¹³⁸Ba(pol p,p),(pol p,p'):IAR **1989Ny02**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	P. K. Joshi, B. Singh, S. Singh, A. K. Jain	NDS 138, 1 (2016)	15-Oct-2016

E=9.4-12.4 MeV. All data are from the resonance analysis of 1989Ny02 of ¹³⁹La isobaric analog resonances. See ¹³⁸Ba(pol p,p),(pol p,p') IAR under ¹³⁹La for details and comparison to the data of 1977Cl02.

¹³⁹Ba Levels

E(level) [†]	\mathbf{J}^{π}	Comments
0.0	7/2-	E(level): 16182, $7/2^-$ in ¹³⁹ La is assigned as IAR of ¹³⁹ Ba g.s.
631.0 7	$3/2^{-}$	E(level): from 16812, $3/2^{-1}$ IAR in ¹³⁹ La.
1087.0 5	$1/2^{-}$	E(level): from 17268, $1/2^{-1}$ IAR in ¹³⁹ La.
1305 2	9/2-	E(level): from 17486, $9/2^{-1}$ IAR in ¹³⁹ La.
1435.0 6	$5/2^{-}$	E(level): from 17616, $5/2^{-1}$ IAR in ¹³⁹ La.
1575 7	$13/2^{+}$	E(level): from 17756, $13/2^+$ IAR in 139 La.
1641 8	9/2-	E(level): from 17823, $9/2^{-1}$ IAR in ¹³⁹ La.
1692 2	$7/2^{-}$	E(level): from 17873, $7/2^{-1}$ IAR in ¹³⁹ La.
1711 <i>1</i>	$5/2^{-}$	E(level): from 17892, $5/2^{-1}$ IAR in ¹³⁹ La.
1780 5	3/2-	E(level): from 17962, $3/2^{-1}$ IAR in ¹³⁹ La.
1842	$(9/2^{-})$	E(level): from possible 18024, $(9/2^{-})$ IAR in ¹³⁹ La.
1943 6	$7/2^{-}$	E(level): from 18124, $7/2^{-1}$ IAR in ¹³⁹ La.
1963 <i>3</i>	$5/2^{-}$	E(level): from 18144, $5/2^{-1}$ IAR in ¹³⁹ La.
2115 4	7/2-	E(level): from 18297, $7/2^{-1}$ IAR in ¹³⁹ La.
2158 2	$3/2^{-}$	E(level): from 18339, $3/2^{-1}$ IAR in ¹³⁹ La.
2182 2	$5/2^{-}$	E(level): from 18363, $5/2^{-1}$ IAR in ¹³⁹ La.
2186 2	$1/2^{-}$	E(level): from 18368, $1/2^{-1}$ IAR in ¹³⁹ La.
(2335 [‡])	$(5/2^{-})$	E(level): from 18517, (5/2 ⁻) IAR in ¹³⁹ La.
(2446 [‡])	$(3/2^{-})$	E(level): from 18630, (3/2 ⁻) IAR in ¹³⁹ La.

[†] Except for the ground and first two excited states, excitation energies derived in the analysis are generally 12 to 32 keV higher than the energies of the corresponding levels in Adopted Levels. Above 2 MeV or so, it is difficult to make unique assignments of IARs in ¹³⁹La to parent levels in ¹³⁹Ba due to high level density.

[‡] Resonances corresponding to these states were not fitted in the analysis but are necessary for a good fit to the data (1989Ny02).