Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017

 $Q(\beta^{-})=11.5\times10^{3} II; S(n)=2.2\times10^{3} II; S(p)=11720 SY; Q(\alpha)=-4990 SY$ 2017Wa10 $\Delta S(p)=1140, \Delta Q(\alpha)=1110$ (2017Wa10).

 $S(2n)=5860\ 1060,\ S(2p)=28290\ 1140\ (syst),\ Q(\beta^-n)=7010\ 1060,\ Q(2\beta^+)=17760\ 1060\ (2017Wa10).$

First identification of ¹³⁸Sb nuclide by 1994Be24 via ²⁰⁸Pb(U,f) (See 2013Ka01).

2015Le14: Source of ¹³⁸Sb was produced by in-flight fission of ²³⁸U on a ⁹Be target at E=345 MeV/nucleon at the Radioactive Isotope Beam Factory (RIBF) at the RIKEN Nishina Center. Fragments were separated by the BigRIPS separator and identified through a zero-degree spectrometer (ZDS) based on the B ρ - Δ E-tof method. Separated and selected ions were implanted into a wide-range active-silicon-strip stopper array for beta and ion detector (WAS3ABi), consisting of five layers of 1-mm-thick double-sided silicon-strip detectors (DSSSDs), surrounded by two 2-mm-thick plastic scintillators. γ rays were detected by the EUROBALL-RIKEN HPGe cluster array (EURICA). Measured $\beta\gamma(t)$, β -decay feedings. Deduced ground state half-life, J, π . Comparisons with shell-model calculations. Energy systematics of Te isotopes.

2011Ar18: ¹³⁸Sb ions was prepared by bombardment of UC_x target with 1 GeV protons followed by selective ionization with the Resonance Ionization Laser Ion Source (RILIS) and high-resolution mass separator at ISOLDE-CERN facility. Measured delayed neutrons to deduce half-life and P_n (delayed neutron emission probability). Comparison with calculations for spherical and nonspherical shapes. The new data incorporated in nucleosynthesis calculations of the r process.

1998Do08,1994Be24: identified in ²⁰⁸Pb(²³⁸U,f), E=750 MeV/nucleon, using the FRS fragment mass separator.

Mass measurement: 2016Kn03.

Theoretical nuclear structure calculations:

2011Iz02: calculated β -delayed fission, β -transition strength functions.

2008Ga15: calculated change in decay-rate for decays to bound states and continuum.

2007Ot03: calculated proton single-particle level energies.

2017Ko24, 2007Ma09, 2005Ni02, 2003Bo06: calculated β-decay half-life.

¹³⁸Sb Levels

E(level)	J^{π}	T _{1/2}	Comments
0	(3 ⁻)	348 ms 15	 %β⁻=?; %β⁻n=72 8 (2011Ar18); %β⁻2n=? Theoretical %β⁻n=37.3, %β⁻2n=30.5 (2003Mo09). J^π: (3⁻) tentatively proposed by 2015Le14 based on strong feedings to (2⁺) and (4⁺) states in ¹³⁸Te.
			$T_{1/2}$: weighted average of 346 ms 19 from $\beta\gamma(t)$ in 2015Le14, and 350 ms 15 measured by 2011Ar18 from decay curve for delayed neutrons. Other 296 ms 35 from a preliminary analysis of

2011Ar18 from decay curve for delayed neutrons. Other 296 ms 35 from a preliminary analysis or decay curve in 2006KeZZ. Theoretical value: 597 ms (2003Mo09).