## <sup>130</sup>Te(<sup>14</sup>C,5nγ) 2015Ka06

|                 | History                                     |                   |                        |
|-----------------|---------------------------------------------|-------------------|------------------------|
| Туре            | Author                                      | Citation          | Literature Cutoff Date |
| Full Evaluation | P. K. Joshi, B. Singh, S. Singh, A. K. Jain | NDS 138, 1 (2016) | 15-Oct-2016            |

2015Ka06:  $E(^{14}C)=82$  MeV beam provided by the tandem accelerator of IPN, Orsay. Target=2 mg/cm<sup>2</sup> <sup>130</sup>Te deposited on 120 mg/cm<sup>2</sup> thick Bi backing and 136 mg/cm<sup>2</sup> copper for thermal dissipation. Measured  $E\gamma$ ,  $I\gamma$ ,  $\gamma\gamma$ ,  $\gamma\gamma(\theta)(DCO)$ ,  $\gamma\gamma(anisotropy ratios)$ . Deduced levels, J,  $\pi$ , multipolarities, bands, magnetic-dipole rotational band, configuration. Comparison with realistic shell-model calculations.

# <sup>139</sup>Ce Levels

| E(level) <sup>†</sup>                 | $J^{\pi \#}$           | T <sub>1/2</sub> ‡ | Comments                                                         |
|---------------------------------------|------------------------|--------------------|------------------------------------------------------------------|
| 0.0                                   | 3/2+                   |                    | Level not populated in this study, listed here for completeness. |
| 754.24 <sup>@</sup> 8                 | $11/2^{-}$             | 57.58 s <i>32</i>  | %IT=100                                                          |
|                                       | ,                      |                    | Decay mode from Adopted Levels.                                  |
| 2063.2 3                              | $(11/2^{-}, 13/2^{-})$ |                    |                                                                  |
| 2164.3 5                              | $(13/2^{-})$           |                    |                                                                  |
| 2361.47 <sup>©</sup> 21               | 15/2-                  |                    |                                                                  |
| 2632.1 <sup><sup>w</sup></sup> 3      | 19/2-                  | 70 ns 5            |                                                                  |
| 2819.9 <sup><sup>(0)</sup></sup> 4    | 21/2-                  |                    |                                                                  |
| 3187.3 4                              | 23/2-                  |                    |                                                                  |
| 38/7.5 5                              | 23/2                   |                    |                                                                  |
| 4013.8 5                              | 23/2+                  |                    |                                                                  |
| 4083.9 5                              | 25/2+                  |                    |                                                                  |
| 4099.1 5                              | 25/2                   |                    |                                                                  |
| $4277.1^{\circ}$ 5                    | 27/2                   |                    |                                                                  |
| 4404.7 5                              | 21/2                   |                    |                                                                  |
| 4756.9 % 5                            | 29/2+                  |                    |                                                                  |
| 4808.6 <sup><i>a</i></sup> 5          | $31/2^{-}$             |                    |                                                                  |
| 5298.5 6                              | 29/2+                  |                    |                                                                  |
| 5533.0 <sup>&amp;</sup> 5             | 31/2+                  |                    |                                                                  |
| 5697.9 <mark>b</mark> 7               | $31/2^{-}$             |                    |                                                                  |
| 5737.6 7                              | 31/2+                  |                    |                                                                  |
| 5822.8 6                              | $(33/2^{-})$           |                    |                                                                  |
| 5884.3 <sup><i>u</i></sup> 6          | 35/2-                  |                    |                                                                  |
| 5916.4° 5                             | 33/2-                  |                    |                                                                  |
| 6031.3 /                              | $\frac{33}{2}$         |                    |                                                                  |
| $61/2 h^{b} 6$                        | (33/2)                 |                    |                                                                  |
| $61554^{\circ}6$                      | $35/2^{-}$             |                    |                                                                  |
| 6331.8 <sup>°</sup> 6                 | 37/2-                  |                    |                                                                  |
| 6488.2 <sup>b</sup> 6                 | 37/2-                  |                    |                                                                  |
| 6797.7 <sup>°</sup> 7                 | 39/2-                  |                    |                                                                  |
| 6844.8 <sup>b</sup> 8                 | 39/2-                  |                    |                                                                  |
| 6966.9 8                              |                        |                    |                                                                  |
| 7165.2 8                              | (11/2-)                |                    |                                                                  |
| 7308.6 8                              | (41/2 <sup>-</sup> )   |                    |                                                                  |
| 7333.1° 8                             | 41/2-                  |                    |                                                                  |
| /449.8 <i>12</i><br>7571 8 <i>1</i> 2 |                        |                    |                                                                  |
| 7856.1 <sup>°</sup> 10                | $(43/2^{-})$           |                    |                                                                  |
| ,                                     | (                      |                    |                                                                  |

