¹³⁸Nd ε decay **1981AbZV**

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017	

Parent: ¹³⁸Nd: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=5.04$ h 9; $Q(\varepsilon)=1116$ 16; $\%\varepsilon+\%\beta^+$ decay=100.0

¹³⁸Nd-T_{1/2}: From Adopted Levels of ¹³⁸Nd.

¹³⁸Nd-Q(ε): From 2017Wa10.

1981AbZV: Source of ¹³⁸Nd was produced by bombarding a 2 g metallic Gd target with a E=660 MeV proton beam from the Synchro-cyclotron at JINR. Ions were separated and selected with an electromagnetic separator and implanted into aluminum substrate or mylar foil. γ rays were detected with Ge(Li) detectors (FWHM=0.6 keV for ⁵⁷Co line, 2.2 keV for ⁶⁰Co line); conversion electrons were detected with Si(Li) detectors (FWHM=2.2 keV at 500 keV). Measured E γ , I γ , E(ce), I(ce), $\beta\gamma$ -coin. Deduced levels, J, π , γ and β branching ratios, conversion coefficients, γ -ray multipolarities. See also 1971Af05, 1974Bu03, 1974BaZU, 1987BaZC from the same group at JINR.

Others: 1966Gr15, 1970Ho28, 1971JuZU, 1980ZhZZ.

Decay scheme is from 1981AbZV.

The total average radiation energy released by ¹³⁸Nd ε decay is 1111 keV *19* (calculated by evaluator using the computer program RADLST). This value agrees well with $Q(\varepsilon)$ =1116 keV *16* (2017Wa10) and shows the completeness of the decay scheme.

¹³⁸Pr Levels

E(level) [†]	Jπ‡	$T_{1/2}^{\ddagger}$	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡
0.0 194.22 5 199.52 4 325.73 4	$ 1^+ \\ 0^+, 1^+, 2^+ \\ 0^+, 1^+, 2^+ \\ 1^+ 1^+ $	1.45 min 5	326.96 6 389.6 4 505.9 4 541.11 5	$ \begin{array}{c} 0^+, 1^+, 2^+ \\ (0, 1, 2)^+ \\ (1)^+ \\ 0^+, 1^+ \end{array} $	623.6 <i>11</i> 673.9 <i>7</i> 718.0? <i>7</i>	$(1)^+ (1)^+ (0^-, 1^-, 2^-)$

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

ε, β^+ radiations

 $\beta^+ \leq 2.5\%$, $\varepsilon/\beta^+ \geq 40$, Q(ε)<1750 keV (1974BaZU).

E(decay)	E(level)	$I\varepsilon^{\dagger\ddagger}$	Log ft	Comments
(398 [#] 16)	718.0?	0.030 12	7.7 2	ε K=0.8240 15; ε L=0.1364 11; ε M+=0.0396 4
(442 16)	673.9	0.060 18	7.5 2	ε K=0.8270 12; ε L=0.1342 9; ε M+=0.0388 3
(492 [#] 16)	623.6	0.024 9	8.0 2	εK=0.8297 9; εL=0.1322 7; εM+=0.03813 23
(575 16)	541.11	0.85 16	6.6 1	εK=0.8330 7; εL=0.1297 5; εM+=0.03730 16
(610 [#] 16)	505.9	0.14 3	7.4 1	εK=0.8341 6; εL=0.1289 5; εM+=0.03702 14
(726 16)	389.6	< 0.04	>8.1	εK=0.8370 4; εL=0.1267 3; εM+=0.03630 10
				I ε : sum of I ε to levels 389.5 and 326.96.
(789 16)	326.96	< 0.1	>7.8	εK=0.8381 4; εL=0.12585 24; εM+=0.03601 8
(790 16)	325.73	2.9 5	6.3 1	εK=0.8382 4; εL=0.12584 24; εM+=0.03601 8
(916 16)	199.52	< 0.09	>8.0	εK=0.8400 3; εL=0.12447 17; εM+=0.03555 6
(922 16)	194.22	< 0.07	>8.1	εK=0.8400 3; εL=0.12442 17; εM+=0.03553 6
(1116 16)	0.0	95.9 7	5.12 2	ε K=0.8420 2; ε L=0.1230 2; ε M+=0.03505 4

[†] From γ -ray intensity balance at each level.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

¹³⁸Nd ε decay **1981AbZV** (continued)

 $\gamma(^{138}{\rm Pr})$

I γ normalization: From the adopted I(789 γ)=2.4 4 per 100 decays of 1.45-min ¹³⁸Pr and I(γ)/I(789 γ) in Nd-Pr source in equilibrium.

