¹³⁸Pr ε decay (1.45 min) 1974Bu03

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017	

Parent: ¹³⁸Pr: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=1.45 \text{ min } 5$; $Q(\varepsilon)=4437 \ 10$; $\%\varepsilon+\%\beta^+$ decay=100.0

¹³⁸Pr-J^{π}, T_{1/2}: From Adopted Levels of ¹³⁸Pr.

¹³⁸Pr-Q(ε): From 2017Wa10.

1974Bu03: Source of ¹³⁸Pr was prepared at JINR. Ions were separated and selected with an electromagnetic separator and implanted into aluminum foil. γ rays were detected with Ge(Li) detectors (FWHM=0.7 keV at E γ =40 keV, 2.3 and 2.9 keV at E γ =1 MeV); conversion electrons were detected with a β -ray spectrometer incorporating Si(Li) detectors (FWHM=2.5-3.0 keV at K788.7 line of ¹³⁸Pr). Measured E γ , I γ , E(ce), I(ce), $\beta\gamma$ -coin. Deduced levels, J, π , γ and β branching ratios, conversion coefficients, γ -ray multipolarities. See also 1971Af05 from the same group.

1971Ju01: Source of ¹³⁸Pr was prepared by the (p,n) reaction on enriched ¹³⁸Ce target in the form of cerium oxide or cerium chloride, bombarded with E=10 MeV protons. γ rays were detected with a Ge(Li) detector (FWHM=5 keV at E γ = 1 MeV). Measured E γ , I γ . Deduced levels.

1970Ho28: ¹³⁸Pr source was prepared by (p,p3n) reaction with 99.999% pure praseodymium dioxide target bombarded with 48-MeV protons from the McGill University Synchrocyclotron. γ rays were detected with a Ge(Li) detector. Measured E γ , I γ . Deduced levels.

Others: 1965Ba45, 1966Gr15, 1971Af01.

Additional information 1.

The total average radiation energy released by ¹³⁸Pr ε decay is 4442 keV 20 (calculated by evaluator using the computer program RADLST). This value agrees well with Q(ε)=4437 keV 10 (2017Wa10) and shows the completeness of the decay scheme. The decay scheme is that of 1974Bu03.

¹³⁸Ce Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡
0.0 788.69 8	0^+ 2 ⁺	1.98 ps 4	2136.5 <i>10</i> 2236.51 <i>15</i>	4 ⁺ 2 ⁺	56.8 fs 35	2642.3 <i>3</i> 2903.16 <i>21</i>	2^+ (1,2 ⁺)	66 fs 32
1476.88 <i>11</i> 1510.45 <i>17</i>	0^+ 2^+	0.834 ps 20	2339.80 <i>13</i> 2470.96 <i>15</i>	0^+ (1,2 ⁺)	109 fs 6	3177.4? 7		

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

ε, β^+ radiations

End-point energy E β +=3415 *10* (1971Af05). Other: 3440 *40* (1966Gr15). $\beta^+ \le 2.5\%$, $\varepsilon/\beta^+ \ge 40$, Q(ε)<1750 keV (1974BaZU).

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(1260 10)	3177.4?		0.009 5	6.91 25	0.009 5	εK=0.8445; εL=0.12106 5; εM+=0.03427 2
(1534 10)	2903.16	0.00029 7	0.053 13	6.31 11	0.053 13	av Eβ=239.8 44; εK=0.8413 4; εL=0.11942 8; εM+=0.03375 3
(1795 10)	2642.3	0.00086 23	0.033 9	6.65 12	0.034 9	av Eβ=353.9 44; εK=0.8255 10; εL=0.11639 17; εM+=0.03287 5
(1966 10)	2470.96	0.0047 10	0.088 19	6.31 10	0.093 20	av Eβ=429.0 44; εK=0.8048 15; εL=0.11309 23; εM+=0.03192 7
(2097 10)	2339.80	0.034 7	0.41 8	5.70 9	0.44 9	av Eβ=486.7 44; εK=0.7827 19; εL=0.1098 3; εM+=0.03097 8
(2200 10)	2236.51	0.022 4	0.20 4	6.06 8	0.22 4	av E β =532.3 45; ε K=0.7616 22; ε L=0.1066 4;

			¹³⁸ P	$\mathbf{r} \varepsilon \mathbf{decay} (1$.45 min) 19	074Bu03 (continued)				
ϵ, β^+ radiations (continued)										
E(decay)	E(level)	Iβ ⁺ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments				
						εM+=0.03008 10				
(2301 10)	2136.5	0.00015 9	0.011 7	9.9 ² <i>u</i> 3	0.011 7	av Eβ=615.7 45; εK=0.8272 3; εL=0.1242 1;				
						<i>ε</i> M+=0.03540 <i>4</i>				
(2927 10)	1510.45	0.059 14	0.11 3	6.56 11	0.17 4	av E β =857.1 46; ε K=0.552 4; ε L=0.0767 5; ε M+=0.02160 13				
(2960 10)	1476.88	0.32 5	0.55 10	5.87 8	0.87 15	av E β =872.3 46; ε K=0.541 4; ε L=0.0752 5; ε M+=0.02118 13				
(3648 10)	788.69	0.52 9	0.36 7	6.24 8	0.88 16	av Eβ=1186.6 46; εK=0.3468 24; εL=0.0480 4; εM+=0.01350 10				
4437 10	0.0	74.0 4	23.2 3	4.606 16	97.2 5	av E β =1552.4 47; ε K=0.2030 14; ε L=0.02797 19; ε M+=0.00787 6				

[†] From γ +ce intensity balance at each level. [‡] Absolute intensity per 100 decays.