# <sup>130</sup>Te(<sup>14</sup>C,5nγ) **2015Ka06** (continued)

### <sup>139</sup>Ce Levels (continued)

E(level)<sup>†</sup>  $J^{\pi \frac{1}{2}}$ 

7987.4<sup>b</sup> 10 43/2<sup>-</sup> 8001.1 10

<sup>†</sup> From least-squares fit to  $E\gamma$  data.

<sup>‡</sup> From Adopted Levels.

<sup>#</sup> As proposed in 2015Ka06 based on  $\gamma\gamma(\theta)$  data and band structures.

<sup>@</sup> Band(A):  $\gamma$  cascade based on  $11/2^{-}$ .

& Band(B):  $\gamma$  cascade based on  $23/2^+$ . Parity reversed in the present work.

<sup>*a*</sup> Band(C):  $\gamma$  cascade based on 23/2<sup>-</sup>, 3876.7.

<sup>b</sup> Band(D): Magnetic-dipole rotational band based on 31/2<sup>-</sup>.

<sup>c</sup> Band(E): Band based on  $35/2^{-}$ .

# $\gamma$ (<sup>139</sup>Ce)

DCO(1) for gate on  $\Delta J=1$ , dipole transitions; DCO(2) for gate on  $\Delta J=2$ , quadrupole transition. Expected DCO(1) values are 2.0 and 1.0; and DCO(2) values are 1.0 and 0.6 for stretched quadrupole and stretched dipole transitions, respectively.

