		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017

Parent: ¹³⁸Xe: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=14.14 \text{ min } 7$; $Q(\beta^-)=2915 \ 10$; $\%\beta^-$ decay=100.0

 138 Xe-T_{1/2}: From Adopted Levels of 138 Xe.

¹³⁸Xe-Q(β^{-}): From 2017Wa10.

1974Ca02,1975ScZZ: source of ¹³⁸Xe was produced from fission of ²³⁵U induced by neutron flux from the Ames Laboratory research reactor. γ rays were detected with a pair of Ge(Li) detectors, a NaI(Tl) crystal, a Ge(Li) planar low-energy photon spectrometer and a Si(Li) detector; β particles were detected with a well-type plastic scintillation detector. Measured E γ , I γ , E β , $\beta\gamma$ -coin, $\gamma\gamma$ -coin. Deduced levels, J, π , β -decay branching ratios, log *ft* values, configurations. Comparisons with available data and shell-model calculations. Observed about 100 γ rays that belong to ¹³⁸Cs. Values of γ -ray intensities from 1975ScZZ supersede those from 1974Ca02. 1974Ca02 supersedes 1972CaYY.

1972Mo33: source of ¹³⁸Xe was produced from fission of ²³⁵U. γ and x rays were detected with Ge(Li) and Si(Li) detectors; β particles and conversion electrons were detected with a β detector. Measured E γ , I γ , $\beta\gamma$ -coin, $\gamma\gamma$ -coin, E β , I β , E(ce), I(ce). Deduced levels, J, π , β -decay branching ratios, log *ft*. Observed 62 γ rays for ¹³⁸Cs.

1973Ac01: source of ¹³⁸Xe was produced from fission of ²³⁵U induced by thermal neutrons from the Buenos Aires isotope separator on-line facility. *γ* rays were detected with a Si(Li) detector (low energy *γ* and x rays) and Ge(Li) detectors (medium and high energy *γ*); *β* particles and conversion electrons were detected with a solid-state detector. Measured Eγ, Iγ, Eβ, E(ce), I(ce), βγ-coin, γγ-coin. Deduced levels, J, π, conversion coefficients, γ-ray multipolarities, β-decay branching ratios, log *ft*. Observed 55 *γ* rays for ¹³⁸Cs. 1974Ac02 re-determined the intensities for part of *γ* rays in 1973Ac01 using a new efficiency calibration for Ge(Li) detectors.

2013Xi08: Sources was homogeneous sources of ¹³⁸Xe-¹³⁸Cs. γ rays were detected with a HPGe detector. Measured E γ , I γ . Deduced ¹³⁸Xe activity, absolute γ -ray emission probabilities in ¹³⁸Xe β^- decay.

Other: 1969Na01.

The total average radiation energy released by 138 Xe β^- decay is 2967 keV *146* (calculated by evaluator using the computer program RADLST). This value agrees well with Q(β^-)=2915 keV *10* (2017Wa10) and shows the completeness of the decay scheme.

Level scheme is taken from 1974Ca02.

¹³⁸Cs Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3-	32.5 min 2	T _{1/2} : from Adopted Levels.
10.86 3	2-		-/- *
15.750 21	$(1)^{-}$		
258.405 19	1-,2-		
335.37 8			
403.72 15			
412.263 19	1-		
450.33 5	$0^{-}, 1^{-}$		
540.99 <i>4</i>			
555.98? 9	1-,2-		
691.16 <i>11</i>	1-,2-		
912.48 4	$(1^{-},2)$		
952.09 6	$(0^{-},1)$		
1109.59 5	$(0^{-},1)$		
1157.39 6	(1- 0)		
1160.93 /	(1,2)		
1205.25 10	(1,2)		
13/2.14/ 18			
1400.08 11			
1550 57 12			
1557.57 15			

$^{138}\mathrm{Xe}\,\beta^-$ decay (14.14 min) 1974Ca02,1975ScZZ (continued)

¹³⁸Cs Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
1794.07 <i>12</i> 2022.22 <i>16</i>	$(0^{-},1)$ $(0^{-},1)$	2026.73 <i>5</i> 2263.13 <i>7</i>	$\frac{1^{+}}{1^{+}}$	2337.65 7 2491.01 <i>14</i> 2508.43? <i>14</i>	1^+ 1^+ 1^+

