104 Pd(37 Cl,2np γ) 1	1987Pa30
--	----------

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017

1987Pa30: E=170 MeV ³⁷Cl beam was produced from the Stony Brook Superconducting LINAC injected by tandem Van de Graaff accelerator, incident on a palladium target of 2 mg/cm² ¹⁰⁴Pd rolled onto a 50 mg/cm² thick lead backing. γ rays were detected with four Compton-suppressed Ge detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, γ (DCO). Deduced levels, J, π , configurations, band structures. Comparisons with shell-model calculations.

¹³⁸Sm Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0 ^{<i>a</i>}	0^{+}	2351.4 ^{<i>a</i>} 4	8+	3818.6 ^b 5	12+	5437.8 <mark>b</mark> 6	(16 ⁺)
346.62 ^a 16	2^{+}	2500.8 ^C 4	7+	3916.4 [@] 5	14^{+}	5859.2 [#] 12	(17 ⁻)
745.68 ^c 16	2+	2508.1 [#] 4	(7-)	4341.3 [#] 5	(13 ⁻)	5935.3 [@] 12	(18+)
890.8 ^a 3	4+	2651.6 ^C 4	(8 ⁺)	4486.7 9	(14^{+})	6014.8 ^{&} 6	(20^{+})
1083.75 [°] 20	3+	2903.5 [@] 5	10^{+}	4613.8 <mark>b</mark> 5	(14^{+})	6886.8 <mark>&</mark> 12	(22^{+})
1398.4 [°] 3	4+	3028.4 [#] 4	(9 ⁻)	4778.7 <mark>&</mark> 6	16+	7916.9 <i>16</i>	(24^{+})
1576.2 ^a 4	6+	3105.8 ^b 5	10^{+}	4831.3 [@] 6	16+		
1732.6 [°] 3	5+	3259.8 [@] 5	12^{+}	5074.2 [#] 6	(15 ⁻)		
2104.5 [°] 4	6+	3639.6 [#] 5	(11 ⁻)	5325.9 <mark>&</mark> 6	18^{+}		

[†] From a least-squares fit to γ -ray energies.

[‡] From 1987Pa30 based on deduced γ multipolarities from DCO ratios, band energy and intensity pattern.

[#] Band(A): band 1. Configuration= $((\pi h_{11/2})(\pi g_{7/2}))$.

[@] Band(B): band 2. Configuration= $(\pi h_{11/2})^2$.

& Band(C): band 3. Configuration= $((\pi h_{11/2})^2 (\nu h_{11/2})^2)$.

^a Band(D): band 4. g.s. band.

^b Band(E): band 5. Configuration= $(\nu h_{11/2})^2$.

^{*c*} Band(F): band 6. γ -vibrational band.

$\gamma(^{138}\text{Sm})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	Comments
338.0 2	4.1 <i>I</i>	1083.75	3+	745.68	2+		
346.6 2	110.8 9	346.62	2+	0	0^{+}	E2	R(DCO)=1.01 3 (1987Pa30).
356.3 2	42.7 7	3259.8	12^{+}	2903.5	10^{+}	E2	R(DCO)=1.02 3 (1987Pa30).
399.0 2	9.4 5	745.68	2+	346.62	2+		
494.6 2	2.1 4	5325.9	18^{+}	4831.3	16+		
507 1		1398.4	4+	890.8	4+		E_{γ} : doublet with 511-keV β peak (1987Pa30).
520.3 2	5.3 4	3028.4	(9-)	2508.1	(7^{-})	E2	R(DCO)=0.99 18 (1987Pa30).
544.2 2	100.0 11	890.8	4+	346.62	2+	E2	R(DCO)=1.08 3 (1987Pa30).
547.1 2	5.1 5	2651.6	(8^{+})	2104.5	6+		R(DCO)=0.99 8 (1987Pa30).
547.2 2		5325.9	18^{+}	4778.7	16+		
552.1 2	42.5 8	2903.5	10^{+}	2351.4	8+	E2	R(DCO)=1.14 7 (1987Pa30).
611.2 2	8.9 5	3639.6	(11^{-})	3028.4	(9 ⁻)	E2	R(DCO)=1.01 11 (1987Pa30).
648.8 2	5.7 5	1732.6	5+	1083.75	3+		
652.7 2	3.4 5	1398.4	4+	745.68	2+		
656.6 2	28.5 7	3916.4	14^{+}	3259.8	12^{+}	E2	R(DCO)=0.97 5 (1987Pa30).
668 1	<1.0	4486.7	(14^{+})	3818.6	12^{+}		
677.0 2	3.9 4	3028.4	(9 ⁻)	2351.4	8+	(E1)	R(DCO)=0.78 15 (1987Pa30).
685.4 2	86.0 11	1576.2	6+	890.8	4+	E2	R(DCO)=1.09 3 (1987Pa30).

