|                 |          | History           |                        |
|-----------------|----------|-------------------|------------------------|
| Туре            | Author   | Citation          | Literature Cutoff Date |
| Full Evaluation | Jun Chen | NDS 146, 1 (2017) | 30-Sep-2017            |

 $Q(\beta^{-}) = -3440 \ 30; \ S(n) = 8940 \ 30; \ S(p) = 2640 \ 30; \ Q(\alpha) = 1160 \ 30$  2017Wa10

 $S(2n)=19910\ 70,\ S(2p)=8180\ 30,\ Q(\varepsilon p)=972\ 29,\ Q(\beta^+)=7078\ 29\ (2017Wa10).$ 

Observation of <sup>138</sup>Sm  $\varepsilon$  decay to <sup>138</sup>Pm was reported in 1973WeZK; the first study on the decay of <sup>138</sup>Pm was done by 1973VaYZ.

Experimental works on <sup>138</sup>Pm:

1983A106, report a  $\varepsilon/\beta^+$  decay level with T<sub>1/2</sub>=10 s 2 and a Q( $\varepsilon$ )=7090 keV 100.

1983GaZT, probably a preliminary version of 1983Al06; report the 10 s isomer and assign a  $J^{\pi}=1^+$  to it. These authors also list the following  $\gamma$  ray energies: 340 keV (I $\gamma$ =100), 440 keV (I $\gamma$ =60), 540 keV (I $\gamma$ =40). The 540 keV line presumably corresponds to the 520 keV 2<sup>+</sup> to g.s.  $\gamma$  in <sup>138</sup>Nd, while the other two can not be consistently identified.

2000Be42, using a Penning Trap, observed only the 3.24 min level, indicating that the 10 s level should have been observed, but was not. Their measured mass excess is in agreement with the independent measurement of 2000Ra23.

2015Li15, 1998Pr04, 1990Be28, studied the high-spin levels of <sup>138</sup>Pm. The lowest energy state that was observed was assigned a  $J^{\pi}=5^{-}$ . Unfortunately, these works did not study the decay of this level.

Based on these findings, the 10 s level is tentatively adopted as g.s. without a spin assignment. The 3.24 min level is firmly adopted as an isomer without spin assignment. The lowest level observed in the high-spin work is assigned an unknown energy, even though it is likely to correspond to the 3.24 min level.

Mass measurements: 2000Be42, 2000Ra23, 1997Be63.

#### <sup>138</sup>Pm Levels

#### Cross Reference (XREF) Flags

 $^{138}$ Sm  $\varepsilon$  decay

 $^{115}In(^{28}Si,2p3n\gamma)$ 

A

В

|                          |                    |                  |      | C $^{116}Cd(^{27}Al,5n\gamma)$<br>D $^{124}Te(^{19}F,5n\gamma)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|--------------------|------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E(level) <sup>†</sup>    | $J^{\pi \ddagger}$ | T <sub>1/2</sub> | XREF | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0?                     | (1 <sup>+</sup> )  | 10 s 2           |      | <ul> <li>%ε+%β<sup>+</sup>=100</li> <li>E(level): this isomer was not observed by 2000Be42 and as a consequence, its existence needs further proof.</li> <li>J<sup>π</sup>: systematics of structures in neighboring even Pm; 1<sup>+</sup> also proposed in 1983GaZT.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                        | (5-)               | 2.24 min 5       | DCD  | $T_{1/2}$ : from 1983Al06.<br>$Q(\varepsilon)=7090 \ 100 \ (1983Al06).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| X                        | (5)                | 3.24 min 5       | RCD  | <ul> <li>%ε+%β' =100</li> <li>Additional information 1.</li> <li>E(level): 20 100 from observed β decay energy difference, between Q(ε)(2000Be42)=7105 19 and Q(ε)(1983Al06)=7090 100. Note that 2000Be42 did not observe the 10 s level and thus this 3.24 min level observed in 2000Be42 could also be the g.s. of <sup>138</sup>Pm. E=30 30 is suggested in 2017Au03 (NUBASE-16) based on β decay energies.</li> <li>J<sup>π</sup>: 411.0γ Q from (7<sup>-</sup>); systematics of structures in neighboring even mass Pm. But (3<sup>+</sup>) proposed in 1973VaYZ and 1981De38 is inconsistent in the <sup>138</sup>Pm ε decay scheme.</li> <li>T<sub>1/2</sub>: from 1981De38; other: 3.5 min 3 (1973VaYZ).</li> </ul> |
| 150.02+x 10              | (6 <sup>-</sup> )  |                  | BCD  | $J^{\pi}$ : 150.0 $\gamma$ D to (5 <sup>-</sup> ) and 260.8 $\gamma$ D from (7 <sup>-</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 327.45+x <sup>#</sup> 13 | (6 <sup>-</sup> )  |                  | BCD  | $J^{\pi}$ : predicted from shell-model calculations; band head of the $\pi h_{11/2} \nu 1/2[400]$ band; 177.4 $\gamma$ D+Q to (6 <sup>-</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 410.75+x <i>13</i>       | (7 <sup>-</sup> )  |                  | BCD  | $J^{\pi}$ : 173.6 $\gamma$ possible E1 from (8 <sup>+</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