[†] From a least-squares fit to γ -ray energies. [‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-1+}$	Log <i>ft</i>	Comments
(407 10)	2508.43?	0.25 2	5.72 5	av E β =120.7 34
(424 10)	2491.01	0.49 4	5.48 5	av E β =126.6 35
(577 10)	2337.65	3.31 14	5.11 4	av $E\beta = 180.7 \ 37$
(652 10)	2263.13	10.3 4	4.80 3	av E β =208.2 38
(888 10)	2026.73	35.3 13	4.74 <i>3</i>	av E β =299.5 40
(893 10)	2022.22	0.30 <i>3</i>	6.82 5	av E β =301.3 40
(1121 10)	1794.07	0.25 3	7.26 6	av E β =394.2 42
(1377 10)	1537.92	0.04 3	8.4 4	av E β =502.4 43
(1543 10)	1372.14?	0.17 3	8.0 1	av E β =574.1 44
(1710 10)	1205.25	0.21 4	8.0 1	av E β =647.4 45
(1805 10)	1109.59	0.08 7	8.6 4	av E β =689.8 45
(1963 10)	952.09	0.30 4	8.12 6	av E β =760.2 45
(2224 10)	691.16	0.06 3	9.0 2	av E β =878.0 46
(2359 10)	555.98?	0.05 2	9.2 2	av E β =939.5 46
(2465 10)	450.33	21.7 9	6.66 2	av E β =987.8 46
(2503 10)	412.263	15.0 8	6.85 <i>3</i>	av E β =1005.2 46
(2580 10)	335.37	< 0.04	>9.5	av E β =1040.5 46
(2657 10)	258.405	5.6 11	7.4 1	av $E\beta = 1075.9 \ 46$
(2899 10)	15.750	<11	>7.2	av E β =1187.9 47
(2904 10)	10.86	<8	$>8.7^{1u}$	av E β =1178.1 46

[†] From I(γ +ce) intensity balance at each level, with conversion coefficients calculated using the BrIcc program. [‡] Absolute intensity per 100 decays.

 $\gamma(^{138}Cs)$

I γ normalization: 0.0349 *11* deduced from measured absolute γ -ray emission probabilities in 2013Xi08: I(258.4 γ)=34.9 *10*, I(434.6 γ)=22.2 *6* and I(1768.3 γ)=18.8 *5*, versus corresponding relative intensities in this dataset; 0.0325 *16* from absolute I γ (258.4 γ)=32.5 *15* in 1972Mo33. The adopted value 0.0341 *11* is the weighted average of these two values. The absolute I γ (258.4 γ) in 1972Mo33 was deduced based on I(258.4 γ)/I(1436 γ in ¹³⁸Cs decay) in equilibrium, with absolute I γ (1436 γ) obtained using data of ¹³⁸Cs decay in 1971Ca21.

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α^{\dagger}	$I_{(\gamma+ce)}^{@}$	Comments
4.85 5	5.9 8	15.750	(1)-	10.86	2-	M1	202 7	1.20×10 ³ 15	ce(M)/(γ+ce)=0.802 18 ce(N)/(γ+ce)=0.169 8; ce(O)/(γ+ce)=0.0234 12; ce(P)/(γ+ce)=0.00113 6 α (M)=163 6 α (N)=34.3 12; α (O)=4.74 17; α (P)=0.229 8 E _γ : from intensity balance at 10.9 and 15.8 levels. The combined β feeding to 10.9 and 15.8 level is 7.1% 26 from intensity balances. I _γ : deduced from I(γ+ce) and α (total). Mult : from α (M1)(α (M2)>11 (1072Mo33)
10.85 5 68.3 2 137.20 20	20.2 9 1.5 5 2.2 11	10.86 403.72 540.99	2-	0.0 335.37 403.72	3-	M1	89.7 18	1836 74	while. In the cell M1/yee(M2)×11 (1972/M033). ce(L)/(γ+ce)=0.788 10; ce(M)/(γ+ce)=0.162 5 ce(N)/(γ+ce)=0.0341 10; ce(O)/(γ+ce)=0.00472 13; ce(P)/(γ+ce)=0.000229 7 α (L)=71.5 14; α (M)=14.7 3 α (N)=3.10 7; α (O)=0.428 9; α (P)=0.0207 4 E _γ : from 1972M033. I(γ+ce): from γ+ce intensity imbalance at ground state assuming no g.s. β feeding. The total γ+ce feeding to g.s. from levels above 10.86 keV is 37.4% 15 with total relative I(γ+ce)=1096 22, leaving the rest 62.6% 15 feeding to be accounted for by γ+ce intensity of this transition. I _γ : deduced from I(γ+ce) and α (total). Mult.: from L1:L2:L3=100:7 2:1.5 10 (1972M033) and α (L)=150 70 (1973Ac01) based on X(L)/γ. (authors' value in 1973Ac01 is obtained using ω (L)=0.143 from 1970Ma01 (Appendix III). Additional information 1. E _γ : from 1972M033.
153.858 <i>3</i>	189 4	412.263	1-	258.405	1-,2-	M1,E2	0.34 8		$\alpha(K)=0.27 4; \alpha(L)=0.06 3; \alpha(M)=0.012 6$ $\alpha(N)=0.0025 12; \alpha(O)=0.00031 13; \alpha(P)=9.16\times10^{-6} 18$ $E_{\gamma}: \text{ from } 1979\text{Bo26.}$ Mult : $\alpha(K)=n=0.29 3 (1973Ac01) 0.31 10 (1972Mo33)$
197		1109.59	$(0^{-},1)$	912.48	(1-,2)				(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

