{+}$	D+Q		
6077.2	$(35/2^{-})$	192.8 2	100	5884.4 (35	$5/2^{-1}$	-		
6142.1	$(35/2^{-})$	226.0 2	100	5916.1 (33	3/2-)	D+Q		
6155.1	$(35/2^{-})$	239.0 2	100	5916.1 (33	3/2-)	D+Q		
6331.8	$(37/2^{-})$	176.4 5	49 5	6155.1 (35	5/2-)	D+Q		
		253.0 ^a 10	15 4	6077.2 (35	5/2-)			
		447.4 2	100 7	5884.4 (35	5/2-)	(D+Q)		

9

From ENSDF

¹³⁹₅₈Ce₈₁-9

From ENSDF

$\gamma(^{139}\text{Ce})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$E_f \qquad J_f^{\pi}$	Mult. [‡]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	Mult. [‡]
6487.9	$(37/2^{-})$	345.8 2	100	6142.1 (35/2-)	D+Q	7332.8	$(41/2^{-})$	488.3 2	100	6844.5 (39/2-)	D+Q
6797.6	$(39/2^{-})$	465.5 5	40 7	6331.8 (37/2 ⁻)	D+Q	7449.8		1118.0 10	100	6331.8 (37/2 ⁻)	
		642.7 5	100 13	6155.1 (35/2 ⁻)		7571.8		1240.0 10	100	6331.8 (37/2 ⁻)	
6844.5	$(39/2^{-})$	356.6 5	100	6487.9 (37/2 ⁻)	(D+Q)	7856.0	$(43/2^{-})$	547.5 <i>5</i>	100	7308.5 (41/2 ⁻)	
6967.1		889.8 <i>5</i>	100	6077.2 (35/2 ⁻)		7987.1	$(43/2^{-})$	654.3 5	100	7332.8 (41/2 ⁻)	(D+Q)
7165.3		1088.0 5	100	6077.2 (35/2-)		8001.2		835.9 5	100	7165.3	
7308.5	$(41/2^{-})$	510.9 5	100	6797.6 (39/2 ⁻)							

[†] From ε decay for γ rays from levels below 2.02 MeV and from high-spin reactions from levels above 2.02 MeV, except as noted. The values, when considered from different reactions, are either weighted averages when not discrepant or unweighted averages when discrepant.

[‡] From $\alpha(K)$ exp and conversion electron ratios in ε decay for γ rays below 2.02 MeV, from $\gamma(\theta)$ in $(\alpha,3n\gamma)$ for γ rays from levels above 2.02 MeV and from DCO ratios in $({}^{12}C,3n\gamma)$ and $({}^{14}C,5n\gamma)$ for transitions deexciting levels above 3.8 MeV or so, except as noted.

[#] Branching ratios from ε decay and $(p,n\gamma)$ are discrepant.

[@] Stretched.

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹³⁹₅₈Ce₈₁

¹³⁹₅₈Ce₈₁

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹³⁹₅₈Ce₈₁

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹³⁹₅₈Ce₈₁

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹³⁹₅₈Ce₈₁

¹³⁹₅₈Ce₈₁