## <sup>138</sup>Pm Levels (continued)

| E(level) <sup>†</sup>                       | Jπ‡                                    | T <sub>1/2</sub> | XREF       | Comments                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|---------------------------------------------|----------------------------------------|------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 584.26+x <sup>b</sup> 15                    | (8+)                                   | 21 ns 5          | BCD        | $J^{\pi}$ : proposed in 1990Be28 in <sup>116</sup> Cd( <sup>27</sup> Al,5n $\gamma$ ) based on systematics of neighbouring nuclei.                                                                                                                                                                                                                                                                       |  |  |
| (10,41, 1, 1, 1,                            | (0-)                                   |                  | DCD        | $\Gamma_{1/2}$ : from $\gamma(t)$ in 1990Be28.                                                                                                                                                                                                                                                                                                                                                           |  |  |
| $618.41 + x^{a}$ 14                         | (8)                                    |                  | BCD        | $J^{*}$ : 468.3 $\gamma$ Q to (6), band member.                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 762.89+x <sup>#</sup> 14                    | (9 <sup>-</sup> )<br>(7 <sup>-</sup> ) |                  | BCD<br>BCD | $J^{\pi}$ : 352.2 $\gamma$ D+Q to (7 <sup>-</sup> ), 435.4 $\gamma$ D to (6 <sup>-</sup> ), band member. Note: $J^{\pi}$ =8 <sup>-</sup> assigned by<br>1990Be28 in <sup>116</sup> Cd( <sup>27</sup> Al,5n $\gamma$ ) is inconsistent with 435.4 $\gamma$ D to (6 <sup>-</sup> ), and their<br>$J^{\pi}$ values of other member states in the same band differ from adopted ones by<br>one or two units. |  |  |
| 1044.67+x <sup>d</sup> 16                   | (9-)                                   |                  | BCD        | $J^{\pi}$ : 426.2 $\gamma$ D to (8 <sup>-</sup> ), 633.6 $\gamma$ Q to (7 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                   |  |  |
| 1061.52+x <sup>b</sup> 18                   | $(10^{+})$                             |                  | BCD        | $J^{\pi}$ : 356.9 $\gamma$ D to (9 <sup>+</sup> ), band member.                                                                                                                                                                                                                                                                                                                                          |  |  |
| 1088.6+x <i>3</i>                           | (7 <sup>-</sup> )                      |                  | ΒD         | $J^{\pi}$ : tentative assignment by 1998Pr04 in <sup>115</sup> In( <sup>28</sup> Si,2p3n $\gamma$ ), 938.8 $\gamma$ D to (6 <sup>-</sup> ).                                                                                                                                                                                                                                                              |  |  |
| 1104.68+x 14                                | (7 <sup>-</sup> )                      |                  | ΒD         | J <sup><math>\pi</math></sup> : tentative assignment by 1998Pr04 in <sup>115</sup> In( <sup>28</sup> Si,2p3n $\gamma$ ), 954.7 $\gamma$ D to (6 <sup>-</sup> ).                                                                                                                                                                                                                                          |  |  |
| 1164.76+x <sup>#</sup> 17                   | (9 <sup>-</sup> )                      |                  | BCD        | $J^{\pi}$ : 401.9 $\gamma$ Q to (7 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                                                          |  |  |
| $1236.75 + x^e 16$                          | (8 <sup>-</sup> )                      |                  | ΒD         |                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 1383.36+x <sup><i>a</i></sup> 17            | (10 <sup>-</sup> )                     |                  | BCD        | $J^{\pi}$ : 764.9 $\gamma$ Q to (8 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                                                          |  |  |
| $1411.12 + x^{a} 18$                        | $(11^+)$                               |                  | BCD        | $J^{\pi}$ : 706.3 $\gamma$ Q to (9 <sup>+</sup> ), 349.5 $\gamma$ D to (10 <sup>+</sup> ), band member.                                                                                                                                                                                                                                                                                                  |  |  |
| $1464.05 + x^{-1}$                          | (9)                                    |                  | вD         | $J^{*}: 22/.3\gamma$ D to (8), band member.                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 1013.91 + x 19<br>$1700.55 + x^{e} 22$      | $(10^{-})$                             |                  | ם<br>תק    | J <sup>*</sup> : tentative assignment by 1996P104 m <sup></sup> $m(-^{-}Si,2p3iry)$ .<br>$I^{\pi}$ : 236 5% D to $(9^{-})$ hand member                                                                                                                                                                                                                                                                   |  |  |
| $1700.55 + x^2 22$<br>1858 35+ $x^d 17$     | $(10^{-})$                             |                  | BCD        | $I^{\pi}$ : 230.57 D to $(0^{-})$ , band member.                                                                                                                                                                                                                                                                                                                                                         |  |  |
| $1050.55 \pm x^{\text{#}}$ 10               | (11)                                   |                  | BCD        | $I_{1}^{\pi}$ 609 As $(0, 1)$ , $+7++7$ $D$ to (10), band memories                                                                                                                                                                                                                                                                                                                                       |  |  |
| $1003.10 \pm x$ 19                          | (11)                                   |                  | BCD        | $\pi_1 = 826.7 \pm 0.10^{+1}$ $477.0 \pm 0.11^{+1}$ hand member                                                                                                                                                                                                                                                                                                                                          |  |  |
| $1888.10 + x^{e} 19$<br>2096 75+ $x^{e} 24$ | (12)<br>$(11^{-})$                     |                  | BCD<br>B D | $J : 820.7\gamma Q to (10^{-}), 477.0\gamma D to (11^{-}), band member.$                                                                                                                                                                                                                                                                                                                                 |  |  |
| $2280.34 + x^a 20$                          | $(11^{-})$ $(13^{+})$                  |                  | BCD        | $J^{\pi}$ : 869.1 $\gamma$ O to (11 <sup>+</sup> ), band member.                                                                                                                                                                                                                                                                                                                                         |  |  |
| $2367.1 + x^{d} 4$                          | $(12^{-})$                             |                  | BCD        | $J^{\pi}$ : 983.7 $\gamma$ to (10 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                                                           |  |  |
| $2459.56 \pm x^{\&} 22$                     | $(11^+)$                               |                  | BD         | $I^{\pi_1}$ band assignment. 596 4 $\gamma$ D+O to (11 <sup>-</sup> ).                                                                                                                                                                                                                                                                                                                                   |  |  |
| $2473.86 \pm x^{(0)}22$                     | $(12^{-})$                             |                  | BCD        | $I^{\pi}$ : 610.7 $\gamma$ D to (11 <sup>-</sup> ) hand member                                                                                                                                                                                                                                                                                                                                           |  |  |
| 2532.1+x <sup>e</sup> 3                     | (12 <sup>-</sup> )                     |                  | B D        | E(level), $J^{\pi}$ : from band assignment in <sup>124</sup> Te( <sup>19</sup> F,5n $\gamma$ ) (2015Li15). 1998Pr04 in <sup>115</sup> In( <sup>28</sup> Si,2p3n $\gamma$ ) consider a level at E=2496+x as the (12 <sup>-</sup> ) band member feeding the 2097+x, $J^{\pi}$ =(11 <sup>-</sup> ) level by the 398.8 $\gamma$ , which however placed differently by 2015Li15.                              |  |  |
| 2628.70+x 19                                | (12 <sup>-</sup> )                     |                  | В          |                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| $2784.3 + x^{f} 3$                          | (13-)                                  |                  | D          | $J^{\pi}$ : band assignment in <sup>124</sup> Te( <sup>19</sup> F,5n $\gamma$ ) (2015Li15), 687.5 $\gamma$ to (11 <sup>-</sup> ).                                                                                                                                                                                                                                                                        |  |  |
| $2795.77 + x^{\#} 22$                       | (13 <sup>-</sup> )                     |                  | BCD        | $J^{\pi}$ : 932.6 $\gamma$ Q to (11 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                                                         |  |  |
| 2825.58+x <sup>b</sup> 25                   | $(14^{+})$                             |                  | BCD        | $J^{\pi}$ : 938.1 $\gamma$ Q to (12 <sup>+</sup> ), 545.6 $\gamma$ D to (13 <sup>+</sup> ), band member.                                                                                                                                                                                                                                                                                                 |  |  |
| 2832.90+x <sup>d</sup> 18                   | (13 <sup>-</sup> )                     |                  | BCD        | $J^{\pi}$ : 974.5 $\gamma$ Q to (11 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                                                         |  |  |
| 2869.85+x 21                                | (13 <sup>-</sup> )                     |                  | В          | $J^{\pi}$ : tentative assignment by 1998Pr04 in <sup>115</sup> In( <sup>28</sup> Si,2p3n $\gamma$ ). 241.3 $\gamma$ to (12 <sup>-</sup> ), 1010.4 $\gamma$ to (11 <sup>-</sup> ).                                                                                                                                                                                                                        |  |  |
| 3004.46+x <sup>&amp;</sup> 24               | (13 <sup>+</sup> )                     |                  | BCD        | $J^{\pi}$ : 544.9 $\gamma$ Q to (11 <sup>+</sup> ), band member.                                                                                                                                                                                                                                                                                                                                         |  |  |
| 3050.8+x <sup>e</sup> 5                     | (13 <sup>-</sup> )                     |                  | ΒD         | $J^{\pi}$ : 518.6 $\gamma$ to (12 <sup>-</sup> ), band member; from band assignment in <sup>124</sup> Te( <sup>19</sup> F,5n $\gamma$ ) (2015Li15).                                                                                                                                                                                                                                                      |  |  |
| $3064.05 + x^d$ 19                          | (14-)                                  |                  | BCD        | $J^{\pi}$ : 231.1 $\gamma$ D to (13 <sup>+</sup> ), 195.6 $\gamma$ D+Q to (13 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                               |  |  |
| 3072.35+x <sup>(a)</sup> 24                 | (14 <sup>-</sup> )                     |                  | BCD        | $J^{\pi}$ : 598.5 $\gamma$ Q to (12 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                                                         |  |  |
| 3183.1+x <sup>f</sup> 3                     | (14 <sup>-</sup> )                     |                  | D          | $J^{\pi}$ : band assignment in <sup>124</sup> Te( <sup>19</sup> F,5n $\gamma$ ) (2015Li15).                                                                                                                                                                                                                                                                                                              |  |  |
| $3276.0 + x^{a}$ 3                          | (15 <sup>+</sup> )                     |                  | BCD        | $J^{\pi}$ : 995.2 $\gamma$ Q to (13 <sup>+</sup> ), band member.                                                                                                                                                                                                                                                                                                                                         |  |  |
| $3305.35 + x^d 21$                          | (15 <sup>-</sup> )                     |                  | BCD        | $J^{\pi}$ : 241.3 $\gamma$ to (14 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                                                           |  |  |
| 3593.35+x <sup>d</sup> 24                   | (16 <sup>-</sup> )                     |                  | BCD        | $J^{\pi}$ : 288.0 $\gamma$ D to (15 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                                                         |  |  |
| 3648.0+x <sup>&amp;</sup> 11                | (15 <sup>+</sup> )                     |                  | D          | E(level), $J^{\pi}$ : band assignment in <sup>124</sup> Te( <sup>19</sup> F, 5n $\gamma$ ) (2015Li15). 1998Pr04 in                                                                                                                                                                                                                                                                                       |  |  |