E γ , I γ , α (K)exp, α (L)exp from 1981AbZV, unless otherwise noted.

I(K α_1 x ray+K α_2 x ray Pr)=2350 250; I(K β_1 ' x ray Pr)=380 40; I(K β_2 ' x ray Pr)=80 15, normalized to 100 for the 789 γ in 1.45-min ¹³⁸Pr decay (Nd-Pr source in equilibrium) (1981AbZV).

E_{γ}	$I_{\gamma}^{@c}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	$\delta^{\ddagger b}$	α^{\dagger}	Comments
62.6 4	1.2 4	389.6	(0,1,2)+	326.96	0+,1+,2+	M1+E2	0.37 9	5.8 4	$\begin{array}{l} \alpha(\mathrm{K}) = 4.22 \ 10; \ \alpha(\mathrm{L}) = 1.3 \ 3; \\ \alpha(\mathrm{M}) = 0.28 \ 7 \\ \alpha(\mathrm{N}) = 0.061 \ 15; \ \alpha(\mathrm{O}) = 0.0089 \\ 21; \ \alpha(\mathrm{P}) = 0.000313 \ 10 \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) \mathrm{exp} = 4.0 \ 18, \\ \alpha(\mathrm{L}) \mathrm{exp} = 0.64 \ 29 \end{array}$
116.3 2	3.6 4	505.9	(1)+	389.6	(0,1,2)+	M1+E2	0.22 3	0.861 14	(1981AbZV). $\alpha(K)=0.720 \ 11; \ \alpha(L)=0.111$ $4; \ \alpha(M)=0.0236 \ 9$ $\alpha(N)=0.00525 \ 19; \ \alpha(O)=0.00083 \ 3; \ \alpha(P)=5.45\times10^{-5} \ 9$ Mult.: $\alpha(K)\exp=0.82 \ 17, \ \alpha(L)\exp=0.084 \ 22$ (100141 \ 70)
126.14 5	4.6 6	325.73	1+	199.52	0+,1+,2+	M1+E2	0.87 10	0.782 19	(1981AbZV). $\alpha(K)=0.585~9; \ \alpha(L)=0.154$ 11; $\alpha(M)=0.0339~24$ $\alpha(N)=0.0074~6;$ $\alpha(O)=0.00109~7;$ $\alpha(P)=3.92\times10^{-5}~9$ Mult.: $\alpha(K)\exp=0.65~15,$ $\alpha(L)\exp=0.078~20$ (1981AbZV). Additional information 3.
127.33 ^{#d}		326.96	0+,1+,2+	199.52	0+,1+,2+	M1+E2 ^a		0.78 <i>13</i>	$\alpha(K)=0.572 \ l8; \ \alpha(L)=0.16 \ 9; \\ \alpha(M)=0.035 \ 20 \\ \alpha(N)=0.008 \ 5; \ \alpha(O)=0.0011 \\ 6; \ \alpha(P)=3.7\times10^{-5} \ 6 $
131.59 ^{#d} 132.73 5	7.3 9	325.73 326.96	1 ⁺ 0 ⁺ ,1 ⁺ ,2 ⁺	194.22 194.22	0 ⁺ ,1 ⁺ ,2 ⁺ 0 ⁺ ,1 ⁺ ,2 ⁺	M1+E2	0.33 7	0.600 12	$\alpha(K)=0.496\ 7;\ \alpha(L)=0.081\ 6;$ $\alpha(M)=0.0174\ 13$ $\alpha(N)=0.0039\ 3;$ $\alpha(O)=0.00060\ 4;$ $\alpha(P)=3.70\times10^{-5}\ 7$ Mult.: $\alpha(K)exp=0.50\ 11,$ $\alpha(L)exp=0.084\ 21$ (1981AbZV). Additional information 5.
151.77 ^{#d} 168 <i>I</i>	0.6 2	541.11 673.9	0 ⁺ ,1 ⁺ (1) ⁺	389.6 505.9	$(0,1,2)^+$ $(1)^+$	M1+E2 ^{<i>a</i>}		0.322 23	$\alpha(K)=0.252 \ 8; \ \alpha(L)=0.055$ 21; \(\alpha(M)=0.012 \ 5) \(\alpha(N)=0.0026 \ 10; \(\alpha(O)=0.00040 \ 13; \((10))=1.00040 \ 12; \(10))=1.00040 \ 12; \((10))=1.00040 \ 12;
178.5 10	1.2 4	718.0?	(0^-,1^-,2^-)	541.11	0+,1+	(E1)		0.0513 11	$\alpha(\mathbf{F}) = 1.7 \times 10^{-5}$ $\alpha(\mathbf{K}) = 0.0439 \ 10;$

