¹³⁸Eu ε decay 1986Re11,1992Si22

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017

Parent: ¹³⁸Eu: E=0.0; $J^{\pi}=(6^{-})$; $T_{1/2}=12.1 \text{ s} 6$; $Q(\varepsilon)=9750 \ 30$; $\%\varepsilon+\%\beta^{+} \text{ decay}=100.0$

¹³⁸Eu-J^π,T_{1/2}: From Adopted Levels of ¹³⁸Eu. The adopted half-life is from 1986Re11. Others: 12 s *I* from 1987Ke05 (also1986MIZX), 12 s 2 from 1982No15.

¹³⁸Eu-Q(ε): From 2017Wa10.

1986Re11 (also 1985Ch25, 1987Pl05): ¹³⁸Eu source was produced via the ³⁵Cl+¹⁰⁶Cd reaction with E=191 MeV ³⁵Cl beam from the SARA accelerator at Grenoble incident on 1-3 mg/cm² self-supporting enriched foils of ¹⁰⁶Cd. Reaction products were mass-separated and transported to a counting station. γ rays and X rays were detected with Ge detectors. Measured E γ , I γ , E(X ray), $\gamma\gamma$ -coin, X γ -coin. Deduced levels, J, π , band structures. Systematics of neighbouring nuclei.

1992Si22: ¹³⁸Eu source was produced via ⁴⁸Ti+^{98,96}Mo reaction with E=210-220 MeV ⁴⁸Ti beam. Reaction products were separated by the Daresbury isotope separator DOLIS and implanted into a polycrystalline iron foil thermally attached to the copper cold finger of the on-line dilution refrigerator. γ rays were detected with four large Ge detectors. Measured E γ , γ -ray anisotropy vs temperature, time. Deduced levels, J, π , γ -ray multipolarities, parent T_{1/2}. Other: 1987Ke05, 1986MIZX, 1982No15.

From log $ft \approx 5.2$ to 6⁺ and ≈ 5.5 to 8⁺, derived from intensity imbalance by 1986Re11, $J^{\pi}(^{138}\text{Eu}, \text{ g.s.})$ is suggested to be 7⁺ which is in conflict with its μ measurement (1989SiZV). The decay scheme seems to be incomplete due to the large gap between Q-value and the highest level energy and, therefore, β feedings and deduced log ft are unreliable and not given.

138Sm Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ ‡	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^π ‡
0.0 [#]	0^{+}	3.1 min 2	1576.9 [#] 5	6+	2258.2 5	
346.71 ^{#} 24	2^{+}	40 ps 6	1655.8 <i>3</i>	(4^{+})	2352.0 [#] 6	8+
745.59 [@] 24	(2^+)		1732.6 [@] 4	(5 ⁺)	2500.7 [@] 5	(7^{+})
891.3 [#] 3	4+		2097.1 4		2508.7 6	(7 ⁻)
1084.0 [@] 3	(3 ⁺)		2105.0 [@] 5	(6 ⁺)	2560.4 5	
1398.7 [@] 3	(4^{+})		2237.7 5		2955.9 6	(8+)

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

Band(A): g.s. band.

[@] Band(B): γ -vibrational band.

$\gamma(^{138}\text{Sm})$

E _γ ‡	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
338.0 <i>3</i>	140	1084.0	(3 ⁺)	745.59	(2 ⁺)	(M1+E2)	0.049 10	α (K)=0.041 <i>10</i> ; α (L)=0.0067 <i>3</i> ; α (M)=0.00145 <i>5</i> α (N)=0.000326 <i>12</i> ; α (O)=4.7×10 ⁻⁵ <i>4</i> ; α (P)=2.4×10 ⁻⁶ <i>8</i>
346.7 <i>3</i>	1000	346.71	2+	0.0	0+	E2	0.0362	Mult.: anisotropy= -0.145 (1992Si22). $\alpha(K)=0.02874$; $\alpha(L)=0.005849$; $\alpha(M)=0.00129419$ $\alpha(N)=0.0002895$; $\alpha(O)=4.02\times10^{-5}6$; $\alpha(P)=1579\times10^{-6}23$
399.0 <i>3</i>	225	745.59	(2 ⁺)	346.71	2+	(M1+E2)	0.031 8	Mult.: anisotropy= -0.28 <i>I</i> (1992Si22). $\alpha(K)=0.026$ <i>7</i> ; $\alpha(L)=0.0041$ <i>5</i> ; $\alpha(M)=0.00088$ <i>8</i> $\alpha(N)=0.000199$ <i>I9</i> ; $\alpha(O)=2.9\times10^{-5}$ <i>4</i> ; $\alpha(P)=1.6\times10^{-6}$ 5
441.5 <i>3</i>	85	2097.1		1655.8	(4+)			Mult.: anisotropy= $-0.01 \ 4 \ (1992Si22).$