#### <sup>138</sup>Pm Levels (continued)

| E(level) <sup>†</sup>          | $J^{\pi \ddagger}$ | XREF | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|--------------------------------|--------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                |                    |      | <sup>115</sup> In( <sup>28</sup> Si,2p3n $\gamma$ ) assign this (15 <sup>+</sup> ) band member at a 3688+x level, feeding the 3004+x level by a 684.0 $\gamma$ which is not observed by 2015Li15. The evaluator has adopted this band assignment by 2015Li15.                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 3651.0+x <sup>f</sup> 8        | (15 <sup>-</sup> ) | D    | $J^{\pi}$ : band assignment in <sup>124</sup> Te( <sup>19</sup> F,5n $\gamma$ ) (2015Li15).                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 3771.8+x <sup>@</sup> 3        | (16 <sup>-</sup> ) | BCD  | $J^{\pi}$ : 699.4 $\gamma$ to (14 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 3852.0+x <sup>b</sup> 4        | (16 <sup>+</sup> ) | BCD  | $J^{\pi}$ : 1025.9 $\gamma$ Q to (14 <sup>+</sup> ), band member.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 3975.9+x <sup>d</sup> 3        | (17 <sup>-</sup> ) | BCD  | $J^{\pi}$ : 382.6 $\gamma$ D to (16 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 4196.0+x <sup>f</sup> 13       | (16 <sup>-</sup> ) | D    | $J^{\pi}$ : band assignment in <sup>124</sup> Te( <sup>19</sup> F,5n $\gamma$ ) (2015Li15).                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 4338.0+x <sup><i>a</i></sup> 8 | $(17^{+})$         | BCD  | $J^{\pi}$ : 485 $\gamma$ to (16 <sup>+</sup> ), 1063 $\gamma$ to (15 <sup>+</sup> ), band member.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 4374.8+x <sup>d</sup> 3        | (18 <sup>-</sup> ) | BCD  | $J^{\pi}$ : 398.8 $\gamma$ to (17 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 4406.7+x <sup>c</sup> 11       | (18 <sup>+</sup> ) | D    | <ul> <li>E(level): 1998Pr04 in <sup>115</sup>In(<sup>28</sup>Si,2p3nγ) assign this (18<sup>+</sup>) band head at a 4579+x level, feeding the 3852+x level by a 726.6γ and fed by a 554.6γ from the 5133 level. 2015Li15 in <sup>124</sup>Te(<sup>19</sup>F,5nγ) have placed the 554.6γ+726.6γ cascade in reversed order, making a level at 4407+x. The evaluator has adopted this band assignment by 2015Li15.</li> <li>J<sup>π</sup>: 554.7γ Q to (16<sup>+</sup>), band assignment in <sup>124</sup>Te(<sup>19</sup>F,5nγ) (2015Li15).</li> </ul> |  |  |  |  |
| 4536.6+x <sup>&amp;</sup> 11   | (17 <sup>+</sup> ) | D    | E(level), $J^{\pi}$ : band assignment in <sup>124</sup> Te( <sup>19</sup> F, 5n $\gamma$ ) (2015Li15). 1998Pr04 in <sup>115</sup> In( <sup>28</sup> Si, 2p3n $\gamma$ ) assign this (17 <sup>+</sup> ) band member at a 4538+x level, feeding a level at E=3688+x by a 850 $\gamma$ which is not observed by 2015Li15. The evaluator has adopted this band assignment by 2015Li15.                                                                                                                                                                  |  |  |  |  |
| 4623.5+x <sup>@</sup> 5        | (18 <sup>-</sup> ) | BCD  | $J^{\pi}$ : 851.7 $\gamma$ Q to (16 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 4869.3+x <sup>d</sup> 3        | (19 <sup>-</sup> ) | ΒD   | $J^{\pi}$ : 494.5 $\gamma$ to (18 <sup>-</sup> ), band member.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 4922.0+x <sup>b</sup> 11       | $(18^{+})$         | В    | $J^{\pi}$ : band assignment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 5133.3+x <sup>c</sup> 11       | $(20^{+})$         | ΒD   | E(level): See comments for 4407+x level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                |                    |      | $J^{\pi}$ : 726.6 $\gamma$ to (18 <sup>+</sup> ), band member. Other: (19 <sup>+</sup> ) assigned by 1998Pr04 in <sup>115</sup> In( <sup>28</sup> Si,2p3n $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| $5386.1 + x^d 5$               | $(20^{-})$         | В    | $J^{\pi}$ : band assignment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 5456.4+x? <sup>a</sup>         | (19 <sup>+</sup> ) | В    | $J^{\pi}$ : band assignment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 5695.5+x <sup>@</sup> 11       | $(20^{-})$         | ΒD   | $J^{\pi}$ : band assignment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 5995.0+x <sup>c</sup> 11       | $(22^{+})$         | ΒD   | $J^{\pi}$ : 861.7 $\gamma$ Q to (20 <sup>+</sup> ), band member. Other: (20 <sup>+</sup> ) assigned by 1998Pr04 in <sup>115</sup> In( <sup>28</sup> Si,2p3n $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 6864.1+x <sup>c</sup> 11       |                    | С    | $J^{\pi}$ : (21 <sup>+</sup> ) assigned by 1998Pr04 in <sup>115</sup> In( <sup>28</sup> Si,2p3n $\gamma$ ) based on the assignments of $J^{\pi}$ =(20 <sup>+</sup> ) and (19 <sup>+</sup> ) for 5995+x and 5133+x levels, respectively.                                                                                                                                                                                                                                                                                                             |  |  |  |  |