| $E_{\gamma}$          | $I_{\gamma}$   | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathrm{J}_f^\pi$     | Mult. <sup>†</sup> | Comments                                                                                |
|-----------------------|----------------|---------------|----------------------|------------------|------------------------|--------------------|-----------------------------------------------------------------------------------------|
| 61.0 5                | 1.0 5          | 5884.3        | 35/2-                | 5822.8           | $(33/2^{-})$           |                    |                                                                                         |
| 70.1 2                | 6.4 19         | 4083.9        | $25/2^+$             | 4013.8           | 23/2+                  |                    |                                                                                         |
| 166.0 <sup>‡</sup> 5  | 3.7 11         | 5697.9        | $31/2^{-}$           | 5533.0           | 31/2+                  |                    |                                                                                         |
| 176.4 5               | 2.7 3          | 6331.8        | 37/2-                | 6155.4           | 35/2-                  | D+Q                | DCO(1)=1.24 20; DCO(2)=0.86 30 $R(\theta)(1)=1.19$ 19.                                  |
| 187.8 2               | 82.9 <i>33</i> | 2819.9        | 21/2-                | 2632.1           | 19/2-                  | D+Q                | DCO(1)=1.15 <i>14</i> ; DCO(2)=0.76 <i>12</i><br>R(θ)(1)=1.33 <i>32</i> .               |
| 192.8 2               | 5.6 5          | 6077.1        | $(35/2^{-})$         | 5884.3           | $35/2^{-}$             |                    |                                                                                         |
| 193.2 2               | 27.0 8         | 4277.1        | 27/2+                | 4083.9           | 25/2+                  | D+Q                | DCO(1)=1.53 <i>1</i> ; DCO(2)=0.74 <i>4</i><br>R(θ)(1)=1.38 <i>12</i> .                 |
| 197.0 5               | 4.5 9          | 2361.47       | $15/2^{-}$           | 2164.3           | $(13/2^{-})$           |                    |                                                                                         |
| 206.4 5               | 3.7 5          | 4083.9        | $25/2^+$             | 3877.5           | $23/2^{-1}$            |                    |                                                                                         |
| 218.6 5               | 3.3 2          | 5916.4        | 33/2-                | 5697.9           | 31/2-                  | D+Q                | DCO(1)=1.30 70; DCO(2)=0.42 20<br>R(θ)(2)=0.63 30.                                      |
| 221.7 5               | 3.5 3          | 4099.1        | $25/2^{-}$           | 3877.5           | $23/2^{-}$             |                    |                                                                                         |
| 226.0 2               | 6.0 4          | 6142.4        | 35/2-                | 5916.4           | 33/2-                  | D+Q                | DCO(1)=1.46 8; DCO(2)=0.53 16<br>R( $\theta$ )(1)=1.11 18.                              |
| 234.7 5               | 3.0 3          | 5533.0        | 31/2+                | 5298.5           | 29/2+                  | D+Q                | $DCO(1)=1.10 \ 16; DCO(2)=0.62 \ 5$<br>$R(\theta)(1)=1.09 \ 30, R(\theta)(2)=1.08 \ 30$ |
| 239.0 2               | 6.1 5          | 6155.4        | 35/2-                | 5916.4           | 33/2-                  | D+Q                | $DCO(1)=1.23 \ 30; \ DCO(2)=0.61 \ 7$<br>$R(\theta)(1)=1.07 \ 17.$                      |
| 253.0 <sup>‡</sup> 10 | 0.8 2          | 6331.8        | $37/2^{-}$           | 6077.1           | $(35/2^{-})$           |                    |                                                                                         |
| 270.6 2               | 100.0 30       | 2632.1        | 19/2-                | 2361.47          | 15/2-                  | E2                 | DCO(1)=1.68 4; DCO(2)=0.86 20<br>R( $\theta$ )(1)=1.39 30.                              |
| 293.7 2               | 5.8 5          | 6031.3        | 33/2+                | 5737.6           | 31/2+                  | D+Q                | $DCO(1)=1.01\ 20;\ DCO(2)=0.54\ 20$<br>$R(\theta)(1)=1.02\ 10,\ R(\theta)(2)=0.84\ 14.$ |
| 298.3 2               | 6.7 7          | 2361.47       | $15/2^{-}$           | 2063.2           | $(11/2^{-}, 13/2^{-})$ | D+O                | DCO(1)=1.52 18                                                                          |
| 305.5 2               | 25.3 13        | 4404.7        | 27/2-                | 4099.1           | 25/2-                  | D+Q                | DCO(1)=1.10 30; DCO(2)=0.51 11                                                          |
|                       |                |               |                      |                  |                        | -                  | $R(\theta)(1)=0.90 \ 16, \ R(\theta)(2)=0.81 \ 19.$                                     |
| 345.8 2               | 5.2 4          | 6488.2        | 37/2-                | 6142.4           | 35/2-                  | D+Q                | DCO(1)=0.89 10; DCO(2)=0.44 5<br>R(θ)(2)=0.75 12.                                       |

Continued on next page (footnotes at end of table)