Continued on next page (footnotes at end of table)

¹³⁸Eu ε decay **1986Re11,1992Si22** (continued)

$\gamma(^{138}\text{Sm})$ (continued)

E_{γ} ‡	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
507.5 <i>3</i> 544.5 <i>3</i>	50 550	1398.7 891.3	(4 ⁺) 4 ⁺	891.3 346.71	$\frac{4^{+}}{2^{+}}$	E2	0.01025	$\alpha(K)=0.00847$ 12; $\alpha(L)=0.001402$ 20; $\alpha(M)=0.000306$ 5
571.3 3	100	1655.8	(4+)	1084.0	(3+)	(M1+E2)	0.012 4	$\begin{aligned} &\alpha(N) = 6.87 \times 10^{-5} \ 10; \ \alpha(O) = 9.88 \times 10^{-6} \ 14; \\ &\alpha(P) = 4.91 \times 10^{-7} \ 7 \\ &\text{Mult.: anisotropy} = -0.45 \ 1 \ (1992\text{Si}22). \\ &\alpha(K) = 0.010 \ 3; \ \alpha(L) = 0.0015 \ 3; \ \alpha(M) = 0.00032 \ 6 \\ &\alpha(N) = 7.3 \times 10^{-5} \ 14; \ \alpha(O) = 1.08 \times 10^{-5} \ 22; \\ &\alpha(P) = 6.3 \times 10^{-7} \ 20 \\ &\text{Mult.: anisotropy} = -0.33 \ 7 \ (1992\text{Si}22). \end{aligned}$
602.4 <i>3</i> 648.8 <i>3</i>	35 210	2258.2 1732.6	(5 ⁺)	1655.8 1084.0	(4 ⁺) (3 ⁺)	(E2)	0.00661	$\alpha(K)=0.00551 \ 8; \ \alpha(L)=0.000861 \ 13; \ \alpha(M)=0.000187$
652.9 <i>3</i>	150	1398.7	(4+)	745.59	(2 ⁺)	(E2)	0.00651	³ $\alpha(N)=4.20\times10^{-5}$ 6; $\alpha(O)=6.11\times10^{-6}$ 9; $\alpha(P)=3.23\times10^{-7}$ 5 Mult.: anisotropy=-0.40 2 (1992Si22). $\alpha(K)=0.00543$ 8; $\alpha(L)=0.000847$ 12; $\alpha(M)=0.000184$ ³ $\alpha(N)=4.13\times10^{-5}$ 6; $\alpha(O)=6.01\times10^{-6}$ 9; $\alpha(P)=3.18\times10^{-7}$ 5
685.6 <i>3</i>	410	1576.9	6+	891.3	4+	E2	0.00579	Mult.: anisotropy= $-0.46\ 3\ (1992Si22).$ $\alpha(K)=0.00484\ 7;\ \alpha(L)=0.000744\ 11;$ $\alpha(M)=0.0001611\ 23$ $\alpha(N)=3.63\times10^{-5}\ 5;\ \alpha(O)=5.29\times10^{-6}\ 8;$ $\alpha(P)=2.85\times10^{-7}\ 4$ Mult.: anisotropy= $-0.48\ 1\ (1992Si22)$
698.2 <i>3</i> 706.2 <i>3</i>	50 70	2097.1 2105.0	(6^{+})	1398.7 1398.7	(4^+) (4^+)	(E2)	0.00540	$\alpha(\mathbf{K}) = 0.00452$ 7: $\alpha(\mathbf{L}) = 0.000689$ 10:
737.2 3	190	1084.0	(3 ⁺)	346.71	2+	(M1+E2)	0.0065 17	$\alpha(M)=0.0001491\ 21$ $\alpha(N)=3.36\times10^{-5}\ 5;\ \alpha(O)=4.90\times10^{-6}\ 7;$ $\alpha(P)=2.66\times10^{-7}\ 4$ Mult.: anisotropy=-0.50 5 (1992Si22). $\alpha(K)=0.0056\ 15;\ \alpha(L)=0.00078\ 17;\ \alpha(M)=0.00017\ 4$
								$\alpha(N) = 3.8 \times 10^{-5} 8; \ \alpha(O) = 5.6 \times 10^{-6} 13; \alpha(P) = 3.4 \times 10^{-7} 10$
745.6 <i>3</i>	110	745.59	(2 ⁺)	0.0	0^{+}	(E2)	0.00475	Mult.: anisotropy= $-0.57\ 2\ (1992Si22)$. $\alpha(K)=0.00399\ 6;\ \alpha(L)=0.000600\ 9;\ \alpha(M)=0.0001295$ 19
768 1 3	180	2500.7	(7^{+})	1732.6	(5 ⁺)			α (N)=2.92×10 ⁻⁵ 4; α (O)=4.28×10 ⁻⁶ 6; α (P)=2.35×10 ⁻⁷ 4 Mult.: anisotropy=-0.38 4 (1992Si22).
775.1 3	125	2352.0	(7) 8 ⁺	1576.9	(5 ⁻) 6 ⁺	E2	0.00435	$\alpha(K)=0.00366\ 6;\ \alpha(L)=0.000544\ 8;\ \alpha(M)=0.0001174$ 17 $\alpha(N)=2.65\times10^{-5}\ 4;\ \alpha(O)=3.88\times10^{-6}\ 6;$
827.8 <i>3</i> 838.9 <i>3</i> 841.1 <i>3</i>	50 60 25	2560.4 2237.7 1732.6	(5 ⁺)	1732.6 1398.7 891.3	(5 ⁺) (4 ⁺) 4 ⁺			$\alpha(P)=2.16 \times 10^{-7} 3$ Mult.: anisotropy=-0.39 3 (1992Si22).
850.9 <i>3</i>	45	2955.9	(8+)	2105.0	(6 ⁺)	(E2)	0.00352	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00297 \ 5; \ \alpha(\mathbf{L}) = 0.000433 \ 6; \\ &\alpha(\mathbf{M}) = 9.33 \times 10^{-5} \ 13 \\ &\alpha(\mathbf{N}) = 2.10 \times 10^{-5} \ 3; \ \alpha(\mathbf{O}) = 3.10 \times 10^{-6} \ 5; \end{aligned}$

