¹³⁷Ba(α ,2n γ),¹³⁸Ba(α ,3n γ) 1984Vo12,1977Lu04,1976Lu07

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	P. K. Joshi, B. Singh, S. Singh, A. K. Jain	NDS 138, 1 (2016)	15-Oct-2016

1976Lu07: ¹³⁸Ba(α ,3n γ) E=51 MeV. Measured γ (t).

1977Lu04: ¹³⁸Ba(α ,3n γ) E=45-59 MeV. Measured excitation functions, γ 's, $\gamma(\theta=60^{\circ}-125^{\circ}, 5 \text{ angles})$, $\gamma(t)$, and $\gamma\gamma$ -coincidences. 1984Vo12: ¹³⁷Ba(α ,2n γ) E=27 MeV. Measured 269,1607 $\gamma(\theta$,H,t); NaI, T=300°, 650° K.

Except as noted, all data are from 1977Lu04. The decay scheme is based on the $\gamma\gamma$ -coincidence data, intensity considerations, and observation that no γ 's deexciting low-spin states known from decay studies were observed.

¹³⁹Ce Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	Comments
0.0	3/2+		
754.8 10	11/2-	57.58 s <i>32</i>	%IT=100
			$T_{1/2}$ and decay mode from the Adopted Levels.
2029.2 15	$(11/2^{-}, 13/2)$		E(level): suggested on the basis of the energy-sum relation and excit.
			J^{π} : (11/2 ⁻ ,13/2) from γ 's to 11/2 ⁻ and possible γ from (15/2 ⁻).
2362.3 15	$(15/2^{-})$		J^{π} : (15/2) from $\gamma(\theta)$ and excit. π =- from (E2) γ from (19/2 ⁻).
2631.5 18	$(19/2^{-})$	70 ns 5	$g=+0.405 \ 8 \ (1984 \text{Vol}2)$
			Configuration= $vh_{11/2} \otimes^{140}$ Ce, first 4 ⁺).
			g: from 1607 $\gamma(\theta,\beta,t)$. Other: g=0.199 21 from 269 $\gamma(\theta,\beta,t)$ (269 peak may be
			contaminated, probably from ¹³⁸ Ba(α ,2n) γ 's).
			J ^{π} : J(2632)>J(2362) from excit; T _{1/2} ≤ ≈100 ns suggests mult(269 γ)=Q (1977Lu04).
			π =- from comparison of g(exp)=+0.405 8 to g(theory)=+0.40 3 for the proposed
			configuration.
2819.3 20	$(21/2^{-})$	≤3.0 ns	J^{π} : from $\gamma(\theta)$ and γ -deexcitation pattern.
3185.1 23	$(23/2^{-})$ (25/2)		J^{π} : from $\gamma(\theta)$ and excit.
3702.0 24	(27/2)		E(level): suggested on the basis of the energy-sum relation and $\gamma\gamma$ -coin.

 † From the Adopted Levels. Contributing arguments are given as comments.

[‡] From $\gamma(t)$ of 1976Lu07, except as noted. T_{1/2}(2632) from 269 $\gamma(t)$; 68 ns 5 from 1608 $\gamma(t)$. 1984Vo12 give 64 ns 4 from 1607 $\gamma(t)$ and 56 ns 6 from 269 $\gamma(t)$ for 2632 but do not discuss these values except to note that the 269 peak may be contaminated, probably from ¹³⁸Ba(α ,2n) γ 's.

$\gamma(^{139}\text{Ce})$

Except for the delayed γ from the $11/2^-$ to $3/2^+$ transition, no delayed transitions were observed in delayed γ -spectra with delays of 10, 20, 40, 60, 100, 200, and 300 μ s with respect to the beam pulses.

E_{γ}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{a}	Comments
187.8	57 6	2819.3	$(21/2^{-})$	2631.5	$(19/2^{-})$	(M1+E2)		I_{γ} : 56 7.
269.2	65 <i>4</i>	2631.5	$(19/2^{-})$	2362.3	$(15/2^{-})$	(E2)	0.0688	$\alpha(K)=0.0546\ 8;\ \alpha(L)=0.01120\ 16;\ \alpha(M)=0.00242\ 4$ $\alpha(N)=0.000526\ 8;\ \alpha(O)=7.94\times10^{-5}\ 12;$
								$\alpha(P)=3.54\times10^{-6} 5$ I _v : 74 4.
								Mult.: D,E2 from comparison to RUL. \neq D from comparison of T _{1/2} (2632) with T _{1/2} (2632)=96 ns calculated from assumption that 2632 is
								$[(^{140}\text{Ce } 4^+)(\nu h_{1}^- 1^- {}_{/2})]19/2^- \text{ with } T_{1/2}(^{140}\text{Ce } 4^+)=5 \text{ ns } (1976\text{Lu07}).$

Continued on next page (footnotes at end of table)

γ ⁽¹³⁹ Ce) (continued)								
Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [‡]	Comments	
296.5	18.0 [#] 17	3481.7	(25/2)	3185.1	(23/2 ⁻)			
333.2 <mark>b</mark>		2362.3	(15/2 ⁻)	2029.2	(11/2 ⁻ ,13/2)		$I_{\gamma}: \leq 7.$	
365.8	36 4	3185.1	(23/2 ⁻)	2819.3	$(21/2^{-})$	D [@]	I_{γ} : 33.9 21.	
517.0 <mark>&</mark>	12 [#] 4	3702.0	(27/2)	3185.1	$(23/2^{-})$			
554.0 ^{&b}	≤9 [#]	3185.1	$(23/2^{-})$	2631.5	(19/2 ⁻)			
659.0 <mark>&b</mark>		3481.7	(25/2)	2819.3	$(21/2^{-})$		$I_{\gamma}: \leq 5.$	
754.8	18.0 15	754.8	$11/2^{-}$	0.0	3/2+	M4	Mult.: from Adopted Gammas.	
1274.4		2029.2	$(11/2^{-}, 13/2)$	754.8	11/2-		I_{γ} : 220 11. I_{γ} : 18.7 35.	
1607.5	100 10	2362.3	$(15/2^{-})$	754.8	11/2-	Q [@]	I_{γ} : 100 8.	

137 Ba(α ,2n γ), 138 Ba(α ,3n γ) 1984Vo12,1977Lu04,1976Lu07 (continued)

[†] At E=52 MeV and θ =125° and in coincidence with the cyclotron burst. Data at 45 MeV without coincidence are given under comments.

[‡] From $\gamma(\theta)$, except as noted.

[#] Not observed at 45 MeV with no coincidence. [@] Stretched.

[&] Placed on the basis of $\gamma\gamma$ -coincidence data and energy sums.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

¹³⁹₅₈Ce₈₁