E(decay): from 1971Af05. $I\beta^+$: Other: I(3415β⁺)=74% 15 from I(ce 1477γ)/I(3415β⁺)=0.00035 5 (1966Gr15).

58 58
ĉ
08
ப்

$\gamma(^{138}\text{Ce})$

Iγ normalization: From I(ce 1477γ)/I(3415β⁺)=0.00035 5 (1966Gr15), I(ce(K) 789γ)/I(ce 1477γ)=0.277 17 (1971Af05), $ε/β^+$ (3415β⁺)=0.314 (from Log *ft* program), α(K)(789γ)=0.00291 (E2 theory, from BrIcc program) and $ΣI(γ+ce \text{ to } g.s.)+I(3415β^+)(1+ε/β^+)=100$. α(K)exp from 1971Af05.

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f .	\mathbf{J}_{f}^{π}	Mult. ^{&}	δ	α^{\dagger}	$I_{(\gamma+ce)}^{a}$	Comments
*581.0 [#] 5 688.2 1	2.2 5 34.2 <i>17</i>	1476.88	0+	788.69 2	2+	E2		0.00473		Additional information 2. $\alpha(K)=0.00400 \ 6; \ \alpha(L)=0.000576 \ 8; \ \alpha(M)=0.0001211 \ 17$ $\alpha(N)=2.67\times10^{-5} \ 4; \ \alpha(O)=4.24\times10^{-6} \ 6; \ \alpha(D)=2.87\times10^{-7} \ 4$
722.3 3	3.2 4	1510.45	2+	788.69 2	2+	M1		0.00629		Additional information 9. Mult.: $\alpha(K) \exp=0.0045 \ 8 \ (1971Af05).$ $\alpha(K) = 0.00541 \ 8; \ \alpha(L) = 0.000700 \ 10;$ $\alpha(M) = 0.0001458 \ 21$ $\alpha(N) = 3.24 \times 10^{-5} \ 5; \ \alpha(O) = 5.27 \times 10^{-6} \ 8;$ $\alpha(P) = 4.08 \times 10^{-7} \ 6$
^x 755.0 [#] 6	0.6 2									Additional information 11. Additional information 3.
^x 772.0 [#] 6 788.7 1	0.50 <i>25</i> 100	788.69	2+	0.0 (0+	E2		0.00342		α (K)=0.00291 4; α (L)=0.000407 6; α (M)=8.52×10 ⁻⁵ 12 α (N)=1.88×10 ⁻⁵ 3; α (O)=3.01×10 ⁻⁶ 5; α (P)=2.10×10 ⁻⁷ 3
^x 1081.9 4 ^x 1092.1 7	1.8 <i>3</i> 0.45 25									Additional information 8. E_{γ} : E(γ) (1971Af05). Additional information 4.
$x_{1172.8}^{x} 9$	$0.25 I5 \approx 1.4^{\textcircled{0}}$									
1347.8 10	0.45 25	2136.5	4+	788.69	2+	E2		1.12×10 ⁻³		α (K)=0.000937 <i>14</i> ; α (L)=0.0001213 <i>17</i> ; α (M)=2.53×10 ⁻⁵ <i>4</i> α (N)=5 59×10 ⁻⁶ 8: α (O)=9.05×10 ⁻⁷ <i>13</i> :
×1070 0 6										$\alpha(P) = 6.82 \times 10^{-8} \ 10; \ \alpha(IPF) = 3.17 \times 10^{-5} \ 5$
$^{x}1358.96$ 1426.97 $^{x}1430.82$	1.5 3 0.50 25 3.9 5 $2 0^{@} 4$	2903.16	(1,2 ⁺)	1476.88 (0+					Additional information 5.
1432.6 5 3	2.0° 4 5.4 7	2236.51	2+	788.69	2+	M1+E2	0.18 +5-4	1.30×10^{-3}		α (K)=0.001069 <i>16</i> ; α (L)=0.0001354 <i>20</i> ; α (M)=2.81×10 ⁻⁵ <i>5</i>