 $^{138}_{55}\mathrm{Cs}_{83}$ -3

				¹³⁸ Xe /	^{3–} decay (14.14 min) 1974Ca	2,1975ScZZ (continued)
						$\gamma(^{138}$	³ Cs) (continue	ed)
E_{γ}^{\ddagger}	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	α^{\dagger}	Comments
242.56 5	111 2	258.405	1-,2-	15.750	(1) ⁻	M1,E2	0.082 5	$\alpha(K)=0.0684 \ I8; \ \alpha(L)=0.0112 \ 25; \ \alpha(M)=0.0023 \ 6$ $\alpha(N)=0.00048 \ I1; \ \alpha(O)=6.4\times10^{-5} \ I2; \ \alpha(P)=2.46\times10^{-6} \ I7$ Mult : $\alpha(K)=0.062 \ I4 \ (1973Ac01)$
258.411 20	1000 20	258.405	1-,2-	0.0	3-	E2	0.0706	$\alpha(K)=0.0570 \ 8; \ \alpha(L)=0.01077 \ 15; \ \alpha(M)=0.00226 \ 4$ $\alpha(N)=0.000467 \ 7; \ \alpha(O)=5.99\times10^{-5} \ 9; \ \alpha(P)=1.89\times10^{-6} \ 3$ $E_{\gamma}: \ from \ 1979Bo26.$ $I_{\gamma}: \ 2013Xi08 \ measured absolute emission probability=34.9 \ 10, \ 1972Mo33$ report $32.5 \ 15.$ Mult.: $\alpha(K)\exp=0.056 \ 5 \ (1973Ac01), \ 0.058 \ 20 \ (1972Mo33).$
282.51 6 325.3 3 *329 4 5	13.6 <i>4</i> 0.74 25 0.49 24	540.99 335.37		258.405 10.86	1 ⁻ ,2 ⁻ 2 ⁻			
335 28 9	343	335 37		0.0	3-			
371.44 5	15.9 8	912.48	$(1^{-},2)$	540.99	5			
396.513 <i>10</i>	200 4	412.263	1-	15.750	(1)-	M1,E2	0.0200 17	$\alpha(K)=0.0170 \ 17; \ \alpha(L)=0.00241 \ 4; \ \alpha(M)=0.000496 \ 10$ $\alpha(N)=0.0001042 \ 16; \ \alpha(O)=1.42\times10^{-5} \ 4; \ \alpha(P)=6.3\times10^{-7} \ 10$ $E_{\gamma}: \ \text{from } 1979Bo26.$ Mult : $\alpha(K)=0.0163 \ (1973Ac01)$
401.36 5	69 <i>3</i>	412.263	1-	10.86	2-	M1	0.0210	$\alpha(K)=0.0181 \ 3; \ \alpha(L)=0.00232 \ 4; \ \alpha(M)=0.000474 \ 7 \ \alpha(N)=0.0001004 \ 14; \ \alpha(O)=1.403\times10^{-5} \ 20; \ \alpha(P)=7.02\times10^{-7} \ 10 \ Mult.: \ \alpha(K)exp=0.037 \ 8 \ (1973Ac01).$
403		403.72		0.0	3-			
412.8 7	2 1	412.263	1-	0.0	3-			E_{γ} : observed by 1973Ac01, difficult to detect due to ¹³⁸ Cs contaminant, this g.s. feeding γ-ray helps to define $J^{\pi}(412)=1^{-1}$ and M(401)=M1.
434.562 <i>41</i>	645 13	450.33	0-,1-	15.750	(1)-	M1,E2	0.0156 16	$\alpha(K)=0.0133 \ 16; \ \alpha(L)=0.00185 \ 6; \ \alpha(M)=0.000381 \ 9$ $\alpha(N)=8.00\times10^{-5} \ 23; \ \alpha(O)=1.09\times10^{-5} \ 6; \ \alpha(P)=5.0\times10^{-7} \ 8$ $E_{\gamma}: \ from \ 1979Bo26.$ $I_{\gamma}: \ 2013Xi08 \ measured \ absolute \ emission \ probability=22.2 \ 6.$ Mult.: $\alpha(K)exp=0.015 \ 2 \ (1973Ac01).$
500.22 6	11.5 4	912.48	$(1^{-},2)$	412.263	1-			
530.07 7	8.0 4	540.99	(0 - 1)	10.86	2-			
534.0 0	0.4/19	2022.22	(0, 1)	1488.88				
540.8.6	5.75 074	2020.75	1	1400.00	3-			
555 95 9	374	555 987	$1^{-}2^{-}$	0.0	3-			
568.53 6	9.7 5	1109.59	$(0^{-},1)$	540.99	5			
^x 579.68 14	2.4 4							
586.0 4	0.60 22	1537.92		952.09	$(0^{-},1)$			
588.84 8	3.9 3	1794.07	$(0^{-},1)$	1205.25	$(1^{-}, 2^{-})$			
619.7 5	0.74	1160.93	$(1^{-},2)$	540.99	(1 - 2)			
04/.2 3	0.5 3	1559.57	(1-2)	912.48	(1,2) $1-2^{-}$			
675.37 <i>15</i>	4.0 <i>4</i> 2.3 <i>4</i>	6912.48 691.16	(1,2) $1^-,2^-$	238.405 15.750	$(1)^{-}$			