<sup>†</sup> From a least-squares fit to  $\gamma$ -ray energies. For fitting purpose only, uncertainties of 451.0 $\gamma$ , 545.6 $\gamma$ , and 995.2 $\gamma$  are increased to 0.2 keV due to poor fit.

<sup>‡</sup> All assignments except for isomers are based on the assignment of  $J^{\pi}=8^+$  to the bandhead of the yrast band together with deduced  $\gamma$ -ray multipolarities and band structures.

<sup>#</sup> Band(A):  $\pi h_{11/2} \nu 1/2[400]$ . This band bifurcates into two bands above (11<sup>-</sup>).

<sup>@</sup> Band(B): Band based on (12<sup>-</sup>). Favored doubly-decoupled band. Bifurcation of band based on (7<sup>-</sup>). Possible configuration= $\pi h_{11/2}^3 \otimes \nu 1/2$ [660]; 1/2[600] from  $\nu i_{13/2}$  orbital.

& Band(C): Band based on (11<sup>+</sup>). Favored doubly-decoupled band. Bifurcation of band based on (7<sup>-</sup>). Possible configuration= $\pi h_{11/2}^3 \otimes v h_{9/2} 1/2[530]$ .

<sup>*a*</sup> Band(D): Configuration= $\pi h_{11/2} \otimes \nu h_{11/2} \alpha = 1$ .

<sup>*b*</sup> Band(d): Configuration= $\pi h_{11/2} \otimes \nu h_{11/2} \alpha = 0$ .

<sup>c</sup> Band(E): Band based on 18<sup>+</sup>.

<sup>*d*</sup> Band(F): *π*5/2[413]⊗*ν*9/2[514].

<sup>*e*</sup> Band(G):  $\pi 3/2[411] \otimes \nu h_{11/2}$ .

<sup>f</sup> Band(H): Band based on (13<sup>-</sup>).