ω

13						138 Pr ε d	³⁸ Pr ε decay (1.45 min) 1974Bu03 (continued)						
γ ⁽¹³⁸ Ce) (continued)													
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	α^{\dagger}	$I_{(\gamma+ce)}^{a}$	Comments				
1476.9 2		1476.88	0+	0.0	0+	E0		1.05 7	$\begin{aligned} \alpha(N) &= 6.25 \times 10^{-6} \ 10; \ \alpha(O) = 1.018 \times 10^{-6} \ 15; \ \alpha(P) = 7.98 \times 10^{-8} \ 12; \\ \alpha(IPF) &= 6.11 \times 10^{-5} \ 9 \\ \text{Additional information 13.} \\ \text{Additional information 10.} \\ \text{I(ce } 1477\gamma)/\text{I(}3415\beta^{+}) = 0.00035 \ 5 \ (1966\text{Gr15}), \ \text{K/(L+M)} = 4.9 \ 8 \\ (1971\text{Af05}). \\ \text{I}_{(\gamma+ce)}: \text{ from I(ce)/I(ce(K) \ 789\gamma)} = 3.61 \ 22 \ (1971\text{Af05}), \ \text{I(}789\gamma) = 100, \end{aligned}$				
1510.2 2	3.6 5	1510.45	2+	0.0	0+	E2	9.54×10 ⁻⁴		$ \begin{array}{l} \alpha(\mathbf{K})(789\gamma) = 0.00291. \\ \alpha(\mathbf{K}) = 0.000752 \ 11; \ \alpha(\mathbf{L}) = 9.63 \times 10^{-5} \ 14; \ \alpha(\mathbf{M}) = 2.00 \times 10^{-5} \ 3 \\ \alpha(\mathbf{N}) = 4.44 \times 10^{-6} \ 7; \ \alpha(\mathbf{O}) = 7.19 \times 10^{-7} \ 10; \ \alpha(\mathbf{P}) = 5.47 \times 10^{-8} \ 8; \\ \alpha(\mathbf{IPF}) = 8.09 \times 10^{-5} \ 12 \end{array} $				
1551.1 <i>1</i>	17.5 <i>19</i>	2339.80	0+	788.69	2+	E2	9.25×10 ⁻⁴		Additional information 12. $\alpha(K)=0.000714 \ 10; \ \alpha(L)=9.13\times10^{-5} \ 13; \ \alpha(M)=1.90\times10^{-5} \ 3$ $\alpha(N)=4.21\times10^{-6} \ 6; \ \alpha(O)=6.82\times10^{-7} \ 10; \ \alpha(P)=5.20\times10^{-8} \ 8; \ \alpha(IPF)=9.56\times10^{-5} \ 14$ Additional information 15. Mult: $\alpha(K)$ append 00010.4 (1071 \ 405)				
^x 1619.9.9	0.40 15								Mult.: $\alpha(\mathbf{K}) \exp[=0.00010 \ 4 \ (1971 \ \text{A105})]$.				
^x 1631.1 7	0.8 2												
1682.1 2	1.5 3	2470.96	$(1,2^{+})$	788.69	2^{+}								
^x 1804.2 3	1.4 3								Additional information 6.				
1853.7 <i>3</i>	1.0 2	2642.3	2+	788.69	2^{+}								
*1893.2 2	2.2.4	2002 16	(1.0+)	700 (0	2+				Additional information 7.				
2114.4 2	1.0.3	2903.16	$(1,2^{+})$	/88.69	2.				Additional information 18.				
*2223.30 9	0.15 8	2226 51	2+	0.0	0+	50	0.07 10-4						
2236.5 2	3.3 5	2236.51	2*	0.0	0+	E2	8.2/×10 ⁻⁴		$\alpha(K)=0.000365 5; \alpha(L)=4.54\times10^{-5} 7; \alpha(M)=9.41\times10^{-6} 14$ $\alpha(N)=2.09\times10^{-6} 3; \alpha(O)=3.39\times10^{-7} 5; \alpha(P)=2.64\times10^{-8} 4;$ $\alpha(IPF)=0.000407 6$ Additional information 14.				
^x 2298.1 9	0.25 15												
2471.1 2	2.2 4	2470.96	$(1,2^{+})$	0.0	0^{+}				Additional information 16.				
2642.0 7	0.35 15	2642.3	2+	0.0	0^+				Additional information 17.				
*2922.6 8	$0.35\ 15$ $0.37\ 17$	3177 19		0.0	0^+								
[†] Addition [‡] From 19 [#] These γ [@] From 19	3177.4 7 0.37 17 3177.4? 0.0 0 ⁺ [†] Additional information 19. [‡] From 1974Bu03, unless otherwise noted. Others: 1971Ju01, 1971Af05, 1970Ho28. [#] These γ rays may belong to ¹³⁸ Nd (1974Bu03). [@] From 1971Af05 only.												

4

 $^{138}_{58}\mathrm{Ce}_{80}\text{-}4$

 γ (¹³⁸Ce) (continued)

- [&] From Adopted Gammas. Arguments for mult from this experiment are ce data given as comments.
- ^{*a*} For absolute intensity per 100 decays, multiply by 0.025 4. ^{*b*} Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

S

¹³⁸Pr ε decay (1.45 min) 1974Bu03

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $^{138}_{58}\mathrm{Ce}_{80}$