139 Sb β^- n decay 2015Le14 | History | | | | | | | | | |-----------------|----------|-------------------|------------------------|--|--|--|--|--| | Туре | Author | Citation | Literature Cutoff Date | | | | | | | Full Evaluation | Jun Chen | NDS 146, 1 (2017) | 30-Sep-2017 | | | | | | Parent: ¹³⁹Sb: E=0.0; $J^{\pi}=(7/2^{+})$; $T_{1/2}=93$ ms 13; $Q(\beta^{-}n)=7840$ SY; $\%\beta^{-}n$ decay=90 10 2015Le14: Source of 139 Sb was produced by in-flight fission of 238 U on a 9 Be target at E=345 MeV/nucleon at the Radioactive Isotope Beam Factory (RIBF) at the RIKEN Nishina Center. Fragments were separated by the BigRIPS separator and identified through a zero-degree spectrometer (ZDS) based on the $B\rho$ - ΔE -tof method. Separated and selected ions were implanted into a wide-range active-silicon-strip stopper array for beta and ion detector (WAS3ABi), consisting of five layers of 1-mm-thick double-sided silicon-strip detectors (DSSSDs), surrounded by two 2-mm-thick plastic scintillators. γ rays were detected by the EUROBALL-RIKEN HPGe cluster array (EURICA). Measured $E\gamma$, $\beta\gamma$ -coin, $\beta\gamma\gamma$ -coin. Deduced levels, J, π . Comparisons with shell-model calculations. Energy systematics of Te isotopes. ### ¹³⁸Te Levels | E(level) [†] | $J^{\pi \ddagger}$ | T _{1/2} | Comments | |-----------------------|--------------------|------------------|----------------------------------| | 0 | 0+ | 1.4 s 4 | $T_{1/2}$: From Adopted Levels. | | 460.8 5 | (2^{+}) | | , | | 903.6 7 | (4^{+}) | | | | 1323.4 7 | | | | | 1439.1 9 | (6^+) | | | | 1531.2 9 | | | | | 1682.1 9 | | | | [†] From a least-square fit to γ -ray energies. # γ (138Te) | E_{γ}^{\dagger} | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbf{E}_f | \mathbf{J}_f^{π} | |------------------------|--------------|----------------------|----------------|----------------------| | 442.8 5 | 903.6 | $\overline{(4^{+})}$ | 460.8 | (2^{+}) | | 460.8 5 | 460.8 | (2^{+}) | 0 | 0_{+} | | 535.5 <i>5</i> | 1439.1 | (6^{+}) | 903.6 | (4^{+}) | | 627.6 5 | 1531.2 | | 903.6 | (4^{+}) | | 778.5 <i>5</i> | 1682.1 | | 903.6 | (4^{+}) | | 862.6 5 | 1323.4 | | 460.8 | (2^{+}) | [†] Transitions belonging to the decay of ¹³⁹Sb are deduced from Figure 3 of 2015Le14. $^{^{139}}$ Sb-J^{π}: From Adopted Levels of 139 Sb. $1/2^+$ from theoretical prediction (1997Mo25). ¹³⁹Sb-T_{1/2}: From 2011Ar18. ¹³⁹Sb-Q(β⁻n): From 2017Wa10, ΔQ=400 (syst). $^{^{139}}$ Sb-%β⁻n decay: From 2011Ar18. [‡] From Adopted Levels. ## 139Sb β-n decay 2015Le14 Legend ## Decay Scheme • Coincidence $$\%\beta^-$$ n=90 $\sqrt{\frac{(7/2^+)}{Q=7840 \text{ SY}}}$ 93 ms 13 $\frac{139}{51}\text{Sb}_{88}$