4

 $^{138}_{55}\mathrm{Cs}_{83}\text{-}4$

L

$\gamma(^{138}Cs)$ (continued)

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger@}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
680.24 19	1.7 4	691.16	$1^{-},2^{-}$	10.86	2-
691.5 4	1.0 4	691.16	$1^{-}, 2^{-}$	0.0	3-
693.53 16	2.8 4	952.09	$(0^{-},1)$	258.405	$1^{-}, 2^{-}$
697.6 4	0.7 3	1109.59	$(0^{-},1)$	412.263	1-
703.58 17	1.8 <i>3</i>	2263.13	1+	1559.57	
^x 733.9 4	1.0 3				
746		1157.39		412.263	1-
755.0 6	0.8 4	1205.25	$(1^{-},2^{-})$	450.33	$0^{-}, 1^{-}$
774.21 15	2.1 3	1109.59	$(0^{-},1)$	335.37	
778.10 19	1.4 <i>3</i>	2337.65	1^{+}	1559.57	
792.9 4	0.7 3	1205.25	$(1^{-}, 2^{-})$	412.263	1-
799.6 6	0.5 3	2337.65	1+	1537.92	
816.06 18	2.3 4	1372.14?		555.98?	$1^{-}, 2^{-}$
848.7 <i>3</i>	1.4 4	2337.65	1+	1488.88	
851.30 17	2.2 4	1109.59	$(0^{-},1)$	258.405	$1^{-},2^{-}$
865.82 7	9.4 6	2026.73	1+	1160.93	$(1^{-},2)$
869		1205.25	$(1^{-}, 2^{-})$	335.37	
869.35 6	19.7 <i>11</i>	2026.73	1+	1157.39	
896.87 12	4.2 4	912.48	$(1^{-},2)$	15.750	$(1)^{-}$
902.3 <i>3</i>	1.4 4	1160.93	$(1^{-},2)$	258.405	$1^{-},2^{-}$
912.51 7	10.4 6	912.48	$(1^{-},2)$	0.0	3-
917.13 6	29.2 12	2026.73	1+	1109.59	$(0^{-},1)$
936.36 11	4.3 4	952.09	$(0^{-},1)$	15.750	$(1)^{-}$
941.25 8	7.3 5	952.09	$(0^{-},1)$	10.86	2-
946.63 20	2.0 4	1205.25	$(1^-, 2^-)$	258.405	1-,2-
953.1 5	0.9 4	2491.01	1+	1537.92	
996.8 3	2.0 5	1537.92		540.99	1 -
10/6.38 22	2.8 5	1488.88	(0-1)	412.263	1-
1093.87 9	13.0 8	1109.59	(0, 1)	15.750	(1)
1098.77 11	6.8 5	1109.59	(0, 1)	10.86	2
1102.24 17	3.4 4	2263.13	1+	1160.93	(1,2)
1114.29 10	46.8 22	2026.73	1'	912.48	(1,2)
1141.64 9	10.3 9	1157.39	(1-2)	15.750	(1)
1145.44 18	4.20	1160.93	(1, 2)	15./50	(1)
1155.0 5	1.0.5	2203.13	(1 - 2)	1109.39	(0, 1)
1100.90 18	3.14	1100.93	(1, 2)	0.0	3 (1)=
1189.34 21	2.04	1205.25	(1,2)	10.750	(1)
1194.94 20	2.04	1203.23	(1, 2)	10.80	∠ 2-
1204.3 4 x1218 7 5	1.14 125	1203.23	(1,2)	0.0	3
1210./ J	1.23	2227 65	1+	1100 50	(0^{-1})
1220.3 4	2.07	2357.03	1 1+	052 00	(0, 1) (0-1)
1311.07 24	2.75	2203.13 1372 149	1	952.09 15 750	$(0, 1)^{-}$
1550.0 4	1.0 J	13/2.14!		13.730	(1)