# $\gamma(^{138}\text{Pm})$

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | ${\rm E_{\gamma}}^{\dagger}$     | $I_{\gamma}^{\dagger}$ | $\mathrm{E}_{f}$                 | $\mathbf{J}_f^{\pi}$   | Mult. <sup>#</sup> | Comments                                                                                                                                                                                                                                                           |
|------------------------|----------------------|----------------------------------|------------------------|----------------------------------|------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 150.02+x               | (6 <sup>-</sup> )    | 150.0 <i>1</i>                   | 100                    | Х                                | (5 <sup>-</sup> )      | D                  | Mult.: most likely M1 character.                                                                                                                                                                                                                                   |
| 327.45+x               | (6 <sup>-</sup> )    | 177.4 1                          | 100                    | 150.02+x                         | (6 <sup>-</sup> )      | D+Q                |                                                                                                                                                                                                                                                                    |
| 410.75+x               | ('/-)                | 260.8 <i>I</i><br>411.0 <i>4</i> | 100 4                  | 150.02+x                         | $(6^{-})$<br>$(5^{-})$ | D                  | $\mathbf{E}$ : unweighted average of 410.6.1 from                                                                                                                                                                                                                  |
|                        |                      | 411.0 4                          | <55                    | А                                | (5)                    | Q                  | $^{115}$ In( <sup>28</sup> Si,2p3n $\gamma$ ) and 411.3 2 from $^{116}$ Cd( <sup>27</sup> Al,5n $\gamma$ ).                                                                                                                                                        |
| 584.26+x               | (8+)                 | 173.6 <i>1</i>                   | 100                    | 410.75+x                         | (7-)                   | D                  | Mult.: 1990Be28 in <sup>116</sup> Cd( <sup>27</sup> Al,5nγ) assign E1 from intensity arguments.                                                                                                                                                                    |
| 618.41+x               | (8 <sup>-</sup> )    | 468.3 1                          | 100                    | 150.02+x                         | (6 <sup>-</sup> )      | Q                  | $E_{\gamma}$ : weighted average of 468.2 <i>1</i> from<br><sup>115</sup> In( <sup>28</sup> Si,2p3n $\gamma$ ) and 468.5 2 from<br><sup>116</sup> Cd( <sup>27</sup> Al,5n $\gamma$ ).                                                                               |
| 704.77+x               | (9 <sup>+</sup> )    | 120.6 1                          | 100                    | 584.26+x                         | (8 <sup>+</sup> )      | D                  |                                                                                                                                                                                                                                                                    |
| 762.89+x               | (7-)                 | 178.3 <sup>&amp;</sup> 2         |                        | 584.26+x                         | (8+)                   |                    | $E_{\gamma}$ : observed in <sup>116</sup> Cd( <sup>27</sup> Al,5nγ) (1990Be28) only.<br>I <sub>γ</sub> : Iγ(178.3γ)/I(352.2γ)=(100 5)/(68 5) (1990Be28).                                                                                                           |
|                        |                      | 352.2 1                          | 100 <sup>‡</sup> 10    | 410.75+x                         | (7 <sup>-</sup> )      | D+Q                |                                                                                                                                                                                                                                                                    |
|                        |                      | 435.4 1                          | 92 <sup>‡</sup> 7      | 327.45+x                         | (6 <sup>-</sup> )      | D                  |                                                                                                                                                                                                                                                                    |
| 1044.67+x              | (9 <sup>-</sup> )    | 426.2 1                          | 100 7                  | 618.41+x                         | (8 <sup>-</sup> )      | D                  |                                                                                                                                                                                                                                                                    |
| 10(1.52)               | $(10\pm)$            | 633.6 4                          | 75 9                   | 410.75+x                         | $(7^{-})$              | Q                  |                                                                                                                                                                                                                                                                    |
| 1061.52 + x            | $(10^{-1})$          | 356.9 1                          | 100                    | /04.//+x                         | $(9^{+})$              | D                  |                                                                                                                                                                                                                                                                    |
| 1088.0+x<br>1104.68+x  | $(7^{-})$            | 950.04                           | 100                    | $150.02 \pm x$<br>$150.02 \pm x$ | $(0^{-})$              | D                  |                                                                                                                                                                                                                                                                    |
| 1164.76 + x            | $(9^{-})$            | 401.9 1                          | 100 4                  | 762.89 + x                       | $(0^{-})$              | 0                  |                                                                                                                                                                                                                                                                    |
|                        | (- )                 | 459.6 4                          | 7.2 13                 | 704.77+x                         | (9 <sup>+</sup> )      | ×.                 |                                                                                                                                                                                                                                                                    |
|                        |                      | 580.6                            | 13.0 14                | 584.26+x                         | (8+)                   | D                  | $E_{\gamma}, I_{\gamma}, Mult.$ : from <sup>124</sup> Te( <sup>19</sup> F, 5n $\gamma$ ) (2015Li15) only.                                                                                                                                                          |
| 1236.75+x              | (8 <sup>-</sup> )    | 132.1 <i>I</i>                   | 100 <sup>‡</sup> 19    | 1104.68+x                        | (7 <sup>-</sup> )      | D                  |                                                                                                                                                                                                                                                                    |
|                        |                      | 148.4 <i>4</i>                   | 65 <sup>‡</sup> 13     | 1088.6+x                         | $(7^{-})$              | D                  |                                                                                                                                                                                                                                                                    |
|                        |                      | 618.3 4                          | 51 <sup>‡</sup> 6      | 618.41+x                         | (8 <sup>-</sup> )      | D+O                |                                                                                                                                                                                                                                                                    |
|                        |                      | 825.2.4                          | 65 6                   | 410.75 + x                       | $(7^{-})$              | D+0                |                                                                                                                                                                                                                                                                    |
| 1383.36+x              | $(10^{-})$           | 764.9 1                          | 100                    | 618.41 + x                       | $(8^{-})$              | 0                  |                                                                                                                                                                                                                                                                    |
| 1411.12+x              | $(11^+)$             | 349.5 1                          | 100 5                  | 1061.52+x                        | $(10^{+})$             | Ď                  |                                                                                                                                                                                                                                                                    |
|                        |                      | 706.3 1                          | 85 5                   | 704.77+x                         | (9+)                   | Q                  | $I_{\gamma}$ : weighted average of 92 5 from <sup>115</sup> In( <sup>28</sup> Si,2p3nγ),<br>and 81 4 from <sup>124</sup> Te( <sup>19</sup> F,5nγ). Other: 65 5 from<br><sup>116</sup> Cd( <sup>27</sup> Al,5nγ),                                                   |
| 1464.05+x              | (9 <sup>-</sup> )    | 227.3 1                          | 100                    | 1236.75+x                        | (8 <sup>-</sup> )      | D                  |                                                                                                                                                                                                                                                                    |
| 1615.91+x              | (10 <sup>-</sup> )   | 554.6 1                          | 100                    | 1061.52+x                        | (10 <sup>+</sup> )     |                    | $E_{\gamma}$ : doubly placed in <sup>115</sup> In( <sup>28</sup> Si,2p3nγ) (1998Pr04);<br>placed differently in <sup>116</sup> Cd( <sup>27</sup> Al,5nγ) (1990Be28)<br>and <sup>124</sup> Te( <sup>19</sup> F,5nγ) (2015Li15).                                     |
| 1700.55+x              | $(10^{-})$           | 236.5 1                          | 100                    | 1464.05+x                        | (9 <sup>-</sup> )      | D                  |                                                                                                                                                                                                                                                                    |
| 1858.35+x              | $(11^{-})$           | 474.4 4                          | 34 4                   | 1383.36+x                        | (10 <sup>-</sup> )     | D                  | $I_{\gamma}$ : Other: 59 5 in <sup>124</sup> Te( <sup>19</sup> F,5n $\gamma$ ) (2015Li15).                                                                                                                                                                         |
|                        |                      | 813.6 <i>1</i>                   | 100 8                  | 1044.67+x                        | (9 <sup>-</sup> )      | Q                  |                                                                                                                                                                                                                                                                    |
| 1863.16+x              | $(11^{-})$           | 452 <i>1</i>                     | 15+ 3                  | 1411.12+x                        | $(11^{+})$             |                    |                                                                                                                                                                                                                                                                    |
|                        |                      | 698.4 <i>1</i>                   | 100 <sup>‡</sup> 14    | 1164.76+x                        | (9 <sup>-</sup> )      | Q                  |                                                                                                                                                                                                                                                                    |
|                        |                      | 800.8 10                         | 127 2                  | 1061.52+x                        | $(10^{+})$             |                    |                                                                                                                                                                                                                                                                    |
| 1888.16+x              | $(12^{+})$           | 477.0 <i>1</i>                   | 100 <sup>‡</sup> 6     | 1411.12+x                        | $(11^{+})$             | D                  |                                                                                                                                                                                                                                                                    |
|                        |                      | 826.7 1                          | 73 <sup>‡</sup> 9      | 1061.52+x                        | (10 <sup>+</sup> )     | Q                  | I <sub><math>\gamma</math></sub> : weighted average of 67 7 from <sup>116</sup> Cd( <sup>27</sup> Al,5n $\gamma$ ),<br>and 87 <i>11</i> from <sup>124</sup> Te( <sup>19</sup> F,5n $\gamma$ ). Other: <77 from <sup>115</sup> In( <sup>28</sup> Si 2p3n $\gamma$ ) |
| 2096.75+x              | (11 <sup>-</sup> )   | 396.2 1                          | 100                    | 1700.55+x                        | (10 <sup>-</sup> )     | D                  |                                                                                                                                                                                                                                                                    |
| 2280.34+x              | (13 <sup>+</sup> )   | 392.0 4                          | 100 <sup>‡</sup> 8     | 1888.16+x                        | (12 <sup>+</sup> )     |                    | E <sub><math>\gamma</math></sub> : unweighted average of 391.6 <i>1</i> from<br><sup>115</sup> In( <sup>28</sup> Si,2p3n $\gamma$ ) and 392.4 2 from<br><sup>116</sup> Cd( <sup>27</sup> Al,5n $\gamma$ ).                                                         |