Continued on next page (footnotes at end of table)

¹³⁸Nd ε decay 1981AbZV (continued) γ (¹³⁸Pr) (continued) $I_{\gamma}^{@c}$ δ^{‡b} α^{\dagger} Mult.[&] Eγ E_i(level) J_i^{π} \mathbf{E}_{f} J_{f}^{π} Comments α (L)=0.00592 *13*; $\alpha(M) = 0.00124 \ 3$ $\alpha(N)=0.000275~6;$ $\alpha(O)=4.31\times10^{-5}$ 9; $\alpha(P)=2.80\times10^{-6}$ 6 Mult.: $\alpha(K)$ exp=0.06 3 (1981AbZV). 190.3^{#d} 389.6 $(0,1,2)^+$ 199.52 0+,1+,2+ 194.21 5 $0^+, 1^+, 2^+$ 0.0 1+ 10.6 6 194.22 M1 0.202 α(K)=0.1721 25; α(L)=0.0235 4; $\alpha(M)=0.00494$ 7 $\alpha(N)=0.001105 \ 16;$ α (O)=0.0001780 25; $\alpha(P)=1.316\times 10^{-5}$ 19 Mult.: α (K)exp=0.154 22, α (L)exp=0.021 4 (1981AbZV). Additional information 1. 195.8^{#d} 389.6 $(0,1,2)^+$ 194.22 0+,1+,2+ M1+E2 199.50 5 $0^+, 1^+, 2^+$ $0.0 1^+$ 22.9 12 199.52 0.29 8 0.188 $\alpha(K)=0.1586\ 24;\ \alpha(L)=0.0230$ 8; α(M)=0.00487 18 $\alpha(N)=0.00109$ 4; $\alpha(O) = 0.000173 5;$ $\alpha(P)=1.195\times10^{-5}\ 23$ Mult.: α (K)exp=0.125 20, α (L)exp=0.021 5 (1981AbZV). Additional information 2. 214.13 6 3.0 8 541.11 $0^+, 1^+$ 326.96 0+,1+,2+ M1(+E2) 0.153 3 $\alpha(K)=0.123 9; \alpha(L)=0.023 6;$ $\alpha(M) = 0.0050 \ 13$ $\alpha(N)=0.0011$ 3; $\alpha(O)=0.00017$ 4; $\alpha(P) = 8.6 \times 10^{-6}$ 16 Mult.: $\alpha(K) \exp = 0.21$ 9 (1981AbZV). Additional information 6. $0^{+}.1^{+}$ 325.73 1+ 215.31 6 12.0 13 541.11 M1+E20.47 13 0.1516 $\alpha(K)=0.1269\ 23;\ \alpha(L)=0.0195$ 9; α(M)=0.00416 21 $\alpha(N)=0.00092$ 5; $\alpha(O)=0.000145$ 6; $\alpha(P)=9.4\times10^{-6}$ 3 Mult.: α (K)exp=0.096 22 (1981AbZV). Additional information 7. ^x233.0[#] 234 1 0.9 3 623.6 $(1)^{+}$ $389.6 \quad (0,1,2)^+$ M1+E2^{*a*} 0.117 5 $\alpha(K)=0.095$ 9; $\alpha(L)=0.017$ 3; $\alpha(M)=0.0037 8$ $\alpha(N)=0.00082$ 16; $\alpha(O)=0.000125$ 19; $\alpha(P)=6.7\times10^{-6}$ 13 $\alpha(K)=0.055 \ 8; \ \alpha(L)=0.0090 \ 8;$ 284.3 7 1.6.5 673.9 $(1)^+$ 389.6 (0,1,2)+ M1+E2 0.066 7 α(M)=0.00194 19 $\alpha(N)=0.00043 4;$