Continued on next page (footnotes at end of table)

¹⁰⁴Pd(³⁷Cl,2npγ) **1987Pa30** (continued)

$\gamma(^{138}Sm)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	Comments
688.9 2	1.6 5	6014.8	(20^{+})	5325.9	18+		
701.6 2	7.9 5	4341.3	(13^{-})	3639.6	(11^{-})	E2	R(DCO)=1.22 17 (1987Pa30).
706.1 2	3.9 5	2104.5	6+	1398.4	4+		
712.8 2	8.8 6	3818.6	12^{+}	3105.8	10^{+}	E2	R(DCO)=1.02 13 (1987Pa30).
732.9 2	8.7 13	5074.2	(15^{-})	4341.3	(13 ⁻)	E2	R(DCO)=0.96 19 (1987Pa30).
737.2 2	5.2 5	1083.75	3+	346.62	2+		
745.7 2	<1.0	745.68	2+	0	0^{+}		
754.3 2	13.2 7	3105.8	10^{+}	2351.4	8+	E2	R(DCO)1.20 10 (1987Pa30).
768.2 2	5.1 5	2500.8	7+	1732.6	5+		
775.2 2	68.7 11	2351.4	8+	1576.2	6+	E2	R(DCO)=1.01 3 (1987Pa30).
785 <i>I</i>	2.5 4	5859.2	(17^{-})	5074.2	(15^{-})		
795.2 2	5.5 5	4613.8	(14^{+})	3818.6	12^{+}		
824.0 2	1.5 5	5437.8	(16^{+})	4613.8	(14^{+})		
862.3 2	6.4 7	4778.7	16^{+}	3916.4	14^{+}	E2	R(DCO)=0.95 19 (1987Pa30).
872 <i>I</i>	<1.0	6886.8	(22^{+})	6014.8	(20^{+})		
914.9 2	10.8 7	4831.3	16^{+}	3916.4	14^{+}	E2	R(DCO)=1.09 12 (1987Pa30).
931.9 2	6.4 7	2508.1	(7^{-})	1576.2	6+	(E1)	R(DCO)=0.70 13 (1987Pa30).
1030 <i>1</i>	<1.0	7916.9	(24^{+})	6886.8	(22^{+})		
1074 [#] 1	2.3 6	2651.6	(8^{+})	1576.2	6+		
1104 <i>1</i>	1.8 6	5935.3	(18^{+})	4831.3	16+		
1227 <i>I</i>	2.3 5	4486.7	(14^{+})	3259.8	12^{+}		

[†] From 1987Pa30. Intensities are relative to $I\gamma(544.2\gamma)=100$.

[‡] Deduced based on measured DCO ratios from 1987Pa30. DCO ratios were obtained as $R(DCO)=I\gamma(136^{\circ})/I\gamma(57^{\circ})$, with respect to beam direction, by gating on E2 transitions. Expected values are >1.0 for stretched quadrupole and <0.8 for pure stretched dipole (1987Pa30). Stretched Q transitions are assigned E2 and stretched D are assigned E1.

[#] Placement of transition in the level scheme is uncertain.

 $^{138}_{\ 62} Sm_{76}$

¹⁰⁴Pd(³⁷Cl,2npγ) 1987Pa30