# $\gamma$ <sup>(138</sup>Pm) (continued)</sup>

| $E_i$ (level)             | $\mathbf{J}_i^{\pi}$     | $E_{\gamma}^{\dagger}$            | $I_{\gamma}^{\dagger}$    | $\mathbf{E}_{f}$            | $\mathbf{J}_f^\pi$                       | Mult. <sup>#</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|--------------------------|-----------------------------------|---------------------------|-----------------------------|------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                          |                                   |                           |                             |                                          |                    | I <sub><math>\gamma</math></sub> : Others: 100 8 in <sup>116</sup> Cd( <sup>27</sup> Al,5n $\gamma$ ), 26 3 in <sup>115</sup> In( <sup>28</sup> Si,2p3n $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2280.34+x                 | (13 <sup>+</sup> )       | 869.1 <i>1</i>                    | 87 <sup>‡</sup> 6         | 1411.12+x                   | (11+)                                    | Q                  | E <sub>y</sub> : also placed from a level at E=6864+x with $J^{\pi}$ =(21 <sup>+</sup> ) in <sup>115</sup> In( <sup>28</sup> Si,2p3ny).<br>I <sub>y</sub> : weighted average of 92 8 from <sup>116</sup> Cd( <sup>27</sup> Al,5ny), and 84 6 from <sup>124</sup> Te( <sup>19</sup> F,5ny). Other: <100 from <sup>115</sup> In( <sup>28</sup> Si,2p3ny).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2367.1+x                  | (12 <sup>-</sup> )       | 983.7 4                           | 100                       | 1383.36+x                   | (10 <sup>-</sup> )                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2459.56+x                 | $(11^{+})$               | 596.4 1                           | 100                       | 1863.16+x                   | (11 <sup>-</sup> )                       | D+Q                | 124 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2473.86+x                 | $(12^{-})$               | 586.1                             | 12.3+ 14                  | 1888.16+x                   | $(12^{+})$                               |                    | $E_{\gamma}, I_{\gamma}$ : from <sup>124</sup> Te( <sup>19</sup> F, 5n $\gamma$ ) only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                          | 610.7 <i>1</i>                    | 100+ 6                    | 1863.16+x                   | (11 <sup>-</sup> )                       | D                  | $E_{\gamma}$ : weighted average of 610.6 <i>I</i> from<br>$^{115}In(^{28}Si,2p3n\gamma)$ and 610.9 2 from<br>$^{116}Cd(^{27}Al,5n\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2532.1+x                  | (12 <sup>-</sup> )       | 435.4 1                           | 100                       | 2096.75+x                   | $(11^{-})$                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2628.70+x                 | (12 <sup>-</sup> )       | 1013.0 <i>I</i>                   | 100                       | 1615.91+x                   | (10 <sup>-</sup> )                       |                    | $E_{\gamma}$ : observed in <sup>115</sup> In( <sup>28</sup> Si,2p3n $\gamma$ ) only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2784.3+x                  | (13 <sup>-</sup> )       | 687.5                             | 100                       | 2096.75+x                   | (11 <sup>-</sup> )                       |                    | $E_{\gamma}$ : from <sup>124</sup> Te( <sup>19</sup> F,5n $\gamma$ ) only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2795.77+x                 | (13 <sup>-</sup> )       | 337 <sup><b>°</b></sup> 1         | <14                       | 2459.56+x                   | $(11^+)$                                 | 0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2825 58±x                 | $(14^{+})$               | 932.0 I<br>545.6 I                | 33 4                      | 1803.10+x<br>2280 34+x      | (11)<br>$(13^+)$                         | Q<br>D             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2023.30+x                 | (14)                     | 938.1 <i>5</i>                    | 100 7                     | 1888.16+x                   | $(13^{+})$ $(12^{+})$                    | Q                  | $E_{\gamma}$ : unweighted average of 937.6 <i>l</i> from <sup>115</sup> In( <sup>28</sup> Si,2p3nγ) and 938.6 <i>2</i> from <sup>116</sup> Cd( <sup>27</sup> Al.5nγ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2832.90+x                 | (13 <sup>-</sup> )       | 465.5 <i>10</i><br>974.5 <i>1</i> | <15<br>100 <i>12</i>      | 2367.1+x<br>1858.35+x       | (12 <sup>-</sup> )<br>(11 <sup>-</sup> ) | Q                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2869.85+x                 | (13 <sup>-</sup> )       | 241.3 <sup>@</sup> 1<br>1010.4 4  | <100 <sup>@</sup><br>>17  | 2628.70+x<br>1858.35+x      | (12 <sup>-</sup> )<br>(11 <sup>-</sup> ) |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3004.46+x                 | $(13^+)$                 | 544.9 1                           | 100                       | 2459.56+x                   | $(11^+)$                                 | Q                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3050.8 + x<br>3064.05 + x | (13)<br>$(14^{-})$       | 518.0 <i>4</i><br>195.6 <i>4</i>  | >23                       | 2332.1+x<br>2869 85+x       | (12)<br>$(13^{-})$                       | D+O                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 500 1.05 TX               | (11)                     | 231.1 1                           | >63                       | 2832.90+x<br>2628.70+x      | $(13^{-})$<br>$(13^{-})$<br>$(12^{-})$   | D                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           |                          | 606 <sup>&amp;</sup> 1            | <100                      | $2020.70 \pm x$<br>2367 1±x | $(12^{-})$                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           |                          | 782.2 4                           | >16                       | 2307.1+x<br>2280.34+x       | $(12^{-})$<br>$(13^{+})$                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3072.35+x                 | (14-)                    | 276 1                             | <7                        | 2795.77+x                   | (13 <sup>-</sup> )                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           |                          | 598.5 <i>1</i>                    | 100 7                     | 2473.86+x                   | (12 <sup>-</sup> )                       | Q                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3183.1+x                  | (14 <sup>-</sup> )       | 398.8 <i>1</i>                    | 100 <sup>‡</sup> 14       | 2784.3+x                    | (13 <sup>-</sup> )                       |                    | $E_{\gamma}$ : energy value is from 1998Pr04 in<br><sup>115</sup> In( <sup>28</sup> Si,2p3nγ), placement is from<br><sup>124</sup> Te( <sup>19</sup> F,5nγ) by 2015Li15. 1998Pr04 placed<br>this γ ray from a level at E=2532+x, which is<br>not adopted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           |                          | 651.0 <i>I</i>                    | 43 <sup>‡</sup> <i>14</i> | 2532.1+x                    | (12 <sup>-</sup> )                       |                    | $E_{\gamma}$ : energy value is from 1998Pr04 in<br><sup>115</sup> In( <sup>28</sup> Si,2p3nγ), placement is from<br><sup>124</sup> Te( <sup>19</sup> F,5nγ) by 2015Li15. 1998Pr04 placed<br>this γ ray from a level at E=3702+x, which is<br>not adopted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3276.0+x                  | (15 <sup>+</sup> )       | 451.0 <sup>@</sup> 1<br>995.2 1   | <100 <sup>@</sup><br>>97  | 2825.58+x<br>2280.34+x      | (14 <sup>+</sup> )<br>(13 <sup>+</sup> ) | Q                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3305.35+x                 | (15 <sup>-</sup> )       | 241.3 <sup>@</sup> 1              | 100 <sup>@</sup>          | 3064.05+x                   | (14 <sup>-</sup> )                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3593.35+x                 | (16 <sup>-</sup> )       | 288.0 1                           | 100                       | 3305.35+x                   | (15 <sup>-</sup> )                       | D                  | R (124m 19mm) (19mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3648.0+x<br>3651.0+x      | $(15^{+})$<br>$(15^{-})$ | 643.5<br>468 1                    | 100<br>100-20             | 3004.46+x<br>3183 1+x       | $(13^{+})$<br>$(14^{-})$                 |                    | $E_{\gamma}$ : from <sup>12+</sup> Te( <sup>12</sup> F,5n $\gamma$ ) (2015L115) only.<br>$E_{\alpha}$ L <sub>z</sub> : from <sup>124</sup> Te( <sup>19</sup> F 5n $\gamma$ ) (2015L i15) only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2021.01A                  | (10)                     | 100.1                             | 100 20                    | 0100.11A                    | (** )                                    |                    | $\Sigma_{\gamma}, \Sigma_{\gamma}, $ |