Continued on next page (footnotes at end of table)

 $^{138}_{59}$ Pr₇₉-4

				¹³⁸ Nd &	e decay	1981AbZV	(continued)	
γ (¹³⁸ Pr) (continued)									
Eγ	$I_{\gamma}^{@c}$	E_i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. ^{&}	$\delta^{\ddagger b}$	α^{\dagger}	Comments
									$\alpha(O)=6.7\times10^{-5} 4;$ $\alpha(P)=3.9\times10^{-6} 9$ Mult.: $\alpha(K)\exp=0.056 28$ (1981AbZV).
325.76 5	122 3	325.73	1+	0.0	1+	M1+E2	0.44 11	0.0487 11	$\alpha(K)=0.0413 \ I0; \\ \alpha(L)=0.00584 \ 9; \\ \alpha(M)=0.001233 \ I9 \\ \alpha(N)=0.000275 \ 4; \\ \alpha(O)=4.39\times10^{-5} \ 7; \\ \alpha(P)=3.09\times10^{-6} \ I0 \\ Mult.: \ \alpha(K)exp=0.039 \ 4, \\ \alpha(L)exp=0.0054 \ 9 \\ (1981AbZV). \\ Additional \\ information \ 4 \\ \end{tabular}$
326.9 <i>6</i> 341.65 <i>5</i>	1.0 <i>3</i> 17.2 <i>17</i>	326.96 541.11	$0^+, 1^+, 2^+$ $0^+, 1^+$	0.0 199.52	1+ 0+,1+,2+	M1+E2		0.039 6	$\alpha(K)=0.033 \ 6; \ \alpha(L)=0.00511$ 8; \(\alpha(M)=0.001089 \ 21\) \(\alpha(N)=0.000242 \ 4; \) \(\alpha(O)=3.79\times10^{-5} \ 11; \) \(\alpha(P)=2.4\times10^{-6} \ 6\) Mult.: \(\alpha(K)exp=0.034 \ 8, \) \(\alpha(L)exp=0.0072 \ 20\) \((1981AbZV).)
389.5 ^{#d} 541.0 <i>3</i>	1.7 5	718.0? 541.11	(0 ⁻ ,1 ⁻ ,2 ⁻) 0 ⁺ ,1 ⁺	326.96 0.0	0 ⁺ ,1 ⁺ ,2 ⁺ 1 ⁺	M1		0.01385	$\alpha(K)=0.01187 \ 17;$ $\alpha(L)=0.001566 \ 22;$ $\alpha(M)=0.000329 \ 5$ $\alpha(N)=7.35\times10^{-5} \ 11;$ $\alpha(O)=1.188\times10^{-5} \ 17;$ $\alpha(P)=8.93\times10^{-7} \ 13$ Mult.: $\alpha(K)\exp=0.024 \ 12$ (1981AbZV). Additional information 8.

[†] Additional information 9.

[‡] If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

[#] New transitions from 1987BaZC. Placed in level scheme by evaluator based on energy differences.

[@] From 1981AbZV, normalized to 100 for the 789 γ in 1.45-min ¹³⁸Pr decay (Nd-Pr source in equilibrium).

& From 1981AbZV based on ce data, unless otherwise noted. The same assignments were adopted in Adopted Gammas.

^{*a*} From 1987BaZC. I(ce) are normalized to α (K)exp(789 γ in Pr decay)=0.00297 (E2, theory). The same assignments were adopted in Adopted Gammas.

^b From 1987BaZC, based on L-subshell ratios. The same values are adopted in Adopted Gammas.

^c For absolute intensity per 100 decays, multiply by 0.024 4.

^d Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

 $^{138}_{59}\mathrm{Pr}_{79}$ -5

¹³⁸Nd ε decay 1981AbZV

