Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017

 $Q(\beta^{-})=9360 SY; S(n)=3140 SY; S(p)=16760 CA; Q(\alpha)=-7120 CA$ 2017Wa10

 $\Delta Q(\beta^{-}) = 1180, \Delta S(n) = 640, \Delta S(p) = 710, \Delta Q(\alpha) = 640$ (2017Wa10).

 $Q(\beta^{-}n)=7130\ 510,\ S(2n)=5100\ 590,\ Q(2\beta^{+})=20840\ 500\ (syst, 2017Wa10),\ S(2p)=31430\ (theory, 1997Mo25).$

First identification of 138 Sn nuclide by 2010Oh02 via Be(238 U,F).

2010Oh02: ¹³⁸Sn nuclide identified in Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon produced by the cascade operation of the RBIF accelerator complex of the linear accelerator RILAC and four cyclotrons RRC, fRC, IRC and SRC. Identification of ¹³⁸Sn nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator. Experiments performed at RIKEN facility. Based on A/Q spectrum and Z versus A/Q plot, 23 counts were assigned to ¹³⁸Sn isotope. (Q=charge state).

2015Lo04: ¹³⁸Sn ions were produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10^{10} ions/s. Identification of ¹³⁸Sn was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹³⁸Sn isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations.

2007ArZQ (thesis): ¹³⁸Sn possibly identified in bombardment of UC_x target with 1 GeV protons followed by selective ionization with the Resonance Ionization Laser Ion Source (RILIS) and high-resolution mass separator (HRS) at ISOLDE-CERN facility. Measured delayed neutrons to deduce half-life and P_n (delayed neutron emission probability). Identification in this work should be considered as tentative since in later formal publication of this work in 2011Ar18, ¹³⁸Sn was not discussed.

Theoretical nuclear structure calculations:

2017Ja09, 2015Na10: calculated binding energies, B(E2), energy levels, J, π .

2012Ca27: calculated levels, J, π , B(E2), B(E3).

2010Sa14, 2008Sa32: calculated binding energies, levels, J, π , B(E2), configuration mixing, magnetic dipole moments, electric quadrupole moments.

2008Ma17: calculated odd-even mass staggering, binding energies, two-neutron separation energies, pairing gaps.

2007Ji05, 2007Ji14: calculated levels, J, π , B(E2), B(M1), g factors.

2007Ka40: calculated binding energies, single and two neutron separation energies, level energies, J, π , B(E2).

2004Sh46: calculated level energies, B(E2), quadrupole matrix elements, g factors.

Consult NSR database for additional about 30 theoretical papers.

Additional information 1.

¹³⁸Sn Levels

Cross Reference (XREF) Flags

A 138 Sn IT decay (210 ns)

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0	0+	140 ms +30-20	A	 %β⁻=100; %β⁻n=36 <i>12</i> (2007ArZQ); %β⁻2n=? Theoretical %β⁻n=83.3, %β⁻2n=3.9 (2003Mo09). T_{1/2}: measured by 2015Lo04 from the analysis of the (implanted ions)β correlated decay curve in time and position. Other: 261 ms <i>57</i> (preliminary value from 2007ArZQ based on neutron decay curve). Theoretical values: 460 ms (2002Pf04), 336 ms (2003Mo09). Measured σ=600 pb (2010Oh02), systematic uncertainty≈30%. %β⁻n: preliminary value is 36 <i>12</i> (2007ArZQ). Theoretical values: %β⁻n=100 (2002Pf04), 83.3 (2003Mo09), 70.3 (2014Mi23); %β⁻2n=3.9 (2003Mo09), 0.2 (2014Mi23).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹³⁸Sn Levels (continued)

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
715 <i>1</i>	(2^{+})		A	
1176 2	(4^{+})		Α	
1344 2	(6^{+})	210 ns 45	Α	%IT=100
				Dominant $vf_{7/2}^2$ configuration (2014Si18).
				$T_{1/2}$: from (¹³⁶ Sn ions) γ (t) in ¹³⁸ Sn IT decay (2014Si18).

[†] From shell-model predictions (2014Si18) and systematics of even-even semi-magic nuclei.

$\gamma(^{138}\text{Sn})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	Comments
715	(2^{+})	715 <i>I</i>	100	0	0^{+}	[E2]	0.0028	
1176	(4^{+})	461 <i>1</i>	100	715	(2^{+})	[E2]	0.0093	
1344	(6 ⁺)	168 <i>1</i>	100	1176	(4^{+})	[E2]	0.255 7	B(E2)(W.u.)=0.36 8

[†] From ¹³⁸Sn IT decay.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme Intensities: Relative photon branching from each level

 $^{138}_{50}{
m Sn}_{88}$