S

¹³⁸Xe $β^-$ decay (14.14 min) 1974Ca02,1975ScZZ (continued)

$\gamma(^{138}Cs)$ (continued)

E _γ ‡	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Comments
1361.9 6	1.1 5	1372.14?		10.86 2-	
1381.4 3	2.2 5	1794.07	$(0^{-}.1)$	412.263 1-	
1385.5 <i>3</i>	2.4 5	2337.65	1+	952.09 (0-,1)	
1473.2 <i>3</i>	2.2 4	1488.88		15.750 (1)	
1548.9 <i>4</i>	2.4 6	1559.57		10.86 2-	
1571.84 <i>16</i>	8.4 8	2022.22	$(0^{-},1)$	450.33 0-,1-	
1578.1 5	1.6 6	2491.01	1+	912.48 (1-,2)	
1614.57 18	7.5 8	2026.73	1^{+}	412.263 1-	
1646.5 <i>3</i>	2.1 4	2337.65	1^{+}	691.16 1 ⁻ ,2 ⁻	
1768.26 13	531 <i>11</i>	2026.73	1^{+}	258.405 1-,2-	I_{γ} : 2013Xi08 measured absolute emission probability=18.8 5.
1783.4 6	1.2 5	1794.07	$(0^{-},1)$	10.86 2-	
1799.4 6	1.1 4	2491.01	1+	691.16 1-,2-	
1812.54 18	5.7 6	2263.13	1^{+}	450.33 0-,1-	
1850.86 <i>13</i>	45.2 15	2263.13	1+	412.263 1-	
1887.3 <i>3</i>	2.2 4	2337.65	1+	450.33 0-,1-	
1925.36 14	17.9 <i>10</i>	2337.65	1+	412.263 1-	
2004.75 14	170 4	2263.13	1+	258.405 1-,2-	
2015.82 14	389 8	2026.73	1+	10.86 2-	
2041.2 5	1.0 3	2491.01	1+	450.33 0-,1-	
2079.17 14	45.8 14	2337.65	1+	258.405 1-,2-	
2252.26 14	72.6 21	2263.13	1+	10.86 2-	
^x 2266.8 5	1.2 4				
2321.90 16	19.7 9	2337.65	1+	15.750 (1)-	
2326.9 <i>3</i>	1.8 <i>3</i>	2337.65	1^{+}	10.86 2-	
2475.26 16	9.9 5	2491.01	1^{+}	15.750 (1)-	
2492.61 24	1.7 2	2508.43?	1^{+}	15.750 (1)-	
2497.56 17	5.5 4	2508.43?	1^{+}	10.86 2-	

[†] Additional information 2.

[‡] Quoted values of E_{γ} are from 1974Ca02 and values of I_{γ} are from 1975ScZZ, unless otherwise noted. Data are also available in 1972Mo33 and 1973Ac01 that agree well with quoted values but less precise and complete. Quoted values of I_{γ} are relative intensities normalized to I_{γ}(258.31 γ)=1000.

[#] From $\alpha(K)\exp data \text{ of } 1973Ac01 \text{ (except for } 10.85\gamma) \text{ normalized to } \alpha(K)(E2)=0.00074 \text{ for the } 1436\gamma \text{ in } {}^{138}\text{Cs }\beta^- \text{ decay.}$ The same values are adopted in Adopted Gammas.

[@] For absolute intensity per 100 decays, multiply by 0.0341 11.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

Decay Scheme

Decay Scheme (continued)

¹³⁸₅₅Cs₈₃

9