|                                           |                         |                        | 130                        | Te( <sup>14</sup> C,5m | ιγ) <mark>201</mark>       | 5Ka06 (co                       | ontinued)                                                                               |
|-------------------------------------------|-------------------------|------------------------|----------------------------|------------------------|----------------------------|---------------------------------|-----------------------------------------------------------------------------------------|
| $\gamma$ ( <sup>139</sup> Ce) (continued) |                         |                        |                            |                        |                            |                                 |                                                                                         |
| Eγ                                        | $I_{\gamma}$            | E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$         | $E_f$                  | $\mathbf{J}_f^{\pi}$       | Mult. <sup>†</sup>              | Comments                                                                                |
| 356.6 5                                   | 4.5 2                   | 6844.8                 | 39/2-                      | 6488.2                 | 37/2-                      | (D+O)                           | $R(\theta)(1)=0.68 \ 30.$                                                               |
| 367.2 2                                   | 57.8 23                 | 3187.3                 | 23/2-                      | 2819.9                 | 21/2-                      | D+Q                             | DCO(2)=0.47 17<br>$R(\theta)(2)=0.74$ 30.                                               |
| 383.4 2                                   | 7.8 5                   | 5916.4                 | 33/2-                      | 5533.0                 | 31/2+                      | D                               | DCO(1)=1.05 40; DCO(2)=0.40 3<br>R(θ)(1)=0.74 12.                                       |
| 403.9 2                                   | 29.9 15                 | 4808.6                 | 31/2-                      | 4404.7                 | 27/2-                      | Q                               | DCO(1)= $2.02 \ 30$<br>R( $\theta$ )(1)= $1.21 \ 40$ .                                  |
| 439.1 5                                   | 3.5 3                   | 5737.6                 | $31/2^{+}$                 | 5298.5                 | $29/2^{+}$                 | D+Q                             | DCO(1)=1.01 16                                                                          |
| 447.4 2                                   | 5.5 4                   | 6331.8                 | 37/2-                      | 5884.3                 | $35/2^{-}$                 | (D+Q)                           | $R(\theta)(1)=0.71 \ 30.$                                                               |
| 465.5 5                                   | 1.2 2                   | 6797.7                 | 39/2-                      | 6331.8                 | 37/2-                      | D+Q                             | $R(\theta)(1)=0.44$ 13.                                                                 |
| 479.8 2                                   | 15.5 8                  | 4756.9                 | 29/2+                      | 4277.1                 | 27/2+                      | D+Q                             | DCO(1)= $0.94$ 19; DCO(2)= $0.41$ 14<br>R( $\theta$ )(1)= $0.72$ 9.                     |
| 488.3 2                                   | 5.8 6                   | 7333.1                 | 41/2-                      | 6844.8                 | 39/2-                      | D+Q                             | $R(\theta)(1)=0.28$ 17.                                                                 |
| 510.9 5                                   | 3.0 3                   | 7308.6                 | $(41/2^{-})$               | 6797.7                 | 39/2-                      |                                 |                                                                                         |
| 547.5 5                                   | 2.2.2                   | /856.1                 | (43/2)                     | /308.6                 | (41/2)                     |                                 |                                                                                         |
| 642.7 5                                   | 3.0 4                   | 6/9/./                 | 39/2<br>42/2-              | 0155.4                 | 35/2                       | $(\mathbf{D} \cdot \mathbf{O})$ | DCO(1) 0.05 20                                                                          |
| 034.3 3                                   | 4.5 5                   | /98/.4                 | 43/2                       | /333.1                 | 41/2                       | (D+Q)                           | $DCO(1)=0.95 \ 50$<br>$P(0)(1)=0.52 \ 15$                                               |
| 751 24 8                                  |                         | 754 24                 | 11/2-                      | 0.0                    | 3/2+                       | M4                              | $K(\theta)(1)=0.52$ 15.<br>E. Mult : from Adopted dataset                               |
| 776.1 2                                   | 5.3 5                   | 5533.0                 | $31/2^+$                   | 4756.9                 | 29/2 <sup>+</sup>          | D+Q                             | $D_{\gamma}$ , Mult. Holl Adopted dataset.<br>DCO(2)=0.52 11<br>$R(\theta)(1)=0.58$ 12. |
| 835.9 5                                   | 3.6 6                   | 8001.1                 |                            | 7165.2                 |                            |                                 |                                                                                         |
| 889.8 5                                   | 3.1 5                   | 6966.9                 |                            | 6077.1                 | $(35/2^{-})$               |                                 |                                                                                         |
| 896.5 2                                   | 28.1 25                 | 4083.9                 | $25/2^+$                   | 3187.3                 | $23/2^{-1}$                | D                               | DCO(1)=0.49 17; DCO(2)=0.91 14                                                          |
