140 Sb β^{-} 2n decay 2017Mo12

Type	Author	History Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017	

Parent: ¹⁴⁰Sb: E=0.0; $J^{\pi}=(3^{-})$; $T_{1/2}=173$ ms *12*; $Q(\beta^{-}2n)=5620$ SY; $\%\beta^{-}2n$ decay=?

 140 Sb-J^{π}: Proposed by 2017Mo12 based on observed feeding pattern, but 4⁻ cannot be completely ruled out.

¹⁴⁰Sb-T_{1/2}: From γ (t) in 2017Mo12.

¹⁴⁰Sb-Q(β^-2n): Estimated by evaluator based on Q(β^-)=12640 600 (syst) for ¹⁴⁰Sb, S(2n)=7020 60 (syst) for ¹⁴⁰Te (2017Wa10). ¹⁴⁰Sb-% β^-2n decay: ≈ 0.08 is estimated by 2017Mo12 based on measured γ -ray intensities. ¹⁴⁰Sb also decays to ¹³⁹Te by β -delayed single- neutron emission with P_n=23% 4 (2017Mo12).

2017Mo12: Source of ¹⁴⁰Sb was produced by in-flight fission of ²³⁸U on a ⁹Be target at E=345 MeV/nucleon at the Radioactive Isotope Beam Factory (RIBF) at the RIKEN Nishina Center. Fragments were separated by the BigRIPS separator and identified through a zero-degree spectrometer (ZDS) based on the B ρ - Δ E-tof method. Separated and selected ions were implanted into a wide-range active-silicon-strip stopper array for beta and ion detector (WAS3ABi), consisting of five layers of 1-mm-thick double-sided silicon-strip detectors (DSSSDs); γ rays were detected by the EUROBALL-RIKEN HPGe cluster array (EURICA). Measured E γ , I γ , $\beta\gamma$ -coin, $\beta\gamma\gamma$ -coin, $\gamma(t)$. Deduced levels, J, π , parent T_{1/2}, β -decay branchings.

¹³⁸Te Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments	
0 460.8 5 903.6 7	0^+ (2 ⁺) (4 ⁺)	$\%\beta^{-}2n=2.0 8 \text{ from } {}^{140}\text{Sb} \text{ decay } (2017\text{Mo12}).$ $\%\beta^{-}2n=5.6 23 \text{ from } {}^{140}\text{Sb} \text{ decay } (2017\text{Mo12}).$	

[†] From $E\gamma$.

[‡] From Adopted Levels.

$\gamma(^{138}\text{Te})$

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
442.8 5	17 12	903.6	(4+)	460.8	(2+)
460.8 5	24 11	460.8	(2^{+})	0	0^{+}

[†] Energies and placements are from 2015Le14 of the same group as 2017Mo12.

¹⁴⁰Sb β^- 2n decay 2017Mo12

Decay Scheme

Intensities: Relative $I_{\boldsymbol{\gamma}}$