Continued on next page (footnotes at end of table)

$^{138}\mathrm{Eu}\,\varepsilon$ decay 1986Re11,1992Si22 (continued)

$\gamma(^{138}\text{Sm})$ (continued)

E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
911.0 <i>3</i> 931.8 <i>3</i>	30 50	1655.8 2508.7	(4 ⁺) (7 ⁻)	745.59 1576.9	(2 ⁺) 6 ⁺	(E1)	1.18×10 ⁻³	$\alpha(P)=1.762\times10^{-7} 25$ Mult.: anisotropy=-0.53 5 (1992Si22). $\alpha(K)=0.001013 15; \alpha(L)=0.0001306 19;$ $\alpha(M)=2.78\times10^{-5} 4$ $\alpha(N)=6.28\times10^{-6} 9; \alpha(O)=9.39\times10^{-7} 14;$ $\alpha(P)=5.86\times10^{-8} 9$

[†] Additional information 1. [‡] From 1986Re11, with mean $\Delta E\gamma = 0.3$ keV and $\Delta I\gamma = 10\%$. [#] From Adopted Gammas. The basis from this dataset for these assignments are γ -ray anisotropies from 1992Si22, given in comments.

 $^{138}_{62}\text{Sm}_{76}\text{-}5$

¹³⁸Eu ε decay 1986Re11,1992Si22