| 911.6 2                                   | 6.0 9                   | 4099.1                 | $25/2^{-}$                 | 3187.3                 | $23/2^{-}$                 | D+Q                             | DCO(2)=0.54 14                                                                          |
| 1013.6 5                                  | 3.7 5                   | 5822.8                 | $(33/2^{-})$               | 4808.6                 | 31/2-                      |                                 |                                                                                         |
| 1021.6 5                                  | 4.2 5                   | 5298.5                 | $29/2^+$                   | 4277.1                 | $27/2^{+}$                 | D+Q                             | $R(\theta)(1)=0.35 \ 11, \ R(\theta)(2)=0.25 \ 11.$                                     |
| 1057.7 5                                  | 8.0 22                  | 3877.5                 | 23/2-                      | 2819.9                 | $21/2^{-}$                 | D+Q                             | $R(\theta)(2)=0.35$ 17.                                                                 |
| 1076.0 5                                  | 12.7 13                 | 5884.3                 | 35/2-                      | 4808.6                 | 31/2-                      | Q                               | DCO(1)=1.60 40<br>R(θ)(2)=1.07 17.                                                      |
| 1088.0 5                                  | 3.6 6                   | 7165.2                 |                            | 6077.1                 | $(35/2^{-})$               |                                 |                                                                                         |
| 1108.1 5                                  | 10.6 11                 | 5916.4                 | 33/2-                      | 4808.6                 | 31/2-                      | D+Q                             | DCO(2)=0.35 8<br>R( $\theta$ )(1)=0.66 7, R( $\theta$ )(2)=0.60 20.                     |
| 1118.0 10                                 | 0.20 2                  | 7449.8                 |                            | 6331.8                 | 37/2-                      |                                 |                                                                                         |
| 1160.1 <sup>‡</sup> 10                    | 1.5 3                   | 5916.4                 | 33/2-                      | 4756.9                 | $29/2^{+}$                 |                                 |                                                                                         |
| 1194.3 5                                  | 10.1 13                 | 4013.8                 | 23/2+                      | 2819.9                 | 21/2-                      | D                               | $R(\theta)(1)=0.56 \ 16, \ R(\theta)(2)=0.72 \ 41.$                                     |
| 1214.4 10                                 | 3.1 4                   | 5298.5                 | $29/2^+$                   | 4083.9                 | $25/2^+$                   |                                 |                                                                                         |
| 1217.5 5                                  | 11.6 <i>31</i>          | 4404.7                 | 27/2-                      | 3187.3                 | 23/2-                      | Q                               | DCO(1)=1.84 30; DCO(2)=1.02 7                                                           |
| 1240.0 10                                 | 0.30 3                  | 7571.8                 |                            | 6331.8                 | 37/2-                      |                                 |                                                                                         |
| 1244.4 10                                 | 7.1 14                  | 4431.7                 | 21/0+                      | 3187.3                 | 23/2                       | 0                               | DCC(2) 0.00 (0                                                                          |
| 1280.3 <i>5</i>                           | 5.5 6<br>15.1 <i>17</i> | 5533.0<br>4099.1       | 31/2*<br>25/2 <sup>-</sup> | 4277.1<br>2819.9       | $21/2^{-1}$<br>$21/2^{-1}$ | Q<br>Q                          | $DCO(2)=0.99 \ 40$<br>$DCO(2)=0.94 \ 30$<br>$P(4)(2)=0.95 \ 50$                         |
| 1293 3 10                                 | 212                     | 5697 9                 | 31/2-                      | 4404 7                 | 27/2-                      |                                 | R(0)(2) = 0.75 50.                                                                      |
| 1310 2 10                                 | 688                     | 2063.2                 | $(11/2^{-} 13/2^{-})$      | 754.74                 | $\frac{2}{11/2}$           |                                 |                                                                                         |
| 1409.4 10                                 | 5.5 7                   | 2164.3                 | $(13/2^{-})$               | 754.24                 | $11/2^{-}$                 | (D+O)                           | DCO(1)=1.5960                                                                           |
| 1460.6 10                                 | 3.5 5                   | 5737.6                 | 31/2+                      | 4277.1                 | 27/2+                      | Q                               | $DCO(1) = 1.62 \ 19$<br>R( $\theta$ )(1)=1.27 40, R( $\theta$ )(2)=1.44 12              |
| 1607.2 2                                  | 95.8 <i>38</i>          | 2361.47                | 15/2-                      | 754.24                 | 11/2-                      | Q                               | DCO(1)=1.8750<br>$R(\theta)(1)=1.3330.$                                                 |

<sup>†</sup> 2015Ka06 assign E1 or M1+E2 for  $\Delta J=1$ , dipole or dipole+quadrupole transitions, and E2 for  $\Delta J=2$ , quadrupole transitions. In the absence of parity-sensitive measurements, but in consideration of timing resolution of  $\approx 50$  ns in  $\gamma\gamma$ -coin measurement and

#### $^{130}$ Te( $^{14}$ C,5n $\gamma$ ) 2015Ka06 (continued)

 $\gamma$ <sup>(139</sup>Ce) (continued)</sup>

RUL for E2 and M2 transitions, evaluators assign (M1+E2) and (E2) for E $\gamma$ <500 keV, and D, D+Q or Q for higher energy transitions.  $\ddagger$  Placement of transition in the level scheme is uncertain.

<sup>130</sup>Te(<sup>14</sup>C,5nγ) 2015Ka06



<sup>139</sup><sub>58</sub>Ce<sub>81</sub>



#### <sup>130</sup>Te(<sup>14</sup>C,5nγ) 2015Ka06



<sup>139</sup><sub>58</sub>Ce<sub>81</sub>