### $\gamma(^{138}Pm)$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$           | $I_{\gamma}^{\dagger}$        | $E_f$                | $\mathbf{J}_f^{\pi}$                     | Mult. <sup>#</sup> | Comments                                                                                                                                                                                                                                                  |
|------------------------|----------------------|----------------------------------|-------------------------------|----------------------|------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3651.0+x               | $(15^{-})$           | 599.9                            | <100                          | 3050.8+x             | $(13^{-})$                               |                    | $E_{\alpha} J_{\alpha}$ ; from <sup>124</sup> Te( <sup>19</sup> E5n $\gamma$ ) (2015Li15) only.                                                                                                                                                           |
| 3771.8+x               | (16 <sup>-</sup> )   | 699.4 1                          | 100                           | 3072.35+x            | $(14^{-})$                               |                    | _,,,,                                                                                                                                                                                                                                                     |
| 3852.0+x               | (16 <sup>+</sup> )   | 576.3 4                          | 43 <sup>‡</sup> 7             | 3276.0+x             | (15 <sup>+</sup> )                       |                    |                                                                                                                                                                                                                                                           |
|                        |                      | 1025.9 4                         | $100^{\ddagger} 2$            | 2825.58+x            | $(14^{+})$                               | 0                  |                                                                                                                                                                                                                                                           |
| 3975.9+x               | $(17^{-})$           | 382.6 1                          | 100                           | 3593.35+x            | (16 <sup>-</sup> )                       | Ď                  |                                                                                                                                                                                                                                                           |
| 4196.0+x               | (16 <sup>-</sup> )   | 545.0                            | 100                           | 3651.0+x             | $(15^{-})$                               |                    | $E_{\gamma}$ : from <sup>124</sup> Te( <sup>19</sup> F,5n $\gamma$ ) (2015Li15) only.                                                                                                                                                                     |
| 4338.0+x               | (17 <sup>+</sup> )   | 485 1                            |                               | 3852.0+x             | (16 <sup>+</sup> )                       |                    | E <sub><math>\gamma</math></sub> : weighted average of 486 <i>I</i> from<br><sup>115</sup> In( <sup>28</sup> Si,2p3n $\gamma$ ) and 484 <i>I</i> from<br><sup>116</sup> Cd( <sup>27</sup> Al,5n $\gamma$ ).                                               |
|                        |                      | 1063 <i>1</i>                    |                               | 3276.0+x             | $(15^{+})$                               |                    |                                                                                                                                                                                                                                                           |
| 4374.8+x               | $(18^{-})$           | 398.8 <i>1</i>                   | 100                           | 3975.9+x             | $(17^{-})$                               |                    |                                                                                                                                                                                                                                                           |
| 4406.7+x               | $(18^{+})$           | 554.7                            | 100                           | 3852.0+x             | $(16^{+})$                               | Q                  | $E_{\gamma}$ ,Mult.: from <sup>124</sup> Te( <sup>19</sup> F,5n $\gamma$ ) (2015Li15).                                                                                                                                                                    |
| 4536.6+x               | $(17^{+})$           | 764.8                            | 100                           | 3771.8+x             | (16 <sup>-</sup> )                       |                    | $E_{\gamma}$ : from <sup>124</sup> Te( <sup>19</sup> F,5n $\gamma$ ) (2015Li15).                                                                                                                                                                          |
| 4623.5+x               | (18-)                | 851.7 4                          | 100                           | 3771.8+x             | (16 <sup>-</sup> )                       | Q                  |                                                                                                                                                                                                                                                           |
| 4869.3+x               | (19 <sup>-</sup> )   | 494.5 <i>1</i><br>895 <i>1</i>   | 100 <i>16</i><br>32 <i>13</i> | 4374.8+x<br>3975.9+x | (18 <sup>-</sup> )<br>(17 <sup>-</sup> ) |                    |                                                                                                                                                                                                                                                           |
| 4922.0+x               | (18+)                | 584 <sup>&amp;</sup> 1<br>1070 1 |                               | 4338.0+x<br>3852.0+x | $(17^+)$<br>$(16^+)$                     |                    |                                                                                                                                                                                                                                                           |
| 5133.3+x               | (20+)                | 726.6 1                          | 100                           | 4406.7+x             | (18+)                                    | Q                  | $E_{\gamma}$ : energy value is from 1998Pr04 in<br><sup>115</sup> In( <sup>28</sup> Si,2p3nγ), placement is from<br><sup>124</sup> Te( <sup>19</sup> F,5nγ) by 2015Li15. 1998Pr04 placed this<br>γ ray from a level at E=4579+x, which is not<br>adopted. |
| 5386.1+x               | $(20^{-})$           | 516.8 4                          | 96 11                         | 4869.3+x             | (19 <sup>-</sup> )                       |                    | utopicu.                                                                                                                                                                                                                                                  |
|                        | . ,                  | 1013.0 <sup>&amp;</sup> 4        | 100 30                        | 4374.8+x             | (18 <sup>-</sup> )                       |                    |                                                                                                                                                                                                                                                           |
| 5456.4+x?              | $(19^{+})$           | 534 <sup>&amp;</sup> 1           | 100                           | 4922.0+x             | $(18^{+})$                               |                    |                                                                                                                                                                                                                                                           |
|                        |                      | 1118 <sup>&amp;</sup> 1          | 100                           | 4338.0+x             | $(17^{+})$                               |                    |                                                                                                                                                                                                                                                           |
| 5695.5+x               | $(20^{-})$           | 1072 <i>1</i>                    | 100                           | 4623.5+x             | (18 <sup>-</sup> )                       |                    | $E_{\gamma}$ : other: 1075.0 from <sup>124</sup> Te( <sup>19</sup> F,5n $\gamma$ ).                                                                                                                                                                       |
| 5995.0+x               | (22+)                | 861.7 1                          | 100                           | 5133.3+x             | (20+)                                    | Q                  | Mult.: from ${}^{124}\text{Te}({}^{19}\text{F},5n\gamma)$ (2015Li15), but Mult=D from DCO ratio in ${}^{115}\text{In}({}^{28}\text{Si},2p3n\gamma)$ (1998Pr04) is inconsistent                                                                            |
| 6864.1+x               |                      | 869.1 <i>1</i>                   | 100                           | 5995.0+x             | (22 <sup>+</sup> )                       |                    | inconsistent.                                                                                                                                                                                                                                             |

<sup>†</sup> From 1998Pr04 in  ${}^{115}$ In( ${}^{28}$ Si,2p3n $\gamma$ ), unless otherwise noted. <sup>‡</sup> From  ${}^{124}$ Te( ${}^{19}$ F,5n $\gamma$ ) (2015Li15).

<sup>#</sup> Deduced based on measured DCO ratios in  $^{115}In(^{28}Si,2p3n\gamma)$  (1998Pr04) and in  $^{124}Te(^{19}F,5n\gamma)$  (2015Li15).

<sup>@</sup> Multiply placed with undivided intensity.

& Placement of transition in the level scheme is uncertain.

#### Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given γ Decay (Uncertain) - ► \_ \_ \_ 4 869, 100 6864.1+x 4 861,> Q100 5995.0+x $(22^{+})$ - 001 - 10<sup>25</sup> 100 $(20^{-})$ 5695.5+x + 1013.0 100 | 1118 100 534 100 1 3/68 96 (19+) <u>5456.4+x</u> + 28.6 0100 -(20-) 5386.1+x $(20^+)$ 5133.3+x | <sup>89</sup>5 32 | <sup>49</sup>5 32 | <sup>49</sup>5 100 | 584 0201 $(18^{+})$ 4922.0+x + 851,> 010 (19<sup>-</sup>) 4869.3+x ŝ, 0,00 $(18^{-})$ 4623.5+x ~8 (17<sup>+</sup>) Ş 4536.6+x 55 (18+) I. 4406.7+x $(18^{-})$ 6 8 Ý 4374.8+x 1 -8 ¥ $(17^{+})$ 4338.0+x 5450 + 382,6 D | 00 $(16^{-})$ 4196.0+x 1 970 - 100 - 1 \$3 $(17^{-})$ 3975.9+x ŝ 9 Ş $(16^{+})$ 3852.0+x ඉ -8 $\frac{(16^-)}{(15^-)}$ 8 3771.8+x 0 3651.0+x 3648.0+x 3593.35+x $(15^+)$ 1-241.3 1000 (16<sup>-</sup>) (15<sup>-</sup>) 3305.35+x (15<sup>+</sup>) 3276.0+x ¥ $(14^{-})$ 3183.1+x 3072.35+x $(14^{-})$ $(14^{-})$ 3064.05+x (13<sup>-</sup>) 3050.8+x (13<sup>+</sup>) 3004.46+x (14+) 2825.58+x (1+) 0.0 10 s 2

<sup>138</sup><sub>61</sub>Pm<sub>77</sub>

7

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$  Decay (Uncertain)



 $^{138}_{61} Pm_{77}$ 

#### Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $\gamma$  Decay (Uncertain)



#### Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given



<sup>138</sup><sub>61</sub>Pm<sub>77</sub>



<sup>138</sup><sub>61</sub>Pm<sub>77</sub>



<sup>138</sup><sub>61</sub>Pm<sub